100V ENHANCEMENT MODE HIGH ELECTRON MOBILITY TRANSISTOR (HEMT) Michele Rossitto. Marketing Director MOSFETs and Power ICs

Similar documents
HCS65R110FE (Fast Recovery Diode Type) 650V N-Channel Super Junction MOSFET

Unlocking the Power of GaN PSMA Semiconductor Committee Industry Session

GaN Transistors for Efficient Power Conversion

GaAs PowerStages for Very High Frequency Power Supplies. Greg Miller Sr. VP - Engineering Sarda Technologies

Switch mode power supplies Low gate charge. Power factor correction modules Low intrinsic capacitance

Switch mode power supplies Low gate charge. Power factor correction modules Low intrinsic capacitance

GS66516T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

GS61004B 100V enhancement mode GaN transistor Preliminary Datasheet

Introducing egan IC targeting Highly Resonant Wireless Power

UF3C120080K4S. 1200V-80mW SiC Cascode DATASHEET. Description. Features. Typical applications CASE D (1) CASE G (4) KS (3) S (2) Rev.

GaN is Crushing Silicon. EPC - The Leader in GaN Technology IEEE PELS

27mW - 650V SiC Cascode UJ3C065030K3S Datasheet. Description. Typical Applications. Maximum Ratings

80mW - 650V SiC Cascode UJ3C065080K3S Datasheet. Description. Typical Applications. Maximum Ratings

35mW V SiC Cascode UJ3C120040K3S Datasheet. Description. Typical Applications. Maximum Ratings

235 W Maximum Power Dissipation (whole module) 470 T J Junction Operating Temperature -40 to 150. Torque strength

Performance Comparison for A4WP Class-3 Wireless Power Compliance between egan FET and MOSFET in a ZVS Class D Amplifier

S2301 N-channel SiC power MOSFET bare die

GS61008T Top-side cooled 100 V E-mode GaN transistor Preliminary Datasheet

GS61008P Bottom-side cooled 100 V E-mode GaN transistor Preliminary Datasheet

GS66508T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

Enhancement Mode N-Channel Power MOSFET

Breaking Speed Limits with GaN Power ICs March 21 st 2016 Dan Kinzer, COO/CTO

Switch mode power supplies Excellent reverse recovery. Power factor correction modules Low gate charge Motor drives Low intrinsic capacitance

HCA80R250T 800V N-Channel Super Junction MOSFET

High efficiency DC-DC PoL conversion using the DMS3015SSS

HCI70R500E 700V N-Channel Super Junction MOSFET

DIOFET boosts PoL efficiency, reduces heat versus standard MOSFET

HCD80R600R 800V N-Channel Super Junction MOSFET

GS66516B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

HCD80R1K4E 800V N-Channel Super Junction MOSFET

Appendix: Power Loss Calculation

GS P Bottom-side cooled 100 V E-mode GaN transistor Preliminary Datasheet. Features. Applications. Description.

HCS80R1K4E 800V N-Channel Super Junction MOSFET

Enhancement Mode N-Channel Power MOSFET

TPH3207WS TPH3207WS. GaN Power Low-loss Switch PRODUCT SUMMARY (TYPICAL) Absolute Maximum Ratings (T C =25 C unless otherwise stated)

T C =25 unless otherwise specified. Symbol Parameter Value Units V DSS Drain-Source Voltage 40 V

30V N-Channel Trench MOSFET

40V N-Channel Trench MOSFET

Features. Symbol Parameter Rating Units V DS Drain-Source Voltage 60 V V GS Gate-Source Voltage ±20 V

Enhancement Mode N-Channel Power MOSFET

N-Channel 200 V (D-S) 175 C MOSFET

HCS80R380R 800V N-Channel Super Junction MOSFET

HCA60R080FT (Fast Recovery Diode Type) 600V N-Channel Super Junction MOSFET

Enhancement Mode N-Channel Power MOSFET

GS61004B 100V enhancement mode GaN transistor Preliminary Datasheet

GS61008P Bottom-side cooled 100 V E-mode GaN transistor Preliminary Datasheet. Features. Applications. Description. Circuit Symbol.

S2307 N-channel SiC power MOSFET bare die

GS66504B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

N-Channel 40 V (D-S) 175 C MOSFET

GS66502B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

SCT2080KE N-channel SiC power MOSFET

30V N-Channel Trench MOSFET

20V N-Channel Trench MOSFET

GS66508P Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

Symbol Parameter Typical

HRLD150N10K / HRLU150N10K 100V N-Channel Trench MOSFET

TPH3202PS TPH3202PS. GaN Power Low-loss Switch PRODUCT SUMMARY (TYPICAL) TO-220 Package. Absolute Maximum Ratings (T C =25 C unless otherwise stated)

GS66508B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

GS61008T Top-side cooled 100 V E-mode GaN transistor Preliminary Datasheet

GS66516B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

GaN Brings About a New Way of Thinking to Power Conversion Stephen Colino Efficient Power Conversion Corporation

GS66506T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

Enhancement Mode N-Channel Power MOSFET

HGI290N10SL. Value T C =25 31 Continuous Drain Current (Silicon Limited) I D T C = Drain to Source Voltage. Symbol V DS

Enhancement Mode N-Channel Power MOSFET

AN OPTIMIZED SPECIFIC MOSFET FOR TELECOMMUNICATION AND DATACOMMUNICATION APPLICATIONS

IRF130, IRF131, IRF132, IRF133

SSF2341E. Main Product Characteristics V DSS -20V. R DS(on) 37mΩ (typ.) I D. Features and Benefit. Description

Enhancement Mode N-Channel Power MOSFET

Driving egan TM Transistors for Maximum Performance

C3M J. Silicon Carbide Power MOSFET C3M TM MOSFET Technology. N-Channel Enhancement Mode. Features. Package. Benefits.

Dual N-Channel 30 V (D-S) MOSFETs

VDSS (V) 650 V(TR)DSS (V) 800. RDS(on)eff (mω) max* 85. QRR (nc) typ 90. QG (nc) typ 10

TO-247-3L Inner Circuit Product Summary C) RDS(on) Parameter Symbol Test Conditions Value Unit

HCD80R650E 800V N-Channel Super Junction MOSFET

HCS90R1K5R 900V N-Channel Super Junction MOSFET

HCS70R350E 700V N-Channel Super Junction MOSFET

HCS80R850R 800V N-Channel Super Junction MOSFET

150V N-Channel Trench MOSFET

N-Channel 40 V (D-S) MOSFET

SCH2080KE N-channel SiC power MOSFET co-packaged with SiC-SBD

GS66508T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

GS66508T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

Enhancement Mode N-Channel Power MOSFET

S4108 N-channel SiC power MOSFET bare die

N-Channel 30 V (D-S) MOSFET

Symbol Parameter Typical

E Series Power MOSFET

Taiwan Goodark Technology Co.,Ltd

APT80SM120B 1200V, 80A, 40mΩ

SCT3040KL N-channel SiC power MOSFET

AOD2910E 100V N-Channel MOSFET

HCD6N70S / HCU6N70S 700V N-Channel Super Junction MOSFET

AOL1422 N-Channel Enhancement Mode Field Effect Transistor

Enhancement Mode N-Channel Power MOSFET

N & P-Channel 100-V (D-S) MOSFET

DFP50N06. N-Channel MOSFET

Designing reliable and high density power solutions with GaN. Created by: Masoud Beheshti Presented by: Paul L Brohlin

An Experimental Comparison of GaN E- HEMTs versus SiC MOSFETs over Different Operating Temperatures

Dual N-channel Enhancement-mode Power MOSFETs

Transcription:

100V ENHANCEMENT MODE HIGH ELECTRON MOBILITY TRANSISTOR (HEMT) Michele Rossitto Marketing Director MOSFETs and Power ICs

100V GaN in PowerPAK 6 x 5 mm² Package Enhancement Mode GaN Transistor Superior R DS -Q g FOM Re-workability Classic PowerPAK Construction Industry Low Q g Q g of 8 nc Built-in ESD Protective encapsulation For power supplies in telecom and servers Leadership C oss Clip bonding 6 mω FOM = 48 mω-nc

Vishay 100V egan Highlights emode Gan in industry standard 6 x 5 mm 2 PowerPAK Drop in replacement for existing Si package with minimal PCB modification. No special solder profile needed. Easy to inspect Clip bonded drain and source terminals resulting in low package impedances. Vishay proprietary ESD protection for the sensitive gate Kelvin source connection for clean gate drives 3 rd quadrant conduction without body diode Zero Q rr in synchronous modes of operation Low C oss related losses. Q oss / E oss are 21 nc / 0.4 uj Efficient operation at higher switching frequencies Low Q g of 8 nc. Q gs of 1 nc and near-zero Q gd Gate switching times of 10-12 nsec even with modest gate drive Drastically reduces dead time and related 3 rd quadrant losses.

100V GaN in PowerPAK 6x5 mm² Package Excellent R DS -Q g FOM Increases Efficiency Enhancement mode device R DS -Q g FOM = 48 mω-nc 6 mω Clip construction allows high current handling 1 mm Optimized for Switching Applications Kelvin source connection reduces gate loop inductance to minimize ringing Industry low Q g and C oss Minimized Q rr prevents ringing Target Applications DC/DC converters Power supplies for mission critical applications Solar micro inverter Motor drive control Parameters SiR04G10D UNIT Package Dimension (mm x mm x mm) 6 x 5 x 1 mm x mm x mm V DS 100 V R DS(ON) @ V GS = 6V T J = 25 ºC 6 mω Q g 8 Q gs 0.3 nc Q gd 0.01 C oss 275 pf R DS -Q g FOM 48 mω-nc Sampling in 2019 Top View Bottom View Package Is Optimized for PCB Surface Mounting Encapsulated package is easier for rework Package dimension is identical to PowerPAK SO-8

Vishay 100V GaN vs. Competitors Top R DS -Q g FOM Optimized for switching applications Competitive R DS(ON) Reduces conduction loss 6 mω at V GS = 5V 16% lower R DS - C oss FOM Reduces loss from charging and discharging Q oss during ZVS intervals 90.0 R DS -Q g FOM (mω-nc) 8.0 Typical R DS(ON) (mω) 3500 R DS -C oss FOM (mω-pf) 80.0 7.0 3000 70.0 60.0 50.0 40.0 30.0 20.0 6.0 5.0 4.0 3.0 2.0 2500 2000 1500 1000 10.0 1.0 500 0.0 Vishay 100V GaN Competitor 1 Competitor 2 0.0 Vishay 100V GaN Competitor 1 Competitor 2 0 Vishay 100V GaN Competitor 1 Competitor 2

Technology Roadmap for 100V Products R DS -Q g FOM (mω-nc) 250 200 150 100 20 SiR668ADP SiR668DP FOM = 288 mω-nc Typ. R DS(ON) 4 mω Q g = 72 nc FOM = 216 mω-nc Typ. R DS(ON) 4 mω Q g = 54 nc 20% improvement on Q g of 250M cell SG Roadmap of Silicon Conventional solutions with aggressive improvement; targeting mass market Roadmap of Wide Band Gap Revolutionary FOM for mission critical designs without concern of budget FOM = 125 mω-nc PowerPAK SO8 Typ. R DS(ON) 3.4 mω Q g = 35 nc Aims for leadership R DS -Q g FOM with low Q oss 100V e-gan PowerPAK 6 X 5 SiR04G10D FOM = 48 mω-nc Typ. R DS(ON) 6 mω Q g = 8 nc 2018 2019 & Beyond

GaN vs Si in High Voltage Synchronous Buck Convertor 100V GaN benchmarked against best-in-class 100V silicon in a 48V à 12V synchronous buck convertor Both devices tested till they reached T j ~ 100 o C GaN tested to 500 khz. Silicon limited to 250 khz. Test set up designed to use GaN or silicon side by side under identical conditions Vin C in G D S SIR040G10D vs SiRA104DP 48Vin à 12V Sync Buck GaN @ 3.3 uh Si @ 500 khz 250 khz 180W 150W D Vout G I S à D C out GND S GND 7

GaN vs Si Synchronous Buck Efficiency Even at 2x switching frequency GaN is more efficient Efficiency difference is more pronounced at light load Silicon has constant 4W power loss, arising from Qrr related losses Benefits of zero Qrr can be significant for high voltage synchronous buck and SSR applications. 8

V gsh and V gsl Comparison Drawn to different time scales 100 ns/div for GaN and 200 ns/div for Si Waveforms depict high side and low side gate voltages on no load and without any voltage on the DC bus Dead time set to 20 ns for both GaN has no crossover issues @ 20 ns. Low Qg can handle very short transition times for gate rise and fall. Reduces dead time requirements and body diode conduction loss With Si, 20 nsec dead time results in crossover of gate voltage and shoot through. 9

Gate Switching Times - GaN vs Silicon Si switches slowly and has shoot through under different conditions. All waveforms with common 20 nsec deadtime 10

In a synchronous buck LS MOSFET always conducts in 3 rd quadrant Turning OFF the LS is not an issue with GaN which has no body diode HS GaN can turn ON under 20 nsec without shoot through No diode reverse recovery time or losses! GaN vs Si Qrr Matters With silicon, body diode of the LS MOSFET must be hard commutated Reverse recovery time always gets added to the dead time Shoot through conditions exist as the HS MOSFET turns on Increased losses prevent higher frequency operation with silicon 11

THANK YOU! 12