Design and Implementation of Closed Loop LCL-T Resonant DC-to- DC Converter Using Low Cost Embedded Controller

Similar documents
IJESRT. (I2OR), Publication Impact Factor: (ISRA), Impact Factor: Student, SV University, Tirupati, India.

EMBEDDED CONTROLLED ZVS DC-DC CONVERTER FOR ELECTROLYZER APPLICATION

Simulation and Experimental Results of 7-Level Inverter System

THREE PORT DC-DC CONVERTER FOR STANDALONE PHOTOVOLTAIC SYSTEM

Analysis and Design of Soft Switched DC-DC Converters for Battery Charging Application

A Dual Half-bridge Resonant DC-DC Converter for Bi-directional Power Conversion

Comparison of Simulation and Experimental Results of Class - D Inverter Fed Induction Heater

High Frequency Isolated Series Parallel Resonant Converter

CHAPTER 3 MODIFIED FULL BRIDGE ZERO VOLTAGE SWITCHING DC-DC CONVERTER

Figure.1. Block of PV power conversion system JCHPS Special Issue 8: June Page 89

Grid Connected Photovoltic System Using High Gain DC-DC Converter With Voltage Multiplier Circuit

POWER ISIPO 29 ISIPO 27

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications

Lecture 19 - Single-phase square-wave inverter

LLC Resonant Converter for Battery Charging Application

The Parallel Loaded Resonant Converter for the Application of DC to DC Energy Conversions

CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS

SOFT SWITCHING MODEL OF INTERLEAVED BUCK CONVERTER

Design of Dynamic Voltage Restorer for three phase network as steady state device in the Distribution System

ADVANCED CONTROL TECHNIQUES IN VARIABLE SPEED STAND ALONE WIND TURBINE SYSTEM

CHAPTER 4 PI CONTROLLER BASED LCL RESONANT CONVERTER

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(

Implementation and Design of Advanced DC/AC Inverter for Renewable Energy

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

Small-Signal Model and Dynamic Analysis of Three-Phase AC/DC Full-Bridge Current Injection Series Resonant Converter (FBCISRC)

Closed Loop Control of Boost Converter for a Grid Connected Photovoltaic System

High Voltage-Boosting Converter with Improved Transfer Ratio

Modeling & Simulation of Permanent Magnet Synchronous Wind Generator Based Stand-alone System

SIMULATION OF HIGH BOOST CONVERTER FOR CONTINUOUS AND DISCONTINUOUS MODE OF OPERATION WITH COUPLED INDUCTOR

GRID CONNECTED HYBRID SYSTEM WITH SEPIC CONVERTER AND INVERTER FOR POWER QUALITY COMPENSATION

Simulation of Soft Switched Pwm Zvs Full Bridge Converter

Development of DC-AC Link Converter for Wind Generator

Electric Grid Modernization Enabled by SiC Device based Solid State Transformers and Innovations in Medium Frequency Magnetics

IGBT based Multiport Bidirectional DC-DC Converter with Renewable Energy Source

Half bridge converter with LCL filter for battery charging application using DC-DC converter topology

Grid Interconnection of Wind Energy System at Distribution Level Using Intelligence Controller

DC-DC Converter Based on Cockcroft-Walton for High Voltage Gain

K.Vijaya Bhaskar. Dept of EEE, SVPCET. AP , India. S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP , India.

ISSN Vol.07,Issue.06, July-2015, Pages:

Design and Simulation of Buck Boost Controller of Solar Wind Hybrid Energy System

Simulation and Analysis of a Multilevel Converter Topology for Solar PV Based Grid Connected Inverter

MODELING AND SIMULATON OF THREE STAGE INTERLEAVED BOOST CONVERTER BASED WIND ENERGY CONVERSION SYSTEM

INVESTIGATION OF GATE DRIVERS FOR SNUBBERLESS OVERVOLTAGE SUPPRESSION OF POWER IGBTS

CHAPTER 4 MULTI-LEVEL INVERTER BASED DVR SYSTEM

A Novel Cascaded Multilevel Inverter Using A Single DC Source

A Bi-directional Z-source Inverter for Electric Vehicles

CHAPTER 3 H BRIDGE BASED DVR SYSTEM

Integration of CUK and SEPIC Converters for Hybrid Renewable Energy Systems

Maximum Power Extraction from A Small Wind Turbine Using 4-phase Interleaved Boost Converter

Performance Evaluation of Negative Output Multiple Lift-Push-Pull Switched Capacitor Luo Converter

Single Phase Bidirectional PWM Converter for Microgrid System

Stability of Voltage using Different Control strategies In Isolated Self Excited Induction Generator for Variable Speed Applications

A Three Phase Power Conversion Based on Single Phase and PV System Using Cockcraft-Walton Voltage

TYPICALLY, a two-stage microinverter includes (a) the

A New ZVS Bidirectional DC-DC Converter With Phase-Shift Plus PWM Control Scheme

A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER

IMPLEMENTATION OF FM-ZCS-QUASI RESONANT CONVERTER FED DC SERVO DRIVE

ADVANCES in NATURAL and APPLIED SCIENCES

Design of Single Phase Pure Sine Wave Inverter for Photovoltaic Application

Research Article Efficiency Enhancement of DC to DC Multilevel Boost Converter and Its Applications

Passive Lossless Clamped Converter for Hybrid Electric Vehicle

International Journal of Engineering Research-Online A Peer Reviewed International Journal

Student Department of EEE (M.E-PED), 2 Assitant Professor of EEE Selvam College of Technology Namakkal, India

DC-DC CONVERTER WITH VOLTAGE MULTIPLIER CIRCUIT FOR PHOTOVOLTAIC APPLICATION

Series and Parallel Resonant Inverter Fed Ferromagnetic Load-A Comparative Analysis

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter

Anfis Based Soft Switched Dc-Dc Buck Converter with Coupled Inductor

VIENNA RECTIFIER FED BLDC MOTOR

A New Three-Phase Interleaved Isolated Boost Converter With Solar Cell Application. K. Srinadh

A New Active Soft Switching Technique for Pulse Width Modulated Full Bridge DC-DC Converters

MODELING AND SIMULATION OF LLC RESONANT CONVERTER FOR PHOTOVOLTAIC SYSTEMS

Study of Harmonics and THD of Nine Phase PWM Inverter Drive with CLC Filter for motor drive applications

@IJMTER-2016, All rights Reserved 241

ACTIVE POWER ELECTRONIC TRANSFORMER A STANDARD BUILDING BLOCK FOR SMART GRID

A Three-Phase AC-AC Buck-Boost Converter using Impedance Network

Enhancement of Fault Current and Overvoltage by Active Type superconducting fault current limiter (SFCL) in Renewable Distributed Generation (DG)

Negative Output Multiple Lift-Push-Pull Switched Capacitor for Automotive Applications by Using Soft Switching Technique

An Effective Method over Z-Source Inverter to Reduce Voltage Stress through T-Source Inverter

Design and Development of MPPT for Wind Electrical Power System under Variable Speed Generation Using Fuzzy Logic

CHAPTER 2 PHASE SHIFTED SERIES RESONANT DC TO DC CONVERTER

Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION

Modified Multilevel Inverter Topology for Driving a Single Phase Induction Motor

Multilevel Inverter for Single Phase System with Reduced Number of Switches

A New Soft Switching ZCS and ZVS High Frequency Boost Converter with an HI-Bridge Auxiliary Resonant Circuit to Drive a BLDC Motor

Design and Simulation of Soft Switched Converter with Current Doubler Scheme for Photovoltaic System

Simulation and Experimental Based Four Switch Three Phase Inverter Fed Induction Motor Drive

Comparative Analysis of Two Inverter Topologies Considering Either Battery or Solar PV as DC Input Sources

MICROCONTROLLER BASED ISOLATED BOOST DC-DC CONVERTER

This paper deals with a new family of high boostvoltage inverters, called switched-inductor quasi-z-source inverters.

Power Quality Compensation by using UPFC

A Pv Fed Buck Boost Converter Combining Ky And Buck Converter With Feedback

AN EXPERIMENTAL INVESTIGATION OF PFC BLDC MOTOR DRIVE USING BRIDGELESS CUK DERIVED CONVERTER

Lecture 4 ECEN 4517/5517

Design and Analysis of ANFIS Controller to Control Modulation Index of VSI Connected to PV Array

Existing system: The Master of IEEE Projects. LeMenizInfotech. 36, 100 Feet Road, Natesan Nagar, Near Indira Gandhi Statue, Pondicherry

Implementation of an Interleaved High-Step-Up Dc-Dc Converter with A Common Active Clamp

An Isolated DC-AC Converter Module Integrating Renewable Energy Source and Energy Storage for Cascaded Inverter

Single Phase Bridgeless SEPIC Converter with High Power Factor

HIGH STEP UP SWITCHED CAPACITOR INDUCTOR DC VOLTAGE REGULATOR

Transcription:

American Journal of Engineering and Applied Sciences, 2012, 5 (4), 291-300 ISSN: 1941-7020 2014 Annamalai and Kumar, This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license doi:10.3844/ajeassp.2012.291.300 Published Online 5 (4) 2012 (http://www.thescipub.com/ajeas.toc) Design and Implementation of Closed Loop LCL-T Resonant DC-to- DC Converter Using Low Cost Embedded Controller 1 M. Annamalai and 2 M. Vijaya Kumar 1 Sathyabama University, Chennai, Tamil Nadu, India 2 Department of Electrical Engineering, JNTU, A.P, India ABSTRACT The aim of this study is to simulate and implement open loop and closed loop controlled DC-DC converter for stand-alone wind energy system. Wind turbines, however, are not always very efficient in the wind speeds that are most common to a region. Typically, wind energy systems are designed to be highly efficient in high wind speed and have a cut-off wind speed- below which no energy is captured. In remote locations where wind energy is used for battery charging, the energy lost below the cut-off wind speed could be used for trickle charging or maintaining a battery s fully charged state. Wind turbines are most efficient when they are operated at one specific Tip-Speed to Wind-Speed Ratio (TSR). Therefore, for the efficient capture of wind power, turbine speed should be controlled to follow the ideal TSR, with an optimal operating point, which is different for every wind speed In this system, the DC-DC converter in the DC link with a constant dc voltage to the load, a DC-DC converter will allow the voltage at the output of a diode bridge rectifier to be controlled. In low wind speed conditions, the voltage may be lowered to prevent the dc link from reverse biasing the diode rectifier. Under high wind speed condition, the voltage may be increased, reducing I2R losses. In addition, adjusting the voltage on the dc rectifier will change the generator terminal voltage and thereby provide control over the current flowing out of the generator. The LCL-T resonant inverter system for both open loop and closed loop DC-to-DC converter systems are simulated using MATLAB simulink power system blocks. This converter has advantages like reduced transformer size, reduced filter size and current source characteristics. The simulation studies indicate that LCL-T type for open and closed loop DC-DC converter can be used with stand-alone wind generator. Constant voltage can be maintained at the output of DC-to-DC converter by using a PWM rectifier at the output. Embedded controlled DC to DC converter is fabricated and it is tested. Keywords: Converter, Resonant Inverter, DC-DC Converter, MATLAB 1. INTRODUCTION Wind energy is a quiet alternative to remote diesel generation-that sometimes depends on excessive Small-scale stand-alone wind energy is increasingly transportation and fuel storage costs- and an viewed as a viable and sometimes preferred source of economically justifiable alternative to a grid electrical energy. Consider, for example, remote villages connection. It has been shown that a remote load has in developing countries or ranches located far away from only to be a matter of a few miles away from a main main power lines. Wind energy is a quiet alternative to power line for a stand-alone wind generator to be remote diesel generation- that sometimes depends on cost-effective (Kellogg et al., 1998). excessive transportation and fuel storage costs-and an A typical, small-scale, stand-alone, wind electric economically justifiable alternative to a grid connection. system is composed of a wind turbine, a permanent-magnet Corresponding Author: M. Annamalai, Sathyabama University, Chennai, Tamil Nadu, India 291

generator, a diode bridge rectifier and a dc power system. In many small-scale systems, the dc system is at a constant dc voltage and is usually comprised of a battery bank, allowing energy storage, a controller to keep the batteries from overcharging and a load. The load may be DC or may include an inverter to an AC system. The load configuration is beyond the scope of this study. Unfortunately, there can be significant problems connecting a wind generator to a constant DC voltage. At low wind speeds, the induced voltage in the generator will not be high enough to overcome the reverse bias in the diode bridge. At high wind speed, the electrical frequency increases and the reactive impedance of the generator will be high, while the impedance of the battery load will be low. In this case, the poor impedance matching will limit power transfer to the DC system (Yamamura et al., 1999; Borage, 2005; Daniel and Gounden, 2004; Arutchelvi and Daniel, 2006; 2007). Control of the DC-DC converter may be achieved by means of maximum power point tracking (Daniel and Gounden, 2004) or by means of a pre-determined relationship between wind speed and rectifier DC voltage (Arutchelvi and Daniel, 2006; 2007). Maximum power point tracking requires continuous variation of the DC voltage to determine whether the output power may be increased. This system is relatively complex. The relatively high turbine inertia can cause a significant time lag between the changes to the DC-link voltage and any observed change in power. Use of a predetermined relationship between wind speed and voltage may also have difficulties. Accurate wind speed measurement is difficult and requires the use of a relatively expensive anemometer if it is to be used for system control. The system proposed in this study makes use of a predetermined relationship between generator electrical frequency and DC-link voltage. Three ports triple half bridge bidirectional converters with zero voltage switching are given in (Tao and Hendix, 2008). Fuel cell and super capacitor are used as sources. Active snubber cell for DC to DC converter is given in (Hosseni and Moradi, 2008). This study deals with a LCL-T resonant DC-DC converter that achieves constant wind turbine efficiency across a wide range of wind speeds. The system is designed for use in remote location and, therefore, includes a simple control strategy and a fault- tolerant topology. The control circuit included fault detection and has been tested with a parallel redundant DC link. Previously published works demonstrated the ability of the control system to detect both open- and short-circuit converter faults and switch to a parallel converter without interruption of the supply. The literature 292 (Kellogg et al., 1998) to (Hosseni and Moradi, 2008) does not deal with the simulation of closed loop controlled DC-to-DC converter. This study deals with closed loop controlled DC-to-DC converter. This study also compares the experimental results with the simulation results. The system represented in the Fig. 1 where VDC is a variable voltage and V BATT is a fixed DC voltage. System data are given in Table 1. 1.1. Theoretical Approach The fundamental equation governing the power capture of a wind turbine is Equation 1: 1 3 Pt = ρ ACpvw (1) 2 where, Pt is turbine power, ρ is air density, A is the swept turbine area, Cp is the turbine coefficient of performance and υώ is wind speed. The coefficient of performance is a function of TSR, described by Equation 2: TSR rω m = (2) v ω where, ω m is rotational speed, is the turbine radius and is wind speed. The maximum power captured by the wind turbine will occur when the TSR is approximately 7.5, corresponding to a of 0.35. A typical Cp curve shown in Fig. 2. A relatively small deviation on either side of this TSR will result in a significant reduction of the power available for conversion to electrical energy. Employing control of the rotational speed of the turbine allows the TSR to be controlled and the coefficient of performance to be maximized. Thus, in turn, the generated electrical energy may be maximized. Control over the rotational speed is achieved by varying the generator terminal voltage. A simple understanding of the ideal steady-state relationship between terminal voltage and rotational speed may be obtained by considering a generator with a fundamental current in phase with terminal voltage and neglecting harmonic currents. Table 1. Wind energy system data Effective turbine radius 1.0m Phase to phase winding inductance 3.3mh Phase to phase winding resistance 0.51ω Peak per phase torque constant 0.71 nm/a Poles 8 System inertia 1.2kg-m 2 System damping 0.16nm/krpm

Fig. 1. Schematic diagram of the stand-alone wind Energy system under consideration Using E1 = 4.44 N1 ϕ f We obtain N1 = 13 (4) Using fr = 1/ 2π LrCr We obtain Cr = 0.75µ F (5) Using r = 1/ 4 3 f C R L We obtain C = 100µ F (6) The equation of inverter is as follows Equation 7-8: VO = VD for 0 < t < T/2 (7) Fig. 2. Typical Cp curve An approximation of the rectified dc-link voltage may be obtained using the standard equations for a threephase full-bridge diode rectifier with line inductance. It is possible to obtain a prediction for dc-link voltage as a function of mechanical speed (or electrical generated frequency) and TSR. In the ideal case, the generator operates at the peak of the curve. 1.2. Design Calculations 48V/12V transformer, fs = 20 KHz, fr = 56 KHz, φ = 10µwb, Lr = 9µH, RL = 100Ω, r = 7e-4. The following assumptions are made: (i) Saturation is neglected. (ii) Magnetizing current is neglected Equation 3-5: Using E1 = 4.44 N1 ϕ f We obtain N1 = 54 (3) 293 VO = -VD for T/2 < t < T (8) The ripple factor of the rectifier is Equation 9: r = 1 / 4 3Fcr (9) 1.3. Simulation Results Simulation is done using MATLAB and the results are presented here. The DC-DC converter is shown in Fig. 3a. Scopes are connected to measure the driving pulses, DC output and current. The output of the inverter is stepped down and it is rectified using an uncontrolled rectifier. The transformer primary voltage is shown in Fig. 3b. The secondary voltage is shown in Fig. 3c. Transformer voltage is sinusoidal due to the presence of the T-filter. DC output voltage and current waveforms are shown in Fig. 3d. It can be seen that the output is free from ripple. 1.4. Closed Loop System Open loop system with disturbance is shown in Fig. 4a. Disturbance source is represented as a subsystem. A step increase in input voltage is applied.

(a) (b) (c) 294

(d) Fig. 3. (a). DC-DC converter circuit diagram, (b) Transformer primary voltage, (c) Transformer secondary voltage, (d) Voltage and current waveforms (a) (b) 295

(c) (d) (e) Fig. 4. (a) Open loop system with a disturbance (b) input voltage with disturbance (c) output voltage of open loop system (d) closed loop system (e) output voltage of closed loop system 296

(a) (b) 297

(c) (d) (e) 298

(f) Fig. 5. (a) Control power circuit, (b) AC Input Voltage, (c) DC Output, (d) Top View of Hardware, (e) Primary Volta (f) Driving Pulses The input voltage with disturbance is shown in Fig. 4b. The output voltage with disturbance is shown in Fig 4c. The output voltage also increases in open loop system. Closed loop system is shown in Fig. 4d. The output voltage is sensed and it is compared with a reference voltage of 5V. The error is given to a PI controller. The output of PI generates pulses with reduced width. When these pulses are applied to the MOSFET s in the output rectifier, the output reduces to the set value as shown in the Fig. 4e. Thus the closed loop system is capable of reducing the steady state error. The parameters of KP = 4 and KI = 0.1 are used for simulation studies. 1.5. Hardware Implementation The hardware is implemented using a low cost embedded microcontroller Atmel 89C2051. The driving pulses required by the inverter are generated using embedded microcontroller. The pulses are amplified using a driver IC IR 2110. The control and power circuits are fabricated and tested shown in Fig. 5a. AC input voltage is shown in Fig. 5b. DC output is shown in Fig. 5c. Top view of the hardware is shown in Fig. 5d. The hardware consists of driver board and power board. Voltage across the primary is shown in Fig. 5e. Driving pulses are shown in Fig. 5f. From the Fig. 4 and 5, it can be seen that the experimental results coincide with the simulation results. 2. CONCLUSION The open loop and closed loop controlled DC-DC converter systems are simulated using MATLAB version 299 7.1 and the results are presented. This converter is popular due to reduced EMI, reduced stresses and high power density. The simulation studies indicate that LCL type DC-DC converter can be used with stand-alone wind generator. Constant voltage can be maintained at the output of DC-to-DC converter by using a PWM rectifier at the output. Simulation results indicate the validity of closed loop model. Embedded controlled DC to DC converter is fabricated and it is tested. The experimental results closely agree with the simulation results. The closed loop system is implemented using PI controller. The closed loop system may be attempted with a better intelligent controller. 3. REFERENCES Arutchelvi, M. and S.A. Daniel, 2006. Voltage control of an autonomous hybrid generation scheme based on PV array and wind-driven induction generators. Induct. Elect. Power Components Syst., 34: 759-773. DOI: 10.1080/15325000500488594 Arutchelvi, M. and S.A. Daniel, 2007. Composite controller for a hybrid power plant based on PV array fed wind-driven induction generator with battery storage. Int. J. Energy Res., 31: 515-524. DOI: DOI: 10.1002/er.1262 Borage, M., 2005. Analysis and design of an LCL-T resonant converter as a constant-current power supply. IEEE Trans. Indus. Elect., 52: 1547-1554. DOI: 10.1109/TIE.2005.858729

Daniel, S.A. and N.A. Gounden, 2004. A novel hybrid isolated generating system based on PV fed inverterassisted wind-driven induction generators. IEEE Trans. Energy Conv., 19: 416-422. DOI: 10.1109/TEC.2004.827031 Hosseni, S.H. and R. Moradi, 2008. A new active snubber cell for DC to DC converter. IEEE Trans. Power Elect. Kellogg, W.D., M.H. Nehrir, G. Venkataramanan and V. Gerez, 1998. Generation unit sizing and cost analysis for stand-alone wind, photovoltaic and hybrid wind/pv systems. IEEE Trans. Energy Conv., 13: 70-75. DOI: 10.1109/60.658206 Tao, H. and A.M. Hendix, 2008. Three-port triple-halfbridge bidirectional converter with zero-voltage switching. IEEE Trans. Power Elect., 23: 782-792. DOI: 10.1109/TPEL.2007.915023 Yamamura, N., M. Ishida and T. Hori, 1999. A simple Wind power generating system with permanent Magnet type synchronous generator. Proceedings of the IEEE International Conference Power Electronics Drive Systems, Jul. 27-29, IEEE Xplore Press, pp: 849-854. DOI: 10.1109/PEDS.1999.792817 300