Low Power, Precision, Auto-Zero Op Amps AD8538/AD8539 FEATURES Low offset voltage: 13 μv maximum Input offset drift: 0.03 μv/ C Single-supply operatio

Similar documents
AD8613/AD8617/AD8619. Low Cost Micropower, Low Noise CMOS Rail-to-Rail, Input/Output Operational Amplifiers PIN CONFIGURATIONS FEATURES APPLICATIONS

Ultraprecision, 36 V, 2.8 nv/ Hz Dual Rail-to-Rail Output Op Amp AD8676

16 V, 4 MHz RR0 Amplifiers AD8665/AD8666/AD8668

Dual, Ultralow Distortion, Ultralow Noise Op Amp AD8599

Low Cost, Precision JFET Input Operational Amplifiers ADA4000-1/ADA4000-2/ADA4000-4

Micropower Precision CMOS Operational Amplifier AD8500

Low Power, Rail-to-Rail Output, Precision JFET Amplifiers AD8641/AD8642/AD8643

15 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP

AD864/AD8642/AD8643 TABLE OF CONTENTS Specifications... 3 Electrical Characteristics... 3 Absolute Maximum Ratings... 5 ESD Caution... 5 Typical Perfo

Ultraprecision, 36 V, 2.8 nv/ Hz Dual Rail-to-Rail Output Op Amp AD8676

TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... 2 Specifications... 3 Absolute Maximum

24 MHz Rail-to-Rail Amplifiers with Shutdown Option AD8646/AD8647/AD8648

16 V, 1 MHz, CMOS Rail-to-Rail Input/Output Operational Amplifier ADA4665-2

150 μv Maximum Offset Voltage Op Amp OP07D

AD8603/AD8607/AD8609. Precision Micropower, Low Noise CMOS Rail-to-Rail Input/Output Operational Amplifiers

4 MHz, 7 nv/ Hz, Low Offset and Drift, High Precision Amplifier ADA EP

Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544

Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers AD8605/AD8606/AD8608

Low Cost JFET Input Operational Amplifiers ADTL082/ADTL084

1.8 V, Micropower, Zero-Drift, Rail-to-Rail Input/Output Op Amp ADA4051-2

Single and Dual, Ultralow Distortion, Ultralow Noise Op Amps AD8597/AD8599 PIN CONFIGURATIONS FEATURES APPLICATIONS

1.8 V Low Power CMOS Rail-to-Rail Input/Output Operational Amplifier AD8515

10-Channel Gamma Buffer with VCOM Driver ADD8710

Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

Low Cost JFET Input Operational Amplifiers ADTL082/ADTL084

Precision, Very Low Noise, Low Input Bias Current Operational Amplifiers

1.8 V, Micropower, Zero-Drift, Rail-to-Rail Input/Output Op Amp ADA4051-1/ADA4051-2

Zero Drift, Unidirectional Current Shunt Monitor AD8219

Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8274 FUNCTIONAL BLOCK DIAGRAM +V S FEATURES APPLICATIONS GENERAL DESCRIPTION

Dual Low Offset, Low Power Operational Amplifier OP200

Very Low Distortion, Precision Difference Amplifier AD8274

High Voltage, Current Shunt Monitor AD8215

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifier AD8276

High Voltage, Current Shunt Monitor AD8215

Dual Precision, Low Cost, High Speed BiFET Op Amp AD712-EP

Precision Low Power Single-Supply JFET Amplifiers AD8625/AD8626/AD8627

Quad Low Offset, Low Power Operational Amplifier OP400

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628

AD8218 REVISION HISTORY

AD8628/AD8629/AD863 TABLE OF CONTENTS Features... Applications... General Description... Pin Configurations... Revision History... 2 Specifications...

Precision Micropower Single Supply Operational Amplifier OP777

Ultraprecision Operational Amplifier OP177

High Resolution, Zero-Drift Current Shunt Monitor AD8217

Zero Drift, Digitally Programmable Instrumentation Amplifier AD8231-EP OP FUNCTIONAL BLOCK DIAGRAM FEATURES ENHANCED PRODUCT FEATURES

Low Power, Wide Supply Range, Low Cost Difference Amplifiers, G = ½, 2 AD8278/AD8279

Precision Low Power Single-Supply JFET Amplifier AD8627/AD8626/AD8625

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

Ultralow Offset Voltage Operational Amplifier OP07

Ultralow Power, Rail-to-Rail Output Operational Amplifiers OP281/OP481

16 V Auto-Zero, Rail-to-Rail Output Operational Amplifiers AD8638/AD8639

Rail-to-Rail, High Output Current Amplifier AD8397

Dual, High Voltage Current Shunt Monitor AD8213

Quad 7 ns Single Supply Comparator AD8564

TABLE OF CONTENTS AD8625/AD8626/AD8627 Specifications... 3 Electrical Characteristics... 3 Electrical Characteristics... 4 Absolute Maximum Ratings...

High Voltage Current Shunt Monitor AD8211

Precision Low Power Single-Supply JFET Amplifiers AD8625/AD8626/AD8627

AD8601/AD8602/AD8604. Precision CMOS, Single-Supply, Rail-to-Rail, Input/Output Wideband Operational Amplifiers FEATURES PIN CONFIGURATIONS

High Voltage, Bidirectional Current Shunt Monitor AD8210

Quad Low Offset, Low Power Operational Amplifier OP400

Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp AD820

Ultralow Offset Voltage Operational Amplifier OP07

Zero-Drift, High Voltage, Bidirectional Difference Amplifier AD8207

ADA485-/ADA485- TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... Specifications... 3 Spe

Single-Supply, 42 V System Difference Amplifier AD8206

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers AD8510/AD8512

Dual Low Power Operational Amplifier, Single or Dual Supply OP221

AD8510/AD8512/AD8513. Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers FEATURES PIN CONFIGURATIONS

Low Cost, High Speed Differential Amplifier AD8132

Low Voltage Micropower Quad Operational Amplifier OP490

Dual Picoampere Input Current Bipolar Op Amp AD706. Data Sheet. Figure 1. Input Bias Current vs. Temperature

Precision, Low Power, Micropower Dual Operational Amplifier OP290

High Voltage, Bidirectional Current Shunt Monitor AD8210

High Temperature, Low Drift, Micropower 2.5 V Reference ADR225

SGM8551XN Single-Supply, Single Rail-to-Rail I/O Precision Operational Amplifier

Ultralow Offset Voltage Dual Op Amp AD708

30 V, High Speed, Low Noise, Low Bias Current, JFET Operational Amplifier ADA4627-1/ADA4637-1

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822

Improved Second Source to the EL2020 ADEL2020

SON3130 FEATURES PRODUCT DESCRIPTION PIN CONFIGURATION (TOP VIEW) APPLICATIONS

Single-Supply 42 V System Difference Amplifier AD8205

High Voltage, Precision Operational Amplifier ADA4700-1

Dual Picoampere Input Current Bipolar Op Amp AD706

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

High Voltage Current Shunt Monitor AD8212

Dual Low Power 1.5% Comparator With 400 mv Reference ADCMP670

TABLE OF CONTENTS Features... Applications... General Description... Pin Configurations... Revision History... 2 Specifications... 3 Electrical Charac

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822

Low Voltage, Micropower, Quad Operational Amplifier OP490

Low Cost, High Speed, Rail-to-Rail, Output Op Amps ADA4851-1/ADA4851-2/ADA4851-4

10 MHz, 14.5 nv/ Hz, Rail-to-Rail I/O, Zero Input Crossover Distortion Amplifier ADA4500-2

High Precision Shunt Mode Voltage References ADR525/ADR530/ADR550

1.8 V to 5 V Auto-Zero, In-Amp with Shutdown AD8553

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers AD8512

Self-Contained Audio Preamplifier SSM2019

Precision Instrumentation Amplifier AD524

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628

SGM8554 Single-Supply, Quad Rail-to-Rail I/O Precision Operational Amplifier

Transcription:

Low Power, Precision, Auto-Zero Op Amps FEATURES Low offset voltage: 3 μv maximum Input offset drift:.3 μv/ C Single-supply operation: 2.7 V to 5.5 V High gain, CMRR, and PSRR Low input bias current: 25 pa Low supply current: 8 μa APPLICATIONS Mobile communications Portable instrumentation Battery-powered devices Sensor interfaces Temperature measurement Electronic scales PIN CONFIGURATIONS OUT AD8538 V 2 TOP VIEW +IN 3 (Not to Scale) 5 4 V+ IN Figure. 5-Lead TSOT-23 (UJ-5) NC IN 2 +IN 3 V 4 AD8538 TOP VIEW (Not to Scale) 674-2 8 NC 7 V+ 6 OUT 5 NC NC = NO CONNECT Figure 2. 8-Lead SOIC_N (R-8) 674- GENERAL DESCRIPTION OUT A 8 V+ IN A 2 7 OUT B The are very high precision amplifiers featuring +IN A 3 TOP VIEW 6 IN B extremely low offset voltage, low input bias current, and low power V 4 (Not to Scale) 5 +IN B consumption. The supply current is less than 25 μa maximujm per amplifier at 5. V. Operation is fully specified from 2.7 V to Figure 3. 8-Lead SOIC_N (R-8) 5. V single supply (±.35 V to ±2.5 V dual supply). The operate at very low power making these OUT A 8 V+ IN A 2 7 OUT B amplifiers ideal for battery-powered devices and portable +IN A 3 TOP VIEW 6 IN B equipment. (Not to Scale) V 4 5 +IN B The are specified over the extended industrial temperature range ( 4 C to +25 C). The AD8538 amplifier is Figure 4. 8-Lead MSOP (RM-8) available in 5-lead TSOT-23, and 8-lead, narrow body SOIC packages, and the amplifier is available in 8-lead, narrow body SOIC and 8-lead MSOP. 674-33 674-34 Rev. A Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 96, Norwood, MA 262-96, U.S.A. Tel: 78.329.47 www.analog.com Fax: 78.46.33 25 27 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS Features... Applications... General Description... Pin Configurations... Revision History... 2 Specifications... 3 AD8538 Electrical Specifications... 3 Electrical Specifications... 5 Absolute Maximum Ratings...7 Thermal Resistance...7 ESD Caution...7 Typical Performance Characteristics...8 AD8538 Characteristics...8 Characteristics... 4 Outline Dimensions... 2 Ordering Guide... 2 REVISION HISTORY 5/7 Rev. to Rev. A Added...Universal Updated Outline Dimensions... 2 Changes to Specifications Section... 3 Changes to Ordering Guide... 2 Added Table 3, Renumbered Tables Sequentially... 5 Added Table 4, Renumbered Tables Sequentially... 6 /5 Revision : Initial Version Changes to Thermal Resistance Section... 7 Added Figure 32 and Figure 33... 3 Added Characteristics Section, Renumbered Figures Sequentially... 4 Rev. A Page 2 of 24

SPECIFICATIONS AD8538 ELECTRICAL SPECIFICATIONS @ VS = 5. V, VCM = 2.5 V, VO = 2.5 V, TA = 25 C, unless otherwise specified. Table. Parameter Symbol Conditions Min Typ Max Unit INPUT CHARACTERISTICS Offset Voltage VOS 5 3 μv 4 C TA +25 C 3 μv Input Bias Current IB 5 25 pa 4 C TA +85 C 35 pa 4 C TA +25 C.7. na Input Offset Current IOS 2 5 pa 4 C TA +25 C 5 pa Input Voltage Range 5 V Common-Mode Rejection Ratio CMRR VCM = V to 5 V 5 5 db 4 C TA +25 C, VCM =.2 V to 4.8 V 35 db Large Signal Voltage Gain AVO RL = kω, VO =. V to 4.9 V 5 4 db 4 C TA +25 C 35 db Offset Voltage Drift ΔVOS/ΔT 4 C TA +25 C.3. μv/ C OUTPUT CHARACTERISTICS Output Voltage High VOH RL = kω to ground 4.99 4.998 V 4 C TA +25 C, RL = kω to ground 4.98 V RL = kω to ground 4.95 4.97 V 4 C TA +25 C, RL = kω to ground 4.94 V Output Voltage Low VOL RL = kω to V+.9 5 mv 4 C TA +25 C, RL = kω to V+ 2.8 7 mv RL = kω to V+ 7 2 mv 4 C TA +25 C, RL = kω to V+ 2 3 mv Short-Circuit Limit ISC ±25 ma POWER SUPPLY Power Supply Rejection Ratio PSRR VS = 2.7 V to 5. V 5 25 db 4 C TA +25 C 25 db Supply Current/Amplifier ISY IO = 5 8 μa 4 C TA +25 C 9 25 μa DYNAMIC PERFORMANCE Slew Rate SR RL = kω.4 V/μs Settling Time.% ts G = ±, 2 V step, CL = 2 pf, RL = kω μs Overload Recovery Time.5 ms Gain Bandwidth Product GBP 43 khz Phase Margin ØM RL = kω, RL = kω, CL = 2 pf 65 Degrees NOISE PERFORMANCE Voltage Noise en p-p f =. Hz to Hz 2. μv p-p Voltage Noise Density en f = khz 5 nv/ Hz Rev. A Page 3 of 24

@ VS = 2.7 V, VCM =.35 V, VO =.35 V, TA = 25 C, unless otherwise specified. Table 2. Parameter Symbol Conditions Min Typ Max Unit INPUT CHARACTERISTICS Offset Voltage VOS 5 3 μv 4 C TA +25 C 3 μv Input Bias Current IB 5 25 pa 4 C TA +85 C 35 pa 4 C TA +25 C.7. na Input Offset Current IOS 2 5 pa 4 C TA +25 C 5 pa Input Voltage Range 2.7 V Common-Mode Rejection Ratio CMRR VCM = V to 2.5 V 4 db 4 C TA +25 C 35 db Large Signal Voltage Gain AVO RL = kω, VO =. V to.7 V 4 db 4 C TA +25 C 5 35 db Offset Voltage Drift ΔVOS/ΔT 4 C TA +25 C.3. μv/ C OUTPUT CHARACTERISTICS Output Voltage High VOH RL = kω to ground 2.68 2.698 V 4 C TA +25 C, RL = kω to ground 2.68 V RL = kω to ground 2.67 2.68 V 4 C TA +25 C, RL = kω to ground 2.66 V Output Voltage Low VOL RL = kω to V+.7 5 mv 4 C TA +25 C, RL = kω to V+ 2.4 5 mv RL = kω to V+ 4 2 mv 4 C TA +25 C, RL = kω to V+ 2 25 mv Short-Circuit Limit ISC ±8 ma POWER SUPPLY Power Supply Rejection Ratio PSRR VS = 2.7 V to 5.5 V 5 25 db 4 C TA +25 C 25 db Supply Current/Amplifier ISY IO = 5 8 μa 4 C TA +25 C 9 25 μa DYNAMIC PERFORMANCE Slew Rate SR RL = kω.35 V/μs Settling Time.% ts G = ±, V step, CL = 2 pf, RL = kω 5 μs Overload Recovery Time.5 ms Gain Bandwidth Product GBP 43 khz Phase Margin ØM RL = kω, RL = kω, CL = 2 pf 65 Degrees NOISE PERFORMANCE Voltage Noise en p-p f =. Hz to Hz 2. μv p-p Voltage Noise Density en f = khz 5 nv/ Hz Rev. A Page 4 of 24

ELECTRICAL SPECIFICATIONS @ VS = 5. V, VCM = 2.5 V, VO = 2.5 V, TA = 25 C, unless otherwise specified. Table 3. Parameter Symbol Conditions Min Typ Max Unit INPUT CHARACTERISTICS Offset Voltage VOS 5 5 μv 4 C TA +25 C 3 μv Input Bias Current IB 5 6 pa 4 C TA +85 C 35 25 pa 4 C TA +25 C.7. na Input Offset Current IOS 2 7 pa 4 C TA +25 C 4 pa Input Voltage Range 5 V 4 C TA +25 C.2 4.8 V Common-Mode Rejection Ratio CMRR VCM = V to 5 V 5 35 db 4 C TA +25 C, VCM =.2 V to 4.8 V 3 db Large Signal Voltage Gain AVO RL = kω, VO =. V to 4.9 V 3 db 4 C TA +25 C 25 db Offset Voltage Drift ΔVOS/ΔT 4 C TA +25 C.3. μv/ C OUTPUT CHARACTERISTICS Output Voltage High VOH RL = kω to ground 4.99 4.994 V 4 C TA +25 C, RL = kω to ground 4.98 V RL = kω to ground 4.95 4.97 V 4 C TA +25 C, RL = kω to ground 4.94 V Output Voltage Low VOL RL = kω to V+ 5 7 mv 4 C TA +25 C, RL = kω to V+ 6 8 mv RL = kω to V+ 2 25 mv 4 C TA +25 C, RL = kω to V+ 24 3 mv Short-Circuit Limit ISC ±25 ma POWER SUPPLY Power Supply Rejection Ratio PSRR VS = 2.7 V to 5. V 5 25 db 4 C TA +25 C 25 db Supply Current/Amplifier ISY IO = 7 2 μa 4 C TA +25 C 225 μa DYNAMIC PERFORMANCE Slew Rate SR RL = kω.4 V/μs Settling Time.% ts G = ±, 2 V step, CL = 2 pf, RL = kω μs Overload Recovery Time.5 ms Gain Bandwidth Product GBP 43 khz Phase Margin ØM RL = kω, RL = kω, CL = 2 pf 65 Degrees NOISE PERFORMANCE Voltage Noise en p-p f =. Hz to Hz.2 μv p-p Voltage Noise Density en f = khz 52 nv/ Hz Rev. A Page 5 of 24

@ VS = 2.7 V, VCM =.35 V, VO =.35 V, TA = 25 C, unless otherwise specified. Table 4. Parameter Symbol Conditions Min Typ Max Unit INPUT CHARACTERISTICS Offset Voltage VOS 5 6 μv 4 C TA +25 C 3 μv Input Bias Current IB 5 25 pa 4 C TA +85 C 35 25 pa 4 C TA +25 C.7. na Input Offset Current IOS 2 5 pa 4 C TA +25 C 3 pa Input Voltage Range 2.7 V 4 C TA +25 C.2 2.5 Common-Mode Rejection Ratio CMRR VCM = V to 2.7 V 3 db 4 C TA +25 C, VCM =.2 V to 2.5 V 25 db Large Signal Voltage Gain AVO RL = kω, VO =. V to 2.6 V 3 db 4 C TA +25 C 5 25 db Offset Voltage Drift ΔVOS/ΔT 4 C TA +25 C.3. μv/ C OUTPUT CHARACTERISTICS Output Voltage High VOH RL = kω to ground 2.68 2.693 V 4 C TA +25 C, RL = kω to ground 2.68 V RL = kω to ground 2.67 2.68 V 4 C TA +25 C, RL = kω to ground 2.66 V Output Voltage Low VOL RL = kω to V+ 5 7 mv 4 C TA +25 C, RL = kω to V+ 6 8 mv RL = kω to V+ 4 2 mv 4 C TA +25 C, RL = kω to V+ 2 25 mv Short-Circuit Limit ISC ±8 ma POWER SUPPLY Power Supply Rejection Ratio PSRR VS = 2.7 V to 5.5 V 5 25 db 4 C TA +25 C 25 db Supply Current/Amplifier ISY IO = 2 μa 4 C TA +25 C 225 μa DYNAMIC PERFORMANCE Slew Rate SR RL = kω.35 V/μs Settling Time.% ts G = ±, V step, CL = 2 pf, RL = 8 μs Overload Recovery Time.5 ms Gain Bandwidth Product GBP 43 khz Phase Margin ØM RL = kω, RL = kω, CL = 2 pf 65 Degrees NOISE PERFORMANCE Voltage Noise en p-p f =. Hz to Hz 2. μv p-p Voltage Noise Density en f = khz 55 nv/ Hz Rev. A Page 6 of 24

ABSOLUTE MAXIMUM RATINGS, unless otherwise noted. Table 5. Parameter Rating Supply Voltage +6 V Input Voltage V SS.3 V to V DD +.3 V Differential Input Voltage ±6 V Output Short-Circuit Duration to GND Observe derating curve Storage Temperature Range 65 C to +5 C Lead Temperature (Soldering, 6 sec) 3 C Operating Temperature Range 4 C to +25 C Junction Temperature Range 65 C to +5 C THERMAL RESISTANCE θja is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 6. Thermal Characteristics Package Type θja θjc Unit 5-Lead TSOT-23 (UJ-5) 27 6 C/W 8-Lead SOIC_N (R-8) 25 43 C/W 8-Lead MSOP (RM-8) 45 45 C/W ESD CAUTION Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute maximum ratings apply at 25 C, unless otherwise noted. Rev. A Page 7 of 24

TYPICAL PERFORMANCE CHARACTERISTICS AD8538 CHARACTERISTICS AD8538 only, V SY = 5 V or ±2.5 V, unless otherwise noted. 45 4 V < V CM < 5V 7 6 AND 2.7V NUMBER OF AMPLIFIERS 35 3 25 2 5 INPUT BIAS CURRENT (pa) 5 4 3 2 5. 8.4 6.8 5.2 3.6 2..4.2 2.8 4.4 6. 7.6 9.2 674-3 25 45 65 85 5 25 674-6 INPUT OFFSET VOLTAGE (µv) Figure 5. AD8538 Input Offset Voltage Distribution TEMPERATURE ( C) Figure 8. AD8538 Input Bias Current vs. Temperature 4 2 4 C < T A < +25 C 6 4 NUMBER OF AMPLIFIERS 8 6 4 2 8 6 4 SUPPLY CURRENT (µa) 2.2.24.36.48.6.72.84.96 TCV OS (µv/ C) Figure 6. AD8538 Input Offset Voltage Drift Distribution 674-4 2 2 3 4 5 SUPPLY VOLTAGE (V) Figure 9. AD8538 Supply Current vs. Supply Voltage 674-7 8 2 INPUT OFFSET VOLTAGE (µv) 6 4 2 2 4 6 SUPPLY CURRENT (µa) 5 5 V SY = 2.7V 8 2 3 4 5 INPUT COMMON-MODE VOLTAGE (V) Figure 7. AD8538 Input Offset Voltage vs. Input Common-Mode Voltage 674-5 4 6 TEMPERATURE ( C) Figure. AD8538 Supply Current vs. Temperature 674-8 Rev. A Page 8 of 24

OUTPUT SATURATION VOLTAGE (mv). SOURCE SINK.... LOAD CURRENT (ma) V SY V OH V OL Figure. AD8538 Output Saturation Voltage vs. Load Current 674-9 OPEN-LOOP GAIN (db) 7 6 5 4 3 2 AND ±.35V R L = kω C L = 2pF 2 45 k k k M ФM Figure 4. AD8538 Open-Loop Gain and Phase vs. Frequency 35 9 45 OPEN-LOOP PHASE SHIFT (Degrees) 674-2 OUTPUT SATURATION VOLTAGE (mv) 35 3 25 2 R L = kω CMRR (db) 2 8 6 5 4 2 5 4 25 5 2 35 5 65 8 95 25 k k k M TEMPERATURE ( C) V SY V OH V OL Figure 2. AD8538 Output Saturation Voltage vs. Temperature 674- Figure 5. AD8538 CMRR vs. Frequency AND 2.7V 674-3 CLOSED-LOOP GAIN (db) 6 4 2 A V = A V = A V = AND 2.7V C L = 2pF R L = 2kΩ PSRR (db) 8 6 4 2 PSRR +PSRR AND ±.35V 2 k k k M Figure 3. AD8538 Closed-Loop Gain vs. Frequency 674- k k k M Figure 6. AD8538 PSRR vs. Frequency 674-4 Rev. A Page 9 of 24

AND 2.7V A V = A V = C L = 3pF R L = kω OUTPUT IMPEDANCE (Ω) A V = A V = VOLTAGE (V/DIV).. k k k M Figure 7. AD8538 Closed-Loop Output Impedance vs. Frequency 674-22 TIME (4µs/DIV) Figure 2. AD8538 Large Signal Transient Response 674-7 SMALL SIGNAL OVERSHOOT (%) 6 5 4 R L = 2kΩ V OUT (V) V IN (mv) 3 OS+ 2 OS 2.5 TIME (µs/div) LOAD CAPACITANCE (pf) Figure 8. AD8538 Small Signal Overshoot vs. Load Capacitance 674-5 A V = 5 Figure 2. AD8538 Positive Overload Recovery 674-8 VOLTAGE (5mV/DIV) AND 2.7V A V = C L = 3pF R L = 2kΩ V OUT (V) V IN (mv) 2.5 A V = 5 674-6 674-9 TIME (4µs/DIV) Figure 9. AD8538 Small Signal Transient Response TIME (µs/div) Figure 22. AD8538 Negative Overload Recovery Rev. A Page of 24

V IN VOLTAGE NOISE DENSITY (nv/ Hz) k k Figure 23. AD8538 Voltage Noise Density 674-2 VOLTAGE (V/DIV) V OUT A V = V IN = 6V p-p R L = kω TIME (2µs/DIV) Figure 25. AD8538 No Phase Reversal 674-23 AND 2.7V VOLTAGE (5nV/DIV) 674-2 TIME (s/div) Figure 24. AD8538. Hz to Hz Input Voltage Noise Rev. A Page of 24

V SY = 2.7 V or ±.35 V, AD8538 only, unless otherwise noted. NUMBER OF AMPLIFIERS 8 6 4 2 8 6 4 2 V SY = 2.7V V < V CM < 2.7V. 8.4 6.8 5.2 3.6 2..4.2 2.8 4.4 6. 7.6 9.2 674-24 OUTPUT SATURATION VOLTAGE (mv) V SY = 2.7V SOURCE SINK.... 674-27 INPUT OFFSET VOLTAGE (µv) Figure 26. AD8538 Input Offset Voltage Distribution LOAD CURRENT (ma) Figure 29. AD8538 Output Saturation Voltage vs. Load Current NUMBER OF AMPLIFIERS 35 3 25 2 5 5.2.24.36.48.6.72.84.96 TCV OS (µv/ C) V SY = 2.7V 4 C < T A < +25 C 674-25 OUTPUT SATURATION VOLTAGE (mv) 3 25 2 V SY = 2.7V R L = kω V SY = VOH 5 VOL 5 Figure 27. AD8538 Input Offset Voltage Drift Distribution 4 25 5 2 35 5 65 8 95 25 TEMPERATURE ( C) Figure 3. AD8538 Output Saturation Voltage vs. Temperature 674-28 INPUT OFFSET VOLTAGE (µv) 8 6 4 2 2 4 6 8 V SY = 2.7V.5..5 2. 2.5 INPUT COMMON-MODE VOLTAGE (V) Figure 28. AD8538 Input Offset Voltage vs. Input Common-Mode Voltage 674-26 SMALL SIGNAL OVERSHOOT (%) 8 7 6 5 4 3 2 V SY = 2.7V R L = 2kΩ OS+ LOAD CAPACITANCE (pf) OS Figure 3. AD8538 Small Signal Overshoot vs. Load Capacitance 674-29 Rev. A Page 2 of 24

VOLTAGE (5mV/DIV) V SY = 2.7V A V = C L = pf R L = kω VOLTAGE NOISE DENSITY (nv/ Hz) V SY = 2.7V TIME (4µs/DIV) Figure 32. AD8538 Large Signal Transient Response 674-3 k k k Figure 33. AD8538 Voltage Noise Density 674-32 Rev. A Page 3 of 24

CHARACTERISTICS only, VS = 5 V or ±2.5 V, unless otherwise noted. NUMBER OF AMPLIFIERS 8 7 6 5 4 3 2 < V CM < 5V INPUT BIAS CURRENT (pa)..... 9 8 7 6 5 4 3 2 2 3 4 5 6 7 8 9 V OS (µv) Figure 34. Input Offset Voltage Distribution 674-35. 5 25 45 65 85 5 25 TEMPERATURE ( C) Figure 37. Input Bias Current vs. Temperature 674-38 NUMBER OF AMPLIFIERS 6 5 4 3 2 4 C < V CM < 25 C 4 35 3 +85 C +25 C 25 4 C 2 5 I SY (µa) 5 V SY = V TO 5V 4 C < T A < +25 C +25 C.6.32.48.64.8.96 TCV OS (µv) Figure 35. Input Offset Voltage Drift Distribution 674-36.5..5 2. 2.5 3. 3.5 4. 4.5 5. V SY (V) Figure 38. Supply Current vs. Supply Voltage 674-39 2 V < V CM < 5V 4 375 35 V OS (µv) I SY (µa) 325 3 275 25 V SY = ±.35V 225 2 2 3 4 5 V CM (V) Figure 36. Input Offset Voltage vs. Input Common-Mode Voltage 674-37 2 4 25 5 2 35 5 65 8 95 25 TEMPERATURE ( C) Figure 39. Supply Current vs. Temperature 674-4 Rev. A Page 4 of 24

OUTPUT SATURATION VOLTAGE (mv) SOURCE, V S = ±.35V SOURCE, V S = ± 2.5V SINK, V S = ±.35V SINK, V S = ± 2.5V.... I LOAD (ma) Figure 4. Output Saturation Voltage vs. Load Current 674-4 GAIN (Degrees) 2 8 6 4 2 2 4 6 8 2 R L = 2kΩ C L = 2pF k k k M M Figure 43. Open-Loop Gain and Phase vs. Frequency 2 8 6 4 2 2 4 6 8 2 PHASE (Degrees) 674-44 OUTPUT SATURATION VOLTAGE (mv) 35 3 25 2 5 V S = 5V V DD - V OH, I L = 25µA, R L = kω V OL, I L = 25µA, R L = kω CMRR (db) 4 2 8 6 CHANNEL B CHANNEL A 4 V DD - V OH, I L = 25µA, R L = kω 5 2 V OL, I L = 25µA, R L = kω 4 25 5 2 35 5 65 8 95 25 k k k M M TEMPERATURE ( C) Figure 4. Output Saturation Voltage vs. Temperature Figure 44. CMRR vs. Frequency 674-42 674-45 CLOSED-LOOP GAIN (db) 6 4 2 A V = A V = A V = R L = 2kΩ C L = 2pF PSRR (db) 2 8 6 4 2 PSRR+ PSRR 2 4 k k k M M Figure 42. Closed-Loop Gain vs. Frequency 674-43 2 k k k M M Figure 45. PSRR vs. Frequency 674-46 Rev. A Page 5 of 24

Z OUT (Ω) 9 8 7 6 5 4 3 VOLTAGE (V/DIV) A V = C L = 3pF R L = kω 2 A V = A V = A V =. k k k M M Figure 46. Closed-Loop Output Impedance vs. Frequency 674-47 TIME (4µs/DIV) Figure 49. Large Signal Transient Response 674-5 OVERSHOOT (%) 6 5 4 3 R L = 2kΩ OS+. 2 OS.5 OUTPUT VOLTAGE.2 2.25 3 k TIME (2µs/DIV) CAPACITANCE (pf) Figure 47. Small Signal Overshoot vs. Load Capacitance Figure 5. Positive Overload Recovery 674-48 INPUT VOLTAGE (5mV/DIV).5..5.5 INPUT VOLTAGE A V = 5 5 4 3 2 OUTPUT VOLTAGE (V/DIV) 674-5 VOLTAGE (5mV/DIV) A V = C L = 3pF R L = 2kΩ INPUT VOLTAGE (5mV/DIV).5.5..5.2.25.3 INPUT VOLTAGE A V = 5 OUTPUT VOLTAGE 7.5 6.5 5.5 4.5 3.5 2.5.5.5 OUTPUT VOLTAGE (5V/DIV) TIME (2µs/DIV) Figure 48. Small Signal Transient Response 674-49.35 TIME (2µs/DIV) Figure 5. Negative Overload Recovery.5 674-52 Rev. A Page 6 of 24

VOLTAGE NOISE DENSITY (nv Hz) k VOLTAGE (2V/DIV) INPUT VOLTAGE OUTPUT VOLTAGE A V = R L = kω k k k Figure 52. Voltage Noise Density 674-53 TIME (2µs/DIV) Figure 54. No Phase Reversal 674-55.8.6 A V = M 2 VOLTAGE (2mV/DIV).4.2.2.4 2.6 4.8 6 5 4 3 2 2 3 4 5 k k k TIME (s/div) Figure 53.. Hz to Hz Input Voltage Noise Figure 55. Channel Separation vs. Frequency 674-54 CHANNEL SEPARATION (db) 4 6 8 674-56 Rev. A Page 7 of 24

V S = 2.7 V or ±.35 V,, only, unless otherwise noted. NUMBER OF AMPLIFIERS 35 3 25 2 5 5 V SY = 2.7V V < V CM < 2.7V OUTPUT SATURATION VOLTAGE (mv) 35 3 25 2 5 5 V DD V OH, R L = kω V OL, R L = kω V DD V OH, R L = kω V OL, R L = kω V SY = 2.7V 9 8 7 6 5 4 3 2 2 3 4 5 6 7 8 9 V OS Figure 56. Input Offset Voltage Distribution 674-57 4 25 5 2 35 5 65 8 95 25 TEMPERATURE ( C) Figure 59. Output Saturation Voltage vs. Temperature 674-6 NUMBER OF AMPLIFIERS 45 4 35 3 25 2 5 5 V SY = ±.35V 4 C < T A < +25 C OVERSHOOT (%) 8 7 6 5 V SY = ±.35V R L = 2kΩ 4 OS+ 3 2 OS.6.32.48.64.8.96 TCV OS (µv) Figure 57. Input Offset Voltage Drift Distribution 674-58 k CAPACITANCE (pf) Figure 6. Small Signal Overshoot vs. Load Capacitance 674-6 V OS (µv) 2 5 5 5 V SY = 2.7V V < V CM < 2.7V VOLTAGE (5mV/DIV) V SY = ±.35V A V = C L = 3pF R L = kω 5 2.3.6.9.2.5.8 2. 2.4 2.7 V CM (V) Figure 58. Input Offset Voltage vs. Input Common-Mode Voltage 674-59 TIME (4µs/DIV) Figure 6. Large Signal Transient Response 674-62 Rev. A Page 8 of 24

VOLTAGE NOISE DENSITY (nv/ Hz) k V SY = ±.35V CHANNEL SEPARATION (db) 2 4 6 8 2 4 V SY = ±.35V k k k Figure 62. Voltage Noise Density 674-63 6 k k k Figure 63. Channel Separation vs. Frequency 674-64 Rev. A Page 9 of 24

OUTLINE DIMENSIONS 2.9 BSC 5 4.6 BSC 2.8 BSC 2 3 *.9.87.84 PIN.9 BSC.95 BSC *. MAX. MAX.5 SEATING.3 PLANE.2.8 8 4.6.45.3 *COMPLIANT TO JEDEC STANDARDS MO-93-AB WITH THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS. Figure 64. 5-Lead Thin Small Outline Transistor Package [TSOT-23] (UJ-5) Dimensions shown in millimeters 5. (.968) 4.8 (.89) 8 5 4. (.574) 6.2 (.244) 3.8 (.497) 4 5.8 (.2284).25 (.98). (.4) COPLANARITY. SEATING PLANE.27 (.5) BSC.75 (.688).35 (.532).5 (.2).3 (.22) 8.25 (.98).7 (.67).5 (.96).25 (.99).27 (.5).4 (.57) 45 COMPLIANT TO JEDEC STANDARDS MS-2-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 65. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) 247-A Dimensions shown in millimeters and (inches) Rev. A Page 2 of 24

3.2 3. 2.8 3.2 3. 2.8 8 5 4 5.5 4.9 4.65.95.85.75.5. PIN.65 BSC.38.22 COPLANARITY.. MAX SEATING PLANE.23.8 8.8.6.4 COMPLIANT TO JEDEC STANDARDS MO-87-AA Figure 66. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters ORDERING GUIDE Model Temperature Range Package Description Package Option Branding AD8538AUJZ-R2 4 C to +25 C 5-Lead TSOT-23 UJ-5 AC AD8538AUJZ-REEL 4 C to +25 C 5-Lead TSOT-23 UJ-5 AC AD8538AUJZ-REEL7 4 C to +25 C 5-Lead TSOT-23 UJ-5 AC AD8538ARZ 4 C to +25 C 8-Lead SOIC_N R-8 AD8538ARZ-REEL 4 C to +25 C 8-Lead SOIC_N R-8 AD8538ARZ-REEL7 4 C to +25 C 8-Lead SOIC_N R-8 ARMZ-R2 4 C to +25 C 8-Lead MSOP RM-8 AS ARMZ-REEL 4 C to +25 C 8-Lead MSOP RM-8 AS ARZ 4 C to +25 C 8-Lead SOIC_N R-8 ARZ-REEL 4 C to +25 C 8-Lead SOIC_N R-8 ARZ-REEL7 4 C to +25 C 8-Lead SOIC_N R-8 Z = RoHS Compliant Part. Rev. A Page 2 of 24

NOTES Rev. A Page 22 of 24

NOTES Rev. A Page 23 of 24

NOTES 25 27 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D674--5/7(A) Rev. A Page 24 of 24