Fuzzy Logic Control of APF for Harmonic Voltage Suppression in Distribution System

Similar documents
ANALYSIS OF ACTIVE POWER FILTER FOR HARMONIC VOLTAGE RESONANCE SUPPRESSION IN DISTRIBUTION SYSTEM

Fuzzy Logic Controller Based Three-phase Shunt Active Filter for Line Harmonics Reduction

Application of Fuzzy Logic Controller in Shunt Active Power Filter

PERFORMANCE ANALYSIS OF SVPWM AND FUZZY CONTROLLED HYBRID ACTIVE POWER FILTER

DESIGN OF A HYBRID ACTIVE FILTER FOR HARMONICS SUPPRESSION WITH VARIABLE CONDUCTANCE IN INDUSTRIAL POWER SYSTEMS USING FUZZY

A Novel Fuzzy Variable-Band Hysteresis Current Controller For Shunt Active Power Filters

A Novel FPGA based PWM Active Power Filter for Harmonics Elimination in Power System

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System

Three Phase Active Shunt Power Filter with Simple Control in PSIM Simulation

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013

POWER QUALITY IMPROVEMENT BY USING ACTIVE POWER FILTERS

Implementation of SRF based Multilevel Shunt Active Filter for Harmonic Control

A THREE PHASE SHUNT ACTIVE POWER FILTER FOR HARMONICS REDUCTION

A Novel Fuzzy Control Approach for Modified C- Dump Converter Based BLDC Machine Used In Flywheel Energy Storage System

DESIGN A D STATCOM FOR VOLTAGE HARMONIC SUPPRESSION IN DISTRIBUTION SYSTEM

Design and Simulation of Fuzzy Logic controller for DSTATCOM In Power System

REDUCTION OF THD IN POWER SYSTEMS USING STATCOM

International Journal of Research (IJR) e-issn: , p- ISSN: X Volume 2, Issue 09, September 2015

Unit Vector Theory based Unified Power Quality Conditioner for Power Quality Improvement

Hybrid Active Power Filters for Reactive Power Compensation with Adaptive DC-Link Voltage Control

HYSTERESIS CONTROL FOR CURRENT HARMONICS SUPPRESSION USING SHUNT ACTIVE FILTER. Rajesh Kr. Ahuja

International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 8

DRIVE FRONT END HARMONIC COMPENSATOR BASED ON ACTIVE RECTIFIER WITH LCL FILTER

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013

Improvement of Power Quality Using Hybrid Active Power Filter in Three- Phase Three- Wire System Applied to Induction Drive

Simulation of Multi Converter Unified Power Quality Conditioner for Two Feeder Distribution System

A Simple Control Algorithm for Three-Phase Shunt Active Power Filter for Reactive Power and Current Harmonic Compensation

Power Quality Improvement in Fourteen Bus System using UPQC

STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads

Intelligence Controller for STATCOM Using Cascaded Multilevel Inverter

Indirect Current Control of LCL Based Shunt Active Power Filter

P. Sivakumar* 1 and V. Rajasekaran 2

ISSN Vol.03,Issue.42 November-2014, Pages:

Application of Fuzzy Logic Controller in UPFC to Mitigate THD in Power System

Exploration in Power Quality Furtherance on Shunt Active Power Filter

Power Quality Improvement using Active shunt Power filter using PI Controller

Modified Three-Phase Four-Wire UPQC Topology with Reduced DC-Link Voltage Rating

Design of SVPWM Based Inverter for Mitigation of Harmonics in Power System

Reduction of Voltage Imbalance in a Two Feeder Distribution System Using Iupqc

IJCSIET--International Journal of Computer Science information and Engg., Technologies ISSN

PI-VPI Based Current Control Strategy to Improve the Performance of Shunt Active Power Filter

PSPWM Control Strategy and SRF Method of Cascaded H-Bridge MLI based DSTATCOM for Enhancement of Power Quality

2020 P a g e. Figure.2: Line diagram of series active power filter.

HYBRID ACTIVE FILTER WITH VARIABLE CONDUCTANCE FOR HARMONIC RESONANCE SUPPRESSION USING ANN

Power Quality Improvement of Unified Power Quality Conditioner Using Reference Signal Generation Method

A Modified Single-Phase Quasi z source converter

Fuzzy Controlled DSTATCOM for Voltage Sag Compensation and DC-Link Voltage Improvement

REDUCED COMMON MODE NOISE AND LOWER ORDER HARMONIC IN PUSH PULL CONVERTER BY ACTIVE FILTER

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology

ISSN Vol.03,Issue.07, August-2015, Pages:

A Novel H Bridge based Active inductor as DC link Reactor for ASD Systems

Modeling and Simulation of STATCOM

Study of Harmonic based Indirect Current Controlled in Shunt Active Filter Using Slide Mode Controller Kalpana.S, P.K.Dhal

Power Quality Improvement using Shunt Passive Filter

Key terms: Voltage, Phase Angle, FACTS, Multilevel Converter, Power Quality, STATCOM.

DC Link Capacitor Voltage of D-Statcom With Fuzzy Logic Supervision

Control Of Shunt Active Filter Based On Instantaneous Power Theory

DESIGN AND IMPLEMENTATION OF THREE PHASE SHUNT APF CURRENT CONTROLLER WITH ANN TECHNIQUE

Kanuru; Krishna (Dt); A.P, India. DOI: / Page. 1 G. Aruna Jyothi, 2 DR. P. V. R. L.

Enhancement of Power Quality based on Unified Power Quality Conditioner (UPQC) K.S.Srikanth, Shaik. Musthak Ahmed, Y.Srinivasa Rao

Improvement of Power Quality Using a Hybrid Interline UPQC

Design of Shunt Active Power Filter by using An Advanced Current Control Strategy

Universal power quality conditioner

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE

Power Quality Improvement Using Hybrid Power Filter Based On Dual Instantaneous Reactive Power Theory With Hysteresis Current Controller

POWER QUALITY IMPROVEMENT BY USING ACTIVE POWER FILTERS

Power Control Scheme of D-Statcom

Design of a Hybrid Active Filter for Harmonics Suppression in Industrial Facilities

Analysis of Hybrid Power Conditioner in Three-Phase Four-Wire Distribution Power Systems for Suppressing Harmonics and Neutral-Line Current

Enhancement of Power Quality using active power filter in a Medium-Voltage Distribution Network switching loads

HARMONIC contamination, due to the increment of nonlinear

SHUNT ACTIVE POWER FILTER

Abstract: PWM Inverters need an internal current feedback loop to maintain desired

Interline Power Quality Conditioner for Power Quality Improvement

Voltage Control of Variable Speed Induction Generator Using PWM Converter

Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852

SHUNT COMPENSATOR USED FOR POWER QUALITY IMPROVEMENT

FOUR-LEG SHUNT ACTIVE POWER FILTER FOR POWER QUALITY IMPROVEMENT USING PI AND FUZZY CONTROLLERS

ISSN Vol.08,Issue.18, October-2016, Pages:

Harmonic Filtering in Variable Speed Drives

Improvement of Power Quality Using a Hybrid UPQC with Distributed Generator

ISSN: Page 20. International Journal of Engineering Trends and Technology- Volume2Issue3-2011

HARMONIC ELIMINATION IN THREE PHASE SYSTEM BY MEANS OF A SHUNT ACTIVE FILTER

Design and Control of Interline Unified Power Quality Conditioner for Power Quality Disturbances

A Hysteresis based Active Shunt, Passive Series Hybrid Filter for Power Quality Improvement

Power Quality Enhancement and Mitigation of Voltage Sag using DPFC

Mitigation of Voltage Sag, Swell and Load Hamonics by the Combined Opertation of Series APF and Solar System

ICCCES Application of D-STATCOM for load compensation with non-stiff sources

Grid-Voltage Regulation Controller: IUPQC

Power Factor Correction Using Statcom

[Mahagaonkar*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

Power Quality Improvement of Distribution Network for Non-Linear Loads using Inductive Active Filtering Method Suresh Reddy D 1 Chidananda G Yajaman 2

Compensation of Unbalanced Sags/Swells by Single Phase Dynamic Voltage Restorer

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August ISSN

Literature Review for Shunt Active Power Filters

A Novel Automatic Power Factor Regulator

Published in: IECON 2016: The 42nd Annual Conference of IEEE Industrial Electronics Society

Single Phase Shunt Active Filter Simulation Based On P-Q Technique Using PID and Fuzzy Logic Controllers for THD Reduction

ISSN: (Online) Volume 2, Issue 1, January 2014 International Journal of Advance Research in Computer Science and Management Studies

Simulation of Fuzzy Controller based Isolated Zeta Converter fed BLDC motor drive

Transcription:

Fuzzy Logic Control of APF for Harmonic Voltage Suppression in Distribution System G. Chandrababu, K. V. Bhargav, Ch. Rambabu (Ph.d) 3 M.Tech Student in Power Electronics, Assistant Professor, 3 Professor & HOD, Department of EEE at Sri Vasavi Engineering College, Tadepalligudem, A.P, India Abstract--Active power filter can prevent harmonic current from injecting into power system, but harmonic propagation cannot damp in distribution system where as voltage detection can do. This paper proposes an APF based on detection load current and harmonic voltage at the point of installation by using fuzzy control method. In addition, based on the relationship between the rated Volt-ampere of APF and the load Voltampere, the conductance value could adjust automatically. The objective of the shunt active filter is not only to compensate the harmonic compensation. Fuzzy controller gives the accurate values to pi controller. The input data will be split into the number of membership functions. Through those functions we would develop rules. By that rules it will give the more efficient output than conventional controllers. And the simulation results are performed to verify the validity and effectiveness of the shunt active filter equipped with the Fuzzy control. Index Terms Active power filter, active power line conditioner, harmonic distortion, power quality, fuzzy logic. Introduction: A number of power electronic based appliances such as diode, thyristor, rectifiers & Industrial electric power source generate a large amount of harmonic current in power systems []. A parallel active filter is to be placed in parallel with the load to inject a harmonic current with the same amplitude as that of the load []. The load impedance, Z L will become very low for harmonics when a parallel filter is connected on the side of the thyristor rectifier. In case of parallel active filter for a harmonic voltage source, a large series reactor must be placed on the load side to enhance the load impedance [3]. To compensate this minimum of % of series Inductance should be placed on the load side. The objective of the APF is not only to compensate the harmonic but also to damp the harmonics using voltage harmonic detection []. When the rated volt ampere is limit the harmonic compensation is less considered. Harmonic resonance between the line inductors and shunt capacitors for power factor correction made the harmonic voltage has become a serious problem []. When a parallel active filter is installed in a power system network, such as at a point of common coupling, the network impedance and main harmonic sources downstream from the installation point should be placed near the load to get good performance and to minimize the influence to the loads []. Installation of active filter at the end of the bus makes the required current rating of the active filter smaller than the installation on the begging bus due to installation at end of the bus it subjected to harmonic propagation [-7]. Based on the relationship between the rated volt-ampere of the APF and the volt-ampere needed to compensate the non linear load, the conductance value could auto adjustment compared with the fixed gain G is determined by the active filter and mainly dominated by the detection circuit of the harmonics, delay time of the control circuit and current response of the PWM inverter of the active filter [8]. It has two problems mainly due to high capacity non-linear loads and the second is load current detection cannot damp voltage harmonic in distribution system using pi controller [9]. This paper proposes a fuzzy logic controller of a compound control method on the detection of load current and harmonic voltage. Computer simulations are performed to verify the validity and effectiveness of the shunt active filter equipped with the compound control.. The Principle of Compound Control: Fig. shows the principle of compound control, each harmonic voltage amplifying by a gain G add to the load current amplifying by a gain K produces each current reference in Eq.(). i c =-GV Th + K.i L () Assume the rated volt-ampere of APF is W APF, the volt ampere needed to compensate the nonlinear load is W LOAD, the volt-ampere needed to damp harmonic voltage in power system is W COM, G is the equivalent harmonic conductance, and K is the compensation coefficient of load current detection. In reality practice there are three conditions W apf W load +W com, W load < W apf < W load +W com, W apf < W load 39

than is less than, G adjusts normally, otherwise, decrease G until W apf W load +W com In this condition, G is less than, the current limitation outer loop does not work, G adjusts normally. Fig.: Principle diagram of compound control W load < W apf < W load + W com, Fig. shows the principle of auto gain adjustment under constrained volt-ampere with compound control and is the ac components of three phase voltages under the synchronization reference frame. The square of harmonic voltage is calculated in Eq.(), and the typical value is defined in Eq.(3), if is more than, the counter counts up to Get a bigger G in the auto gain adjustment block[7], adjust G to a stable value until is lower than. Fig.: Auto gain adjustment under constrained volt-ampere V h = v dh + v qh () V H =3 (V S. THD) (3) In order to promise the volt-ampere of APF operates under rated volt-ampere, it s necessary to limit G less than a certain value. The volt-ampere of APF relies on the rms value of voltage in the installation bus and the rms value of compensation current, as in Eq. (). D h =3VI=3V ( I +I 7 + +I n ) () The current reference scaling-down under the rated voltampere can be achieved by reducing G, as shown in Fig., the current limitation outer loop work. In this condition, decrease G to a certain value until is less than. W apf < W load Decrease G to zero and keep G zero, and then, decrease K from to a certain value until the APF is working on rated volt-ampere, the APF cannot keep the THD at the installation bus within a specified range, there are parts of nonlinear load current injecting into the distribution system. 3. Simulation Result of Traditional Line And Active Power Filter Using PI Controller: Fig.3 depicts the simulation diagram, Us is pure grid voltage, a seventh harmonic current source of.a (.%) is connected downstream of bus, a nonlinear load is installed on bus 3. The most serious harmonic propagation occurs around 3Hz. The parameters in the simulation are given as follows: Grid voltage is V (line-to-line), Hz. The transmission line parameters are L=.33mH, C=uF; a diode rectifier with filter (mh) inductor and load resistor (Ω ) is installed on bus 3; APF is installed on bus 3, the ac inductor is.mh, DC capacitor is uf, switch frequency is khz. There are two feasible methods to limit the volt-ampere of APF under rated volt-ampere. The first is cut-off method; the second is scaling-down method. The former is simple but it will draw into new harmonic, we use the latter here. In Fig., a current limitation outer loop is added into current reference calculation block. Compared the rms value of current limitation with the compensation current, if is less Fig.3: Simulation diagram 39

A) Results of Traditional Distribution Line: The output results of traditional distribution line are shown in fig., fig., fig. at W apf W load +W com, W load < W apf < W load +W com, W apf < W load respectively. B) Active Power Filter Using PI Control Output Results: The output results of compound controlled apf using PI controller of distribution lines are shown in fig 7,fig 8,fig 9 at W apf W load +W com, W load < W apf < W load +W com, W apf < W load respectively. -.....8.....8 - Fundamental (Hz) = 8, THD= 8.7%.....8.....8 8 Fundamental (Hz) = 8, THD= 8.9% 3 7 8 9 3 Fig.: Output of traditional distribution line at time (.sec) Fig.: Shows the output voltage waveform at W apf W load +W com and total harmonic distortion at time. sec is 8.7% 8 Fig.7: Output of active power filter in distribution line using pi controller (.sec) Fig.7 shows the output voltage waveform at W apf W load +W com and total harmonic distortion at time.sec is 8.9% - 7. 7. 7. 7. 7.8 7. 7. 7. 7. 7.8 Fundamental (Hz) = 8, THD=.% 8 3 7 8 9 Fig.: Output of traditional distribution line at (7.sec) - 7. 7. 7. 7. 7.8 7. 7. 7. 7. 7.8 Fundamental (Hz) = 8, THD=.8% 8 8 The output voltage waveform at Wload< Wapf< Wload+Wcom, is shown in the figure and total harmonic distortion at time 7. sec is.% Fig.8: Output of active power filter in distribution line using pi controller (7.sec) The output voltage waveform at Wload< Wapf< Wload+Wcom, is shown in the fig.8 and total harmonic distortion is.8% -....8....8 Fundamental (Hz) = 8, THD= 7.% -....8....8 8 Fundamental (Hz) = 8, THD=.9% Fig. : Output of traditional distribution line (.) The output voltage waveform and total harmonic distortion of the load at W apf < W load is shown in the fig. the THD is around 7.% 8 Fig.9: Output of active power filter in distribution line using pi controller (.sec) 397

The output voltage waveform and total harmonic distortion of the load at Wapf < W load is shown in the fig.9 the THD is around.9% Disadvantages of PI Controller The Convention PI Controller require precise linear mathematical model of the system, which is difficult to obtain under parameter variation and non-linear load disturbances and the Proportional and Integral gains are chosen approximately.. Principle of Compound Control Using Fuzzy Logic Controller: The active power filter is implemented with Pulse Width Modulation current controlled VSI Inverter. The APF consists of an six IGBT s or diode with a freewheeling diode, a d.c. capacitor-l filter, compensation controller(fuzzy logic) and gate signal generator (hysteresis current controller) is shown in figure. The hysteresis current controller is employed to generate switching signals for driving switches in the VSI. The current wave shape is limited by switching frequency of the voltage source Inverter. Fig.: Block diagram of fuzzy logic controller Defuzzification The rules of FLC generate required output in a linguistic variable format (fuzzy number) according to real world requirements, linguistic variable have to be transformed to crisp output (real number). Database It stores the definition of the membership function required by fuzzifier & defuzzifier. Rule Base The rule base stores the linguistic control rules required by the rule evaluator. The reference currents (i sa, i sb, i sc ) are compare with actual source currents (i sa, i sb, i sc ) to generate switching signals for PWM inverter suing hysteresis current controller. For faster current controllability and easy implementation the hysteresis current control method scores over other current control techniques. In this method, the PWM inverter, hysteresis current controller directly generates the switching signal of the three phases. In the case of Positive input current, if the error current e(t) between the desired reference current i ref (t) and the actual current i a (t) exceeds the upper hysteresis band limit, the upper switch of the inverter arm is become OFF and the lower is become ON than the current starts to decrease. If the error current e (t) crossed the lower limit of the hysteresis band, the lower switch of the inverter arm is become OFF and the upper switch is become ON. As a result, the current gets back into the hysteresis band and the cycle repeats as shown in fig. and the fuzzy logic controller results are shown in below in fig.,fig,fig3 at different loads W apf W load +W com, W load < W apf < W load +W com, W apf < W load respectively. In a Control system, error between the reference and output can be labeled as Zero (z), positive small (PS), negative small (NS), Positive Medium (PM), negative medium (NM). The process involves converting a numerical variable to a linguistic variable; triangular or sine membership functions are developed for the fuzzufication Rule Elevator The basic fuzzy set operations needed for evaluation of fuzzy rules are AND ( ), OR ( ) and NOT (-) AND Intersection : µ A B = min [µ A (x), µ B (x)] OR Intersection : µ A B = max [µ A (x), µ B (x)] NOT Intersection : µ A = -µ A (x). Active Power Filter Using Fuzzy Control Output Results: -.8........8.....8 Fundamental (Hz) = 8, THD=.39% 8 Fig.: Output of active power filter in distribution line using fuzzy controller (.sec) 398

Fig. shows the output voltage waveform at W apf W load +W com and total harmonic distortion is about.39% By observing the above table it is clear that APF with FUZZY CONTROL will give less total harmonic distortion when compared with and without PI Controller. -.. 7. 7. 7. 7. 7.8 7. 7. 7. 7. 7.8 Fundamental (Hz) = 8, THD=.9% 8 Fig.: Output of active power filter in distribution line using fuzzy controller (7.SEC) The output voltage waveform at Wload< Wapf< Wload+Wcom, shown in the fig. and total harmonic distortion is about.9% 7. Conclusion: In this paper, the fuzzy logic control of active power filter based detection of load current and voltage to solve the problem that the load current detection apf cannot change the harmonic impedance in distribution system. In this the rated volt-ampere and the load volt ampere, the conductance value could be adjusted automatically. computer simulation is constructed to verify the validity and effectiveness of the pi controller and fuzzy logic controller for the functioning of apf. The fuzzy logic controller provides superior performance in harmonic distortion with the PI controller. The fuzzy logic based apf system is expected with the IEEE standard harmonics. 8. References: -....8....8 7 3 Fundamental (Hz) = 8, THD=.% 8 Fig.3: Output of active power filter in distribution line using fuzzy controller (.SEC) The output voltage waveform and total harmonic distortion of the load at Wapf < W load is shown in the fig.3 the THD is around.%. Results: The total harmonic distortion of the distribution line is observed under PI Controller and FUZZY logic controller. By using PI Controller, the total harmonic distortion in the line about 8% and by using Fuzzy logic control, the total harmonic distortion is reduced to.98%., which is about % less than the PI controller. TOTAL HARMONIC DISTORTION LOAD CONDITION AT LOAD AT LOAD AT LOAD 3 Without PI 8.7%.% 7.% Controller With PI 8.9%.8%.9% Controller With FUZZY Controller.39%.9%.% [] Hirofumi Akagi, Hideaki Fujita, Keiji Wada.: A Shunt Active Filter Based on Voltage Detection for Harmonic Termination of a Radial Power Distribution Line, IEEE Trans. Ind. Appl, 999, 3, (3), pp. 38. [] Grady, W.M, Samotyj, M.J and Noyola A.H: Survey of Active power line conditioning methodologies, IEEE Trans. Power Deli, 99,, (3), pp. 3-.8 [3] Akagi, H.: New trends in active power line conditioning, IEEE Trans. Ind. Appl, 99, 3, (), pp. 3 3 [] Peng, F.Z.: Application experience with active power filters, IEEE Ind. Appl. Mag., 998,, (), pp. 3 [] Green, T.C., and Marks, J.H.: Control techniques for active power filters, IEE Proc. Elect. Power Appl.,,, (), pp. 39 38 [] Akagi, H.: Control strategy and site selection of a shunt active filter for damping of harmonic propagation in power distribution systems, IEEE Trans. Power Deliv., 997,, (), pp. 3 33 [7] P. Jintakosonwit, H. Akagi, H. Fujita, and S.O gasawara. Implementation and performance of automatic gain adjustment in a shunt active filter for harmonic damping throughout a power distribution system, IEEE Trans. Power Electron., vol. 7, no. 3, pp. 38 7, Mar.. [8] Yang Zhenyu, Zhao Jianfeng, Tang Guoqing.: Research on current limiting compensation scheme of shunt APF, Electric Power Automation Equipment, vol., no.3, pp.-, Mar.. 399

[9] xiaofeng sun, jian zeng, Zhe Chen ; active power filter for harmonic voltage suppression in distribution systems nd IEEE international symposium on power electronics for distributed generation systems pp88-8 9. Author s Profile: G.CHANDRABABU has received his B.Tech degree in EEE from ASR College of Engineering, Tanuku in 9. At present he is pursuing his M.Tech degree with the specialization of power electronics from Sri Vasavi Engineering College, Tadepalligudem, A.P. His areas of interest are power electronics & drives. K.V.BHARGAV has received the B.Tech degree in Electrical & Electronics Engineering from Sri Vasavi Engineering College, Tadepalligudem in 7 and Master s degree from Nova College of Engg. & Technology, Jangareddigudem 9. Currently, he is an Assistant Professor at Sri Vasavi Engineering College, Tadepalligudem, A.P. His interests are in power system, power electronics and FACTS. CH.RAMBABU 3 received the Bachelor of Engineering degree in Electrical & Electronics Engineering from Madras University, in and Master s degree from JNTU Anantapur in. He is a research student of JNTU Kakinada. Currently, he is an Professor & HOD at Sri Vasavi Engineering College, Tadepalligudem, A.P. His interests are in power system control and FACTS..