QPD W, 32V, DC 12 GHz, GaN RF Transistor

Similar documents
QPD W, 50V, DC 4 GHz, GaN RF Transistor

QPD W, 50V, DC 4 GHz, GaN RF Transistor

QPD W, 50V, DC 3.7 GHz, GaN RF Transistor

QPD1008L 125W, 50V, DC 3.2 GHz, GaN RF Transistor

TGF2929-HM 100W, 28V, DC 3.5 GHz, GaN RF Power Transistor

QPD1015L 65W, 50V, DC 3.7 GHz, GaN RF Transistor

QPD1025. Product Overview. Key Features. Functional Block Diagram. Applications. Ordering info

QPD1019S2. 500W, 50V, GHz, GaN RF IMFET. Product Overview. Key Features. Functional Block Diagram. Applications.

QPD1025L. Product Overview. Key Features. Functional Block Diagram. Applications. Ordering info

TGF2977-SM DC 12 GHz, 32 V, 5 W GaN RF Transistor

T1G FL 45W, 32V, DC 3.5 GHz, GaN RF Transistor

TGF2929-FL 100W, 28V, DC 3.5 GHz, GaN RF Power Transistor

QPD GHz, 50 V, 30 W GaN RF Input-Matched Transistor

QPD W, 50V, GHz, GaN RF IMFET

TGA2583-SM 2.7 to 3.7 GHz, 10 W GaN Power Amplifier

QPD MHz, 50 V, 7 W GaN RF Input-Matched Transistor

T1G FS 30W, 28V, DC 6 GHz, GaN RF Power Transistor

T2G Q3 10W, 28V DC 6 GHz, GaN RF Power Transistor

QPD W, 48 V, DC 4 GHz, GaN RF Power Transistor

QPD W, 28V, GHz, GaN RF Input-Matched Transistor

QPD0020S2. 35 W, 48 V, DC 6 GHz, GaN RF Power Transistor. Product Overview. Key Features. Functional Block Diagram. Applications. Ordering Information

TGF2819-FL 100W Peak Power, 20W Average Power, 32V DC 3.5 GHz, GaN RF Power Transistor

TGF2929-FS. Applications. Product Features. Functional Block Diagram. Pin Configuration. General Description

TGF Watt Discrete Power GaN on SiC HEMT

QPD1025LS2. Product Overview. Key Features. Functional Block Diagram. Applications. Ordering info

QPD GHz, 110 W / 220 W, 48 V, Asymmetric Doherty

TGA2818-SM S-Band 30 W GaN Power Amplifier

TGF Watt Discrete Power GaN on SiC HEMT

TGA2594-HM GHz GaN Power. Product Description. Product Features. Functional Block Diagram. Applications. Ordering Information

TGA2578-CP 2 to 6 GHz, 30W GaN Power Amplifier

TGA2813-CP 3.1 to 3.6 GHz, 100W GaN Power Amplifier

QPA1003P 1 8 GHz 10 W GaN Power Amplifier

TGA2214-CP 2 18 GHz 4 W GaN Power Amplifier

TGA2625-CP GHz 20 W GaN Power Amplifier

TGA3503-SM 2-30 GHz GaAs Wideband Gain Block

QPA GHz GaAs Low Noise Amplifier

TGA2612-SM 6 12 GHz GaN LNA

T1G Q3 DC 6 GHz 18 W GaN RF Power Transistor

TGA2583-SM 2.7 to 3.7GHz, 10W GaN Power Amplifier

TGA3504-SM 2-30 GHz GaAs Wideband Gain Block

TGF Watt Discrete Power GaN on SiC HEMT

QPA GHz 50 Watt GaN Amplifier

QPD W, 48 V GHz GaN RF Power Transistor. Product Description. Product Features. Functional Block Diagram.

QPA GHz 50 Watt GaN Amplifier

TGM2635-CP X-Band 100 W GaN Power Amplifier

QPD W, 48 V GHz GaN RF Power Transistor

QPM GHz Limiter/Low-Noise Amplifier. Product Description. Product Features. Functional Block Diagram. Ordering Information.

QPC GHz 50 W GaN SPDT Switch. Product Overview. Key Features. Functional Block Diagram. Applications. Ordering Information

TGA2578-CP 2 to 6 GHz, 30W GaN Power Amplifier

QPC1006EVB GHz High Power GaN SP3T Switch. Product Overview. Key Features. Functional Block Diagram. Applications. Ordering Information

QPD GHz, 110 W / 220 W, 48 V, Asymmetric Doherty. Product Description. Applications. Ordering Information. Part No.

QPD0210TR7. 2x15 W, 48 V, GHz, Dual GaN RF Transistor. Product Overview. Applications. Functional Block Diagram. Ordering Information

TGA2814-CP 3.1 to 3.6 GHz, 80W GaN Power Amplifier

TGA FL 2.5 to 6 GHz 40W GaN Power Amplifier

TGA2710-SM 8W GHz Power Amplifier

TGA4533-SM K-Band Power Amplifier

TGM2543-SM 4-20 GHz Limiter/LNA

TGM2635-CP X-Band 100 W GaN Power Amplifier

TGA2567-SM 2 20 GHz LNA Amplifier

TGA2704-SM 8W 9-11 GHz Power Amplifier

Applications Ordering Information Part No. ECCN Description TGA2535-SM 3A001.b.2.b X-band Power Amplifier

TGA2622-CP 9 10 GHz 35 W GaN Power Amplifier

TGA4535-SM-T/R. K-Band Power Amplifier. Product Description. Product Features. Functional Block Diagram. Ordering Information.

QPD W / 220 W, 48 V, Asymmetric Doherty. Product Description. Applications. Ordering Information

TGA2760-SM GHz Power Amplifier

TGL2767-SM-EVB. 2 31GHz Voltage Variable Attenuator. Product Description. Product Features. Applications Block Diagram. Ordering Information

QPA1003D. 1 8 GHz 10 W GaN Power. Product Description. Product Features. Functional Block Diagram. Applications. Ordering Information

TGS SM GHz High Power SPDT Reflective Switch

TGS2355 SM EVB GHz 100 Watt GaN Switch. Product Overview. Key Features. Applications. Functional Block Diagram. Ordering Information

QPA W, 28 V, GHz GaN PA Module

TGP2105-SM 6-18 GHz 6-Bit Digital Phase Shifter (+Vc)

TGP2107-SM 6 to 18 GHz 6-Bit Digital Phase Shifter ( V C )

TGA2760-SM-T/R GHz Power Amplifier. Product Overview. Key Features. Applications. Functional Block Diagram. Ordering Information

TGL2226-SM GHz 6-Bit Attenuator

TGL2226-SM GHz 6-Bit Digital Attenuator

QPA W, 28 V, GHz GaN PA Module

QPA GHz Variable Gain Driver Amplifier

TGA FL 2.5 to 6GHz 40W GaN Power Amplifier

TGA3500-SM 2-12 GHz Driver Amplifier

TGV2561-SM GHz VCO with Divide by 2

QPC GHz 6-Bit Digital Phase Shifter

QPD W, DC to 3.6 GHz 48 V GaN RF Power Transistor

TGA4548S2. Product Overview. Key Features. Functional Block Diagram. Applications. Ordering Information GHz 10 W GaN Power Amplifier

TGL GHz Voltage Variable Attenuator

TGL2201-SM T/R. Wideband Dual Stage VPIN Limiter. Applications. Ordering Information. Part No. ECCN Description

TQP PCB. DC-6 GHz Gain Block. Applications. Ordering Information

TQP DC-6 GHz Gain Block

TQP DC-6 GHz Gain Block

TGA4532 K-Band Power Amplifier

QPA4501SR. 3 W, 28 V, GHz GaN PA Module. Product Overview. Key Features. Functional Block Diagram Applications. Ordering Information

QPA1019S GHz 10W GaN Power Amplifier

TGA FL 20W Ku-Band GaN Power Amplifier

TAT Ω 5V MHz RF Amplifier

QPA9120SR. High Gain High Linearity Driver Amplifier. Product Overview. Key Features. Functional Block Diagram. Applications. Ordering Information

TGA4906-SM 4 Watt Ka-Band Power Amplifier

QPL9096 Ultra Low-Noise, Bypass LNA

QPM GHz Multi-Chip T/R Module

TQL9065 Ultra Low Noise 2-Stage Bypass LNA

ECG055B-G InGaP HBT Gain Block

TQP3M9008 High Linearity LNA Gain Block

Transcription:

General Description The Qorvo is a W (P3dB) discrete GaN on SiC HEMT which operates from DC to 12 GHz. This wideband device is a single stage unmatched power amplifier transistor in an over-molded plastic package. The wide bandwidth of the makes it suitable for many different applications from DC to 12 GHz. The device is housed in an industry-standard 3 x 3 mm surface mount QFN package. Lead-free and ROHS compliant Evaluation boards are available upon request. Functional Block Diagram Product Features 16 Pin QFN (3 x 3 x 0.85 mm) Frequency: DC to 12 GHz Output Power (P3dB): 11 W 1 Linear : 24.0 db 1 Typical 3dB: 68.8 % 1 Operating Voltage: 32 V Low thermal resistance package CW and Pulse capable 3 x 3 mm package Note 1: @ 2 GHz (Loadpull) Applications Military radar Civilian radar Land mobile and military radio communications Test instrumentation Wideband or narrowband amplifiers Jammers Ordering info Part No. ECCN Description S2 EAR99 2 Piece Sample Bag SQ EAR99 25 Piece Sample Bag SR EAR99 0 Piece 7 Reel EVB01 EAR99 3.1 3.5 GHz EVB Rev. A - 1 of 23 - Disclaimer: Subject to change without notice

Absolute Maximum Ratings 2 Parameter Rating Units Breakdown Voltage,BVDG 0 V Gate Voltage Range, VG -7 +2 V Drain Current, ID 2.4 A Gate Current Range, IG 1 2.8 ma Power Dissipation, CW, PDISS 17.5 W RF Input Power at 3.3 GHz, CW, Ω, T = 25 C +29 dbm Channel Temperature, TCH 275 C Mounting Temperature ( Seconds) 3 C Storage Temperature 65 to +1 C 1. At Channel temperature of 0 C. 2. Operation of this device outside the parameter ranges given above may cause permanent damage. Recommended Operating Conditions 1 Parameter Min Typ Max Units Operating Temp. Range +25 +85 C Drain Voltage Range, VD +12 +32 + V Drain Bias Current, IDQ ma Drain Current, ID 6 ma Gate Voltage, VG 4 2.8 V Channel Temperature (TCH) 225 C Power Dissipation, CW (PD) 2 13.8 W Power Dissipation, Pulsed (PD) 2, 3 18.0 W 1. Electrical performance is measured under conditions noted in the electrical specifications table. Specifications are not guaranteed over all recommended operating conditions. 2. Back plane of package at 85 C 3. Pulse Width = 0 us, Duty Cycle = % 4. To be adjusted to desired IDQ Rev. A - 2 of 23 - Disclaimer: Subject to change without notice

Pulsed Characterization Load Pull Performance Power Tuned 1 Parameters Typical Values Unit Frequency, F 2 3 4 6 9 GHz Linear, GLIN 24.0 21.9 19.7 16.1 12.2.7 db Output Power at 3dB compression point, P3dB.4.0.3.4.0 39.9 dbm Power-Added-Efficiency at 3dB compression point, 3dB 58.0 52.8 57.0 54.5 45.0.0 % at 3dB compression point 21.0 18.9 16.7 13.1 9.2 7.7 db 1. Test conditions unless otherwise noted: VD = +32 V, IDQ = ma, Temp = +25 C Pulsed Characterization Load Pull Performance Efficiency Tuned 1 Parameters Typical Values Unit Frequency 2 3 4 6 9 GHz Linear, GLIN 25.6 23.4 21.3 16.9 12.9 11.9 db Output Power at 3dB compression point, P3dB 36.8 39.0 38.3 39.4 39.4 38.7 dbm Power-Added-Efficiency at 3dB compression point, 3dB 68.8 66. 69.4 61.2.3 46.3 % at 3dB compression point, 22.6.4 18.3 13.9 9.9 8.9 db G3dB 1- Test conditions unless otherwise noted: VD = +32 V, IDQ = ma, Temp = +25 C RF Characterization 3.1 3.5 GHz EVB Performance At 3.3 GHz 1 Parameter Min Typ Max Units Linear, GLIN 16.3 db Output Power at 3dB compression point, P3dB 39.9 dbm Drain Efficiency at 3dB compression point, DEFF3dB 58.7 % at 3dB compression point, G3dB 13.3 db 1. VD = +32 V, IDQ = ma, Temp = +25 C, Pulse Width = 0 us, Duty Cycle = % RF Characterization Mismatch Ruggedness at 3.3 GHz 1,2 Symbol Parameter db Compression Typical VSWR Impedance Mismatch Ruggedness 3 :1 1. Test conditions unless otherwise noted: TA = 25 C, VD = 32 V, IDQ = ma 2. Driving input power is determined at pulsed compression under matched condition at EVB output connector. Rev. A - 3 of 23 - Disclaimer: Subject to change without notice

Median Lifetime 1 Note: 1- For pulsed signals, average lifetime is average lifetime at maximum channel temperature divided by duty cycle. Rev. A - 4 of 23 - Disclaimer: Subject to change without notice

Thermal and Reliability Information - CW Parameter Conditions Values Units Thermal Resistance, FEA (θ JC) (1) (3) 8.9 C/W Channel Temperature, FEA (T CH) (1) 153 C 85 C Case Median Lifetime (T M) (1) 2.0E9 Hrs 7.6 W Pdiss, CW Thermal Resistance, IR (θ JC) (2) (3) 6.1 (2) C/W Channel Temperature, IR (T CH) (2) 131 (2) C Thermal Resistance, FEA (θ JC) (1) (3) 9.3 C/W Channel Temperature, FEA (T CH) (1) 179 C 85 C Case Median Lifetime (T M) (1) 1.0E8 Hrs.1 W Pdiss, CW Thermal Resistance, IR (θ JC) (2) (3) 6.2 (2) C/W Channel Temperature, IR (T CH) (2) 148 (2) C Thermal Resistance, FEA (θ JC) (1) (3) 9.8 C/W Channel Temperature, FEA (T CH) (1) 9 C 85 C Case Median Lifetime (T M) (1) 6.0E6 Hrs 12.6 W Pdiss, CW Thermal Resistance, IR (θ JC) (2) (3) 6.4 (2) C/W Channel Temperature, IR (T CH) (2) 166 (2) C Thermal Resistance, FEA (θ JC) (1) (3).4 C/W Channel Temperature, FEA (T CH) (1) 242 C 85 C Case Median Lifetime (T M) (1) 4.0E5 Hrs 15.1 W Pdiss, CW Thermal Resistance, IR (θ JC) (2) (3) 6.6 (2) C/W Channel Temperature, IR (T CH) (2) 185 (2) C 1. Finite Element Analysis (FEA) thermal values shall be used to determine performance and reliability. Unless otherwise noted, all thermal references are FEA. 2. Infrared (IR) thermal values are for reference only and can not be used to determine performance or reliability. 3. Thermal resistance measured to backside of package. Rev. A - 5 of 23 - Disclaimer: Subject to change without notice

Thermal and Reliability Information - Pulsed Parameter Conditions Values Units Thermal Resistance, FEA (θ JC) (1) (3) 6.9 C/W Channel Temperature, FEA (T CH) (1) 138 C 85 C Case Median Lifetime (T M) (1) 4.0E Hrs 7.6 W Pdiss, Pulsed 0us % DC Thermal Resistance, IR (θ JC) (2) (3) 4.7 (2) C/W Channel Temperature, IR (T CH) (2) 121 (2) C Thermal Resistance, FEA (θ JC) (1) (3) 7.0 C/W Channel Temperature, FEA (T CH) (1) 156 C 85 C Case Median Lifetime (T M) (1) 6.0E9 Hrs.1 W Pdiss, Pulsed 0us % DC Thermal Resistance, IR (θ JC) (2) (3) 4.7 (2) C/W Channel Temperature, IR (T CH) (2) 133 (2) C Thermal Resistance, FEA (θ JC) (1) (3) 7.2 C/W Channel Temperature, FEA (T CH) (1) 176 C 85 C Case Median Lifetime (T M) (1) 8.0E8 Hrs 12.6 W Pdiss, Pulsed 0us % DC Thermal Resistance, IR (θ JC) (2) (3) 4.8 (2) C/W Channel Temperature, IR (T CH) (2) 146 (2) C Thermal Resistance, FEA (θ JC) (1) (3) 7.5 C/W Channel Temperature, FEA (T CH) (1) 198 C 85 C Case Median Lifetime (T M) (1) 9.5E7 Hrs 15.1 W Pdiss, Pulsed 0us % DC Thermal Resistance, IR (θ JC) (2) (3) 4.9 (2) C/W Channel Temperature, IR (T CH) (2) 159 (2) C 1. Finite Element Analysis (FEA) thermal values shall be used to determine performance and reliability. Unless otherwise noted, all thermal references are FEA. 2. Infrared (IR) thermal values are for reference only and can not be used to determine performance or reliability. 3. Thermal resistance measured to backside of package. Rev. A - 6 of 23 - Disclaimer: Subject to change without notice

Load Pull Smith Charts 1, 2 1. Vd = 32 V, IDQ = ma, Pulsed signal with 0 us pulse width and % duty cycle. 2. See page 18 for load pull and source pull reference planes. 2 GHz, Load-pull Zs(1fo) = 11.09-1.84i Zs(2fo) =.59+3.48i Zl(2fo) = 12.94+27.22i Max Power is.4dbm at Z = 23.944+16.288i = 0.3444+0.2742i Max is 41.4dB at Z = 8.852+.085i = 0.5146+0.6123i Max is 68.8% at Z = 13.868+38.414i = 0.6249+0.4991i 3 4.2 22.6 22.1 21.6 21.1.6 68.4 66.4 64.4 62.4.4 39.8 39.6 Zo = 15 3dB Compression Referenced to Peak Power Rev. A - 7 of 23 - Disclaimer: Subject to change without notice

Load Pull Smith Charts 1, 2 1. Vd = 32 V, IDQ = ma, Pulsed signal with 0 us pulse width and % duty cycle. 2. See page 18 for load pull and source pull reference planes. 3 GHz, Load-pull 1.8 Zs(1fo) = 15.69-1.57i Zs(2fo) =.44-6.82i Zl(2fo) = 6.98+13.35i Max Power is dbm at Z = 13.584+11.98i = 0.73+0.3741i Max is 33.1dB at Z = 4.745+19.018i = 0.2118+0.7591i Max is 66.1% at Z =.059+21.079i = 0.2989+0.5897i 2 65.7 19.9 19.4 18.9 18.4 63.7 61.7 59.7 57.7 55.7 53.7 39.9 17.9 39.7 39.5 Zo = 15 3dB Compression Referenced to Peak 39.3 39.1 Power Rev. A - 8 of 23 - Disclaimer: Subject to change without notice

Load Pull Smith Charts 1, 2 1. Vd = 32 V, IDQ = ma, Pulsed signal with 0 us pulse width and % duty cycle. 2. See page 18 for load pull and source pull reference planes. 4 GHz, Load-pull Zs(1fo) =.53+2.31i Zs(2fo) = 12.9-12i Zl(2fo) = 3.02+5.28i 1.6 Max Power is.3dbm at Z = 9.136+.385i = -0.0488+0.4513i Max is 19.3dB at Z = 3.005+14.178i = -0.0285+0.99i Max is 69.4% at Z = 4.579+14.616i = 0.0161+0.7345i 1.8 67.4 17.4 16.9 65.4 63.4 61.4 59.4 57.4 55.4 16.4.1 39.9 39.7 15.9 15.4 39.5 39.3 Zo = 15 3dB Compression Referenced to Peak Power Rev. A - 9 of 23 - Disclaimer: Subject to change without notice

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 Load Pull Smith Charts 1, 2 1. Vd = 32 V, IDQ = ma, Pulsed signal with 0 us pulse width and % duty cycle. 2. See page 18 for load pull and source pull reference planes. 6 GHz, Load-pull Zs(1fo) = 14.49-1.71i 14.5 Max Power is.4dbm at Z = 6.435+4.119i = -0.3497+0.2593i Max is 14.5dB at Z = 2.179+7.3i = -0.43+0.6463i Max is 61.2% at Z = 4.026+5.948i = -0.4364+0.4491i 14.6 58.6 56.6 54.6 52.6 39.5 39.7 13.5.1 39.9 13.3 12.5 Power Zo = 15 3dB Compression Referenced to Peak Rev. A - of 23 - Disclaimer: Subject to change without notice

Load Pull Smith Charts 1, 2 1. Vd = 32 V, IDQ = ma, Pulsed signal with 0 us pulse width and % duty cycle. 2. See page 18 for load pull and source pull reference planes. 0.3 0.4 9.0GHz, Load-pull 0.5 0.6 0.7 0.8 0.9 1 1.2 Zs(fo) = 9.28-23.74i Zs(2fo) = 42.03-7.81i Zs(3fo) = 11.83+8.63i Zl(2fo) = NaN Zl(3fo) = NaN Max Power is dbm at Z = 5.294-7.136i = -0.3156-0.4626i Max is.2db at Z = 3.652-4.82i = -0.77-0.3896i Max is.3% at Z = 3.829-5.88i = -0.4518-0.4533i 9.51 9.01 8.51.7 8.01 48.7 46.7 44.7 42.7 39.8 39.6 39.4 39.2 Zo = 15 3dB Compression Referenced to Peak Power Rev. A - 11 of 23 - Disclaimer: Subject to change without notice

Load Pull Smith Charts 1, 2 1. Vd = 32 V, IDQ = ma, Pulsed signal with 0 us pulse width and % duty cycle. 2. See page 18 for load pull and source pull reference planes..0ghz, Load-pull 0.3 0.4 Zs(fo) = 7.7-.19i Zs(2fo) = 22.32-13.1i Zs(3fo) = 12.8+11.46i Zl(2fo) = NaN Zl(3fo) = NaN 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 Max Power is 39.9dBm at Z = 5.599-.67i = -0.1483-0.5948i Max is 9.2dB at Z = 2.956-6.77i = -0.4628-0.5516i Max is 46.3% at Z = 3.227-8.357i = -0.36-0.6235i 7.26 7.76 8.76 8.26 44.5 36.5 38.5.5 42.5 39.8 39.6 39.4 39 39.2 Zo = 15 3dB Compression Referenced to Peak Power Rev. A - 12 of 23 - Disclaimer: Subject to change without notice

[db] [%] [db] [%] [db] [%] [db] [%] [db] [%] [db] [%] Typical Performance Load Pull Drive-up 1. Pulsed signal with 0 us pulse width and % duty cycle, Vd = 32 V, IDQ = ma 2. See page 18 for load pull and source pull reference planes where the performance was measured. 28 27 26 25 Zs(1fo) = 11.09-1.84i Zs(2fo) =.59+3.48i Zl(1fo) = 23.94+16.29i Zl(2fo) = 12.96+27.34i and vs. Output Power 2 GHz - Power Tuned 0 28 27 26 25 Zs(1fo) = 11.09-1.84i Zs(2fo) =.59+3.48i Zl(1fo) = 13.87+38.41i Zl(2fo) = 13+27.18i and vs. Output Power 2 GHz - Efficiency Tuned 0 24 24 23 23 22 22 21 21 19 19 18 32 33 34 35 36 37 38 39 41 42 0 26 25 24 23 Zs(1fo) = 15.69-1.57i Zs(2fo) =.44-6.82i Zl(1fo) = 13.58+11.98i Zl(2fo) = 6.98+13.33i and vs. Output Power 3 GHz - Power Tuned 0 18 31 32 33 34 35 36 37 38 0 26 25 24 23 Zs(1fo) = 15.69-1.57i Zs(2fo) =.44-6.82i Zl(1fo) =.06+21.08i Zl(2fo) = 7.13+13.28i and vs. Output Power 3 GHz - Efficiency Tuned 0 22 22 21 21 19 19 18 18 17 17 16 32 33 34 35 36 37 38 39 41 42 0 24 23 22 21 19 18 17 16 15 Zs(1fo) =.53+2.31i Zs(2fo) = 12.9-12i Zl(1fo) = 9.14+.38i Zl(2fo) = 3.04+5.3i and vs. Output Power 4 GHz - Power Tuned 14 32 33 34 35 36 37 38 39 41 42 0 0 16 31 32 33 34 35 36 37 38 39 0 24 23 22 21 19 18 17 16 15 Zs(1fo) =.53+2.31i Zs(2fo) = 12.9-12i Zl(1fo) = 4.58+14.62i Zl(2fo) = 3.02+5.36i and vs. Output Power 4 GHz - Efficiency Tuned 14 31 32 33 34 35 36 37 38 39 0 0 Rev. A - 13 of 23 - Disclaimer: Subject to change without notice

[db] [%] [db] [%] [db] [%] [db] [%] [db] [%] [db] [%] Typical Performance Load Pull Drive-up 1. Pulsed signal with 0 us pulse width and % duty cycle, Vd = 32 V, IDQ = ma 2. See page 18 for load pull and source pull reference planes where the performance was measured. 19 18 Zs(1fo) = 14.49-1.71i Zl(1fo) = 6.44+4.12i and vs. Output Power 6 GHz - Power Tuned 0 19 18 Zs(1fo) = 14.49-1.71i Zl(1fo) = 4.03+5.95i and vs. Output Power 6 GHz - Efficiency Tuned 0 17 17 16 16 15 15 14 14 13 13 12 12 11 11 32 33 34 35 36 37 38 39 41 42 0 16 15 14 13 12 11 9 8 7 Zs-fo = 9.28-23.74i Zs-2fo = 42.03-7.81i Zs-3fo = 11.83+8.63i Zl-fo = 5.294-7.136i Zl-2fo = NaN Zl-3fo = NaN and vs. Output Power 9.0 GHz - Power Tuned 6 31 32 33 34 35 36 37 38 39 41 42 0 16 15 14 13 12 11 9 8 7 Zs-fo = 7.7-.19i Zs-2fo = 22.32-13.1i Zs-3fo = 12.8+11.46i Zl-fo = 5.599-.67i Zl-2fo = NaN Zl-3fo = NaN and vs. Output Power.0 GHz - Power Tuned 6 32 33 34 35 36 37 38 39 41 42 0 0 0 31 32 33 34 35 36 37 38 39 0 16 15 14 13 12 11 9 8 7 Zs-fo = 9.28-23.74i Zs-2fo = 42.03-7.81i Zs-3fo = 11.83+8.63i Zl-fo = 3.829-5.88i Zl-2fo = NaN Zl-3fo = NaN and vs. Output Power 9.0 GHz - Efficiency Tuned 6 31 32 33 34 35 36 37 38 39 0 16 15 14 13 12 11 9 8 7 Zs-fo = 7.7-.19i Zs-2fo = 22.32-13.1i Zs-3fo = 12.8+11.46i Zl-fo = 3.227-8.357i Zl-2fo = NaN Zl-3fo = NaN and vs. Output Power.0 GHz - Efficiency Tuned 6 31 32 33 34 35 36 37 38 39 0 0 0 Rev. A - 14 of 23 - Disclaimer: Subject to change without notice

Power Driveup Performance Over Temperatures of 3.1 3.5 GHz EVB 1 1- Vd = 32 V, IDQ = ma, Pulse Width = 0 us, Duty Cycle = % Rev. A - 15 of 23 - Disclaimer: Subject to change without notice

Power Driveup Performance at 25 C of 3.1 3.5 GHz EVB 1 1- Vd = 32 V, IDQ = ma, Pulse Width = 0 us, Duty Cycle = % Rev. A - 16 of 23 - Disclaimer: Subject to change without notice

Two-Tone Performance at 25 C of 3.1 3.5 GHz EVB 1 1- Center Frequency = 3.3 GHz. Tone Seperation = MHz. Rev. A - 17 of 23 - Disclaimer: Subject to change without notice

Pin Layout 1 1. The will be marked with the 22 designator and a lot code marked below the part designator. The YY represents the last two digits of the calendar year the part was manufactured, the WW is the work week of the assembly lot start, the MZZZ is the batch ID. Pin Description Pin Symbol Description 2, 3 VG / RF IN Gate voltage / RF Input 9 12 VD / RF OUT Drain voltage / RF Output 1, 4, 5 8, 13 16 NC Not Connected 17 Back Plane Source to be connected to ground Rev. A - 18 of 23 - Disclaimer: Subject to change without notice

Mechanical Drawing 1- All dimensions are in mm, otherwise noted. Tolerance is ±0.0 mm. Bias-up Procedure Bias-down Procedure 1. Set V G to -4 V. 1. Turn off RF signal. 2. Set ID current limit to 0 ma. 2. Turn off VD 3. Apply 32 V VD. 3. Wait 2 seconds to allow drain capacitor to discharge 4. Slowly adjust VG until ID is set to ma. 4. Turn off VG 5. Set ID current limit to 1 A 6. Apply RF. Rev. A - 19 of 23 - Disclaimer: Subject to change without notice

PCB Layout 3.1 3.5 GHz EVB 1 1- PCB Material is RO03, 8 mil thick substrate, 1 oz. copper each side. Rev. A - of 23 - Disclaimer: Subject to change without notice

Bill Of material 3.1 3.5 GHz EVB Ref Des Value Description Manufacturer Part Number C, C13 0 pf C0G 0V 5% 03 Capacitor TDK C18C0G2E1JT0AA C11, C14 1 nf X7R 0V % 03 Capacitor AVX 031C2KAT2A C6 C8 1.0 pf RF NPO 2VDC ± 0.05 pf Capacitor ATC 0S1R0AT2X C9, C12 9.1 pf RF NPO 2VDC ± 0.1 pf Capacitor ATC 0S9R1BT2X C16 pf RF NPO 2VDC 1% Capacitor ATC 0S0FT2X C17 0.2 pf RF NPO 2VDC ± 0.05 pf Capacitor ATC 0S0R3AT2X C15 0.6 pf RF NPO 2VDC ± 0.05 pf Capacitor ATC 0S0R6AT2X C19 C 0.8 pf RF NPO 2VDC ± 0.05 pf Capacitor ATC 0S0R8AT2X C4 C5 2.2 pf RF NPO 2VDC ± 0.05 pf Capacitor ATC 0S2R2AT2X C3 5.6pF RF NPO 2VDC ± 0.1 pf Capacitor ATC 0S5R6BT2X C1 33 uf V % SVP Capacitor Panasonic EEEFK1K3P C2 uf 16V % Tantalum Capacitor AVX TPSC6KR00 J1 J2 SMA Panel Mount 4-hole Jack Gigalane PSF-S00-000 R5 0 Ohm 03 5% Thick Film Resistor ANY R6 R7 5.1 Ohm 03 1% Thick Film Resistor ANY R8 Ohm 03 1% Thick Film Resistor ANY R1 22 Ohm 03 5% Thick Film Resistor ANY R3 5.6 Ohm 03 5% Thick Film Resistor ANY R2, R4 33 Ohm 03 1% Thick Film Resistor ANY Rev. A - 21 of 23 - Disclaimer: Subject to change without notice

Recommended Solder Temperature Profile Rev. A - 22 of 23 - Disclaimer: Subject to change without notice

Product Compliance Information ESD Sensitivity Ratings Caution! ESD Sensitive Device Solderability Compatible with lead free soldering processes, 2 C maximum reflow temperature. Package lead plating: NiAu ESD Rating ESD Rating: Value: Test: Standard: MSL Rating MSL Rating: Test: Standard: TBD TBD Human Body Model (HBM) JEDEC Standard JESD22-A114 TBD 2 C convection reflow JEDEC Standard IPC/JEDEC J-STD-0 The use of no-clean solder to avoid washing after soldering is recommended. This part is compliant with EU 02/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment). This product also has the following attributes: Lead Free Halogen Free (Chlorine, Bromine) Antimony Free TBBP-A (C15H12Br2) Free PFOS Free SVHC Free Contact Information For the latest specifications, additional product information, worldwide sales and distribution locations, and information about Qorvo: Web: www.qorvo.com Tel: +1.972.994.8465 Email: info-sales@qorvo.com Fax: +1.972.994.84 For technical questions and application information: Email: info-products@qorvo.com Important Notice The information contained herein is believed to be reliable. Qorvo makes no warranties regarding the information contained herein. Qorvo assumes no responsibility or liability whatsoever for any of the information contained herein. Qorvo assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. Rev. A - 23 of 23 - Disclaimer: Subject to change without notice