Precoding Based Waveforms for 5G New Radios Using GFDM Matrices

Similar documents
Forschungszentrum Telekommunikation Wien

OUT-OF-BAND RADIATION IN MULTICARRIER SYSTEMS: A COMPARISON

Comparative study of 5G waveform candidates for below 6GHz air interface

An Enabling Waveform for 5G - QAM-FBMC: Initial Analysis

CHAPTER 1 INTRODUCTION

5G Technologies and Advances, Part I

Waveform Candidates for 5G Networks: Analysis and Comparison

IN AN MIMO communication system, multiple transmission

Performance Evaluation of STBC-OFDM System for Wireless Communication

Orthogonal frequency division multiplexing (OFDM)

Technical Aspects of LTE Part I: OFDM

Local Oscillator Phase Noise Influence on Single Carrier and OFDM Modulations

INTERFERENCE SELF CANCELLATION IN SC-FDMA SYSTEMS -A CAMPARATIVE STUDY

Advances in Radio Science

5G 무선통신시스템설계 : WLAN/LTE/5G

Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary

Researches in Broadband Single Carrier Multiple Access Techniques

Orthogonal Frequency Division Multiplexing (OFDM)

Battle of the Waveforms for 5G

Filter Bank Multi-Carrier (FBMC) for Future Wireless Systems

Joint Transmitter-Receiver Adaptive Forward-Link DS-CDMA System

Submission on Proposed Methodology for Engineering Licenses in Managed Spectrum Parks

New Cross-layer QoS-based Scheduling Algorithm in LTE System

Iterative Detection and Decoding with PIC Algorithm for MIMO-OFDM Systems

Comparisons of Filter Bank Multicarrier Systems

Reconfigurable Hybrid Beamforming Architecture for Millimeter Wave Radio: A Tradeoff between MIMO Diversity and Beamforming Directivity

Frequency-Domain Equalization for SC-FDE in HF Channel

Summary of the PhD Thesis

Chapter 5 OFDM. Office Hours: BKD Tuesday 14:00-16:00 Thursday 9:30-11:30

Additive Cancellation Signal Method for Sidelobe Suppression in NC-OFDM Based Cognitive Radio Systems

Field Experiments of 2.5 Gbit/s High-Speed Packet Transmission Using MIMO OFDM Broadband Packet Radio Access

Next Generation Synthetic Aperture Radar Imaging

FPGA implementation of Generalized Frequency Division Multiplexing transmitter using NI LabVIEW and NI PXI platform

Carrier Frequency Offset Estimation Algorithm in the Presence of I/Q Imbalance in OFDM Systems

Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels

OFDM system: Discrete model Spectral efficiency Characteristics. OFDM based multiple access schemes. OFDM sensitivity to synchronization errors

A Flexible Testbed for 5G Waveform Generation & Analysis. Greg Jue Keysight Technologies

Lecture 13. Introduction to OFDM

Single Carrier Multi-Tone Modulation Scheme

Flexible Multi-Numerology Systems for 5G New Radio

A Reduced Complexity Time-Domain Transmitter for UF-OFDM

Low Complexity Partial SLM Technique for PAPR Reduction in OFDM Transmitters

Performance of Orthogonal Frequency Division Multiplexing System Based on Mobile Velocity and Subcarrier

ENERGY EFFICIENT WATER-FILLING ALGORITHM FOR MIMO- OFDMA CELLULAR SYSTEM

Decision Feedback Equalization for Filter Bank Multicarrier Systems

Ten Things You Should Know About MIMO

SYSTEM ARCHITECTURE ADVANCED SYSTEM ARCHITECTURE LUO Chapter18.1 and Introduction to OFDM

Wireless Medium Access Control and CDMA-based Communication Lesson 16 Orthogonal Frequency Division Medium Access (OFDM)

Channel Estimation by 2D-Enhanced DFT Interpolation Supporting High-speed Movement

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications

ISSN: International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Volume 1, Issue 8, October 2012

Multi-carrier Modulation and OFDM

Single-RF Diversity Receiver for OFDM System Using ESPAR Antenna with Alternate Direction

Keysight EEsof EDA 5G Waveform Evaluations For mmwave Communication Using SystemVue

On Comparison of DFT-Based and DCT-Based Channel Estimation for OFDM System

ORTHOGONAL frequency division multiplexing (OFDM)

Analysis of Interference & BER with Simulation Concept for MC-CDMA

Improving Channel Estimation in OFDM System Using Time Domain Channel Estimation for Time Correlated Rayleigh Fading Channel Model

Anju 1, Amit Ahlawat 2

Research Letter Throughput of Type II HARQ-OFDM/TDM Using MMSE-FDE in a Multipath Channel

Analytical study of 5G NR embb co-existence

Interference Management in Two Tier Heterogeneous Network

A Smart Grid System Based On Cloud Cognitive Radio Using Beamforming Approach In Wireless Sensor Network

Algorithm to Improve the Performance of OFDM based WLAN Systems

PAPR Reduction in 4G Cellular Network: A SLM-based IFDMA Uplink System

WAVELET OFDM WAVELET OFDM

SIDELOBE SUPPRESSION AND PAPR REDUCTION FOR COGNITIVE RADIO MIMO-OFDM SYSTEMS USING CONVEX OPTIMIZATION TECHNIQUE

Block Processing Linear Equalizer for MIMO CDMA Downlinks in STTD Mode

Physical Layer Algorithms for Interference Reduction in OFDM-Based Cognitive Radio Systems

Channel Estimation in Multipath fading Environment using Combined Equalizer and Diversity Techniques

Underwater communication implementation with OFDM

GFDM Interference Cancellation for Flexible Cognitive Radio PHY Design

2. LITERATURE REVIEW

A SURVEY OF LOW COMPLEXITY ESTIMATOR FOR DOWNLINK MC-CDMA SYSTEMS

Solving Peak Power Problems in Orthogonal Frequency Division Multiplexing

S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY

Comparison between Performances of Channel estimation Techniques for CP-LTE and ZP-LTE Downlink Systems

SPREADING SEQUENCES SELECTION FOR UPLINK AND DOWNLINK MC-CDMA SYSTEMS

ADAPTIVITY IN MC-CDMA SYSTEMS

OFDMA PHY for EPoC: a Baseline Proposal. Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1

A New PAPR Reduction in OFDM Systems Using SLM and Orthogonal Eigenvector Matrix

Cohere Technologies Performance evaluation of OTFS waveform in single user scenarios Agenda item: Document for: Discussion

Low Complexity GFDM Receiver Based On Sparse Frequency Domain Processing

Combination of Modified Clipping Technique and Selective Mapping for PAPR Reduction

Orthogonal Frequency Division Multiplexing & Measurement of its Performance

Experimenting with Orthogonal Frequency-Division Multiplexing OFDM Modulation

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications

Channel Estimation for MIMO-OFDM Systems Based on Data Nulling Superimposed Pilots

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE

Aalborg Universitet. Published in: Vehicular Technology Conference (VTC Spring), 2014 IEEE 79th

FFT-Domain Signal Processing for Transparent Spectrum Enhancement in 5G New Radio

RECENTLY, single-carrier (SC) digital modulation has

Universal Filtered Multicarrier for Machine type communications in 5G

1. Introduction. Noriyuki Maeda, Hiroyuki Kawai, Junichiro Kawamoto and Kenichi Higuchi

Linear block codes for frequency selective PLC channels with colored noise and multiple narrowband interference

(OFDM). I. INTRODUCTION

PROGRESSIVE CHANNEL ESTIMATION FOR ULTRA LOW LATENCY MILLIMETER WAVE COMMUNICATIONS

PAPR REDUCTION TECHNIQUE USING MODIFIED SLM IN OFDM SYSTEM

Orthogonal Frequency Division Multiplexing (OFDM) based Uplink Multiple Access Method over AWGN and Fading Channels

3GPP TSG-RAN WG1 NR Ad Hoc Meeting #2 R Qingdao, China, 27 th -30 th June 2017

Transcription:

Precoding Based Waveforms for 5G New Radios Using GFDM Matrices Introduction Orthogonal frequency division multiplexing (OFDM) and orthogonal frequency division multiple access (OFDMA) have been applied in many modern communication systems because of several advantages including eliminating inter symbol interference caused by multipath propagation with low complexity implementation. In particular, 4G LTE has used OFDMA as the basis of the physical layer frame structure. However, OFDM/OFDMA suffers from some well known drawbacks such as sensitivity to frequency offset and high peak to average power ratio which require accurate synchronization and highly linear power amplifiers, respectively, to work. In 5G, demands arising from low latency applications, energy efficiency, support of multiple numerologies, relaxation of synchronization, etc., impose constraints on a transmission waveform such as low out of band emission (OOBE) and low peak to average power ratio (PAPR) on which OFDM/OFDMA generally does not perform well. Several waveforms alternative to OFDM have been proposed and studied, including filter bank multicarrier (FBMC), universal filtered multicarrier (UFMC), generalized frequency division multiplexing (GFDM), etc. Many of these waveforms call for advantages such as spectral containment and power amplifier efficiency and have been proposed for 3GPP s consideration as the waveforms for New Radio (NR). Figure 1: Transmitter structures for OFDM based Waveforms with additional processing Nevertheless, in 2016, the 3GPP decided to use OFDM based waveforms for NR partly because of complexity and compatibility. This essentially excludes many of the aforementioned alternative waveforms. However, the agreement does allow some additional processing on top of OFDMA,

such as additional filtering, windowing, and precoding, so that there are still rooms for improvement in terms of waveform OOBE, PAPR, and other desirable properties. A typical block diagram is shown in Figure 1. Filtering based waveforms have advantages in OOBE (e.g., filtered OFDM, f OFDM), but they have bad performance in PAPR. Windowing based waveforms (such as windowed OFDM, weighted overlap and add OFDM, WOLA OFDM) have generally less issue on PAPR and complexity. However, it may cause detection performance degradation due to symbol extension. Precoding Based Waveforms In this article, we focus on precoding based waveforms since they generally do not impose additional CP budget that may lead to possible inter symbol interference, compared with filtering based and windowing based waveforms. A linear precoder is characterized by an matrix P which performs a matrix multiplication on the data vector s[n] to obtain precoded vector u[n] = P d[n]. One promising representative example of precoding based waveform is discrete Fourier transform spread OFDM (DFT S OFDM), where the precoding matrix is chosen as P = W S, where W S is the normalized DFT matrix whose (k, l) entry is [W S ] kl = e j2pkl/s /. A number of variants of DFT S OFDM have been proposed in 3GPP for NR. For example, zero tail (ZT) DFT S OFDM, guard interval (GI) DFT S OFDM, and unique word (UW) DFT S OFDM. In the most general form, a precoding based waveform is completed determined by the precoding matrix P. So, the waveform can be designed to meet system requirements on OOBE or PAPR with the degree of freedom being S 2 complex valued coefficients, a number much higher than that for filtering or windowing based counterparts. However, a precoder with arbitrarily chosen entries has a high implementation complexity (at the order of O(S 2 ) for the transmitter and O(S 3 ) for the receiver) and is not desirable. If we impose some constraints on the precoder s structure, a low complexity implementation (e.g., at the order of O(S log S) ) may exist. The DFT S OFDM waveform satisfies this criterion since its precoding matrix, P = W S, is an DFT matrix and has well known fast implementation. However, by choosing P = W S, there is no more degrees of freedom for waveform design. Using GFDM Matrices in Precoding Based Waveforms We investigated a class of precoding based waveform that has low complexity transceiver implementations and still has S design coefficients. Specifically, we choose the precoder to be P = W S A where A is the GFDM matrix to be defined later. By choosing the precoder in this way, it is found that advantages of OOBE can be inherited from GFDM. In addition, unlike GFDM which may not be compatible with OFDMA based waveforms, the precoding based waveform using GFDM matrices can naturally coexist with other users using conventional OFDMA. The GFDM matrix A is determined by a prototype filter and two positive integers K and M such that S = KM. The integers K and M are referred to as the numbers of subcarriers and subsymbols, respectively, in the GFDM notations. For each k = 0, 1,, K 1 and m = 0, 1,, M 1, the vector g k,m is defined as the translated and modulated version of the prototype filter g: [g k,m ] n = [g] (n mk mod S) e j2 kn/k. Then the GFDM matrix can be expressed as (1) The GFDM matrix defined in Eq. (1) is central in implementation of GFDM systems. In a GFDM

system, only one GFDM matrix A as in (1) is used at the transmitter, which processes and arranges user data into resource elements composed of K subcarriers times M subsymbols. However, since GFDM subcarriers (and subsymbols) are not necessarily orthogonal to each other (unlike the case in OFDM systems), it is still not clear how GFDMA, i.e., multiple access based on using different GFDM subcarriers for different users, can be done without any interference. Our proposal of using GFDM matrices in precoding based waveforms, fortunately, does not suffer from this issue since the multiple access is still based on OFDMA (that is, users are occupying different OFDM subcarriers which are orthogonal to each other) and each user can be associated with a GFDM based precoder (not necessarily identical) without any concern to interfere with others. In fact, other users can even use non GFDM precoders without any incompatibility. Therefore, the proposal allows coexistence of legacy OFDMA users and NR users, especially for multiple numerology and sub 6 GHz. For detailed explanations, readers may refer to [1]. Resolving the GFDM Issues on Noise Enhancement and Receiver Complexity There are some more known drawbacks on GFDM that might have prevented it from being widely accepted so far. Now that we adopted GFDM matrices in our precoder design, we shall take a closer look on these issues since we might be inheriting these drawbacks as well [4]. First of all, it was noted that at least one of the parameters M and K shall be chosen as an odd integer, for otherwise the matrix A would become singular. Secondly, even when the matrix A is not singular, A is usually not unitary, resulting in noise amplification at the receiver when an inverse operation of the precoding is applied. Finally, it was argued that a GFDM receiver could be quite complicated unless the prototype filter g is limited to a small set of choices. Fortunately, in our recent investigation [2], it is found that the aforementioned problems of GFDM can be mostly resolved by identifying a class of unitary GFDM precoders which have a noise enhancement factor as low as unity and a low transceiver complexity. It is proven in [2] that the matrix A can be expressed as A = (W H M I K ) diag(vec(g)) (W M W H K ) (2) where is a K x M matrix derived from an affine transform of the prototype filter g. From Eq. (2), it can be readily verified that A is a unitary matrix if and only if each entry of G is chosen as a complex number on the unit circle. A prototype filter g that corresponds to such a choice is referred to as a constant modulus characteristic matrix (CMCM) filter. With a CMCM filter, there will be no noise enhancement problem. In addition, it does not have anything to do with the parameters M and K being even or odd. It turns out that the previous misconceptions in the literature that GFDM matrices can be singular or non unitary are lying on the assumption that the prototype filter g is chosen to be raised cosine (RC) filters [4]. If we do not insist using RC filters (but use CMCM filters instead), the issues are automatically resolved. Furthermore, the expression in Eq. (2) also offers a low complexity implementation of the precoding characterized by A, as shown in Figure 2. The low complexity implementation for the GFDM receivers can be shown to exist. But due to space limit, they are omitted here. Interested readers may refer to the elaborations in [2]. All the above findings suggest that choosing the GFDM prototype filter to be a CMCM filter (i.e., corresponding to a unitary matrix) has clear advantages in terms of both implementation

complexity and avoiding noise amplification. This is very different from most works in the GFDM literature which uses RC, root raised cosine (RRC), or other prototype filters [4]. The GFDM block size S = MK can be chosen to be any composite number. On top of these advantages, the CMCM filter coefficients can be further designed to optimize relevant waveform performance metrics such as OOBE and PAPR. Figure 2 Illustration of low complexity Implementation of GFDM precoding from Eq. (2) Optimization of prototype filters In order to find the optimal coefficients for the GFDM matrix that achieves a minimum OOBE, an optimization problem can be formulated as follows: where S a (f, g) is the power spectral density function of the transmitted signal when the prototype filter is chosen as g. The set B O denotes the set of all out of band frequencies. Note that (3b) is equivalent to and dictates the one to one correspondence of the prototype filter g and the characteristic matrix G. Constraint (3c) is a power constraint and constraint (3d) enforces the GFDM matrix to be unitary. While the objective function (3a) and the constraint (3b) are convex, constraints (3c) and (3d) are not, making the problem not be readily solved by existing convex optimization tools. However, techniques such as semidefinite relaxation can be applied and some iterative algorithms can be developed to obtain the optimal coefficients [3]. Figure 3(a) depicts the power spectral density of various GFDM waveforms. We observe that the OOB performance for OFDM is in general worse than GFDM. Among all GFDM waveforms with three different prototype filters, the RC filter is better than the Dirichlet filter which was known to corresponds to a unitary GFDM matrix. The Optimized filter according to Problem (3) has the best OOB performance (note that the dashed lines denote the boundaries of in band and out of band frequencies). If we take a look at the symbol error rate (SER) performance at Figure 3(b), it is observed that the optimized filter does not have any SER loss compared to the OFDM case due to the no noise enhancement constraint (in Eq. (3d)), while the RC filter suffers some SER loss.

(a) (b) Figure 3 Comparison of GFDM waveforms with different prototype filters: (a) Power spectral density functions; (b) Symbol error rate performance. Summary In this letter, we briefly reviewed various types of OFDM based waveforms for 5G NR and studied in particular the type based on a linear precoding matrix. Besides DFT S OFDM, perhaps the most popular precoding based waveform, we found that GFDM matrices are worthy of being considered in the precoder design for this type of waveforms due to design flexibility and existence of low complexity implementations. We studied and discovered some important properties of GFDM matrices that were less known in the literature which suggest that GFDM precoding can still be implemented efficiently, with virtually no performance loss, and possess a good OOBE property. In the future, many other performance metrics can be considered to obtain optimal coefficients for a precoding based waveform using a GFDM matrix. [1] Y. Huang, B. Su, and I. K. Fu, Heterogeneous LTE downlink spectrum access using embedeed GFDM, Proc. 2016 IEEE International Conference on Communications Workshops (ICC), Kuala Lumpur, Malaysia, May 2016. [2] P. C. Chen, B. Su, and Y. Huang, Matrix Characterization of GFDM: Low Complexity MMSE Receivers and Optimal Filters, IEEE Transactions on Signal Processing, 2017, (DOI 10.1109 / TSP.2017.2718971). [3] P. C. Chen and B. Su, Filter Optimization of Out of Band Radiation with Performance Constraints for GFDM Systems, Proc. 2017 IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Sapporo, Japan, Jul. 2017. [4] N. Michailow et al., Generalized frequency division multiplexing for 5 th generation cellular networks, IEEE Transactions on Communications, vol. 62, no. 9, pp. 3045 3061, Sep. 2014. About the Authors MediaTek NTU Center BL 7H, Barry Lam Hall, 1 Roosevelt Road, Sec. 4 National Taiwan University, Taipei, 10617 Taiwan Tel: +886 2 3366 1836 Borching Su Assistant Professor, GICE, NTU Yenming Huang Ph.D. Student, GICE, NTU