Indoor Channel Measurements and Communications System Design at 60 GHz

Similar documents
Indoor MIMO Channel Sounding at 3.5 GHz

Simulation Analysis of Wireless Channel Effect on IEEE n Physical Layer

Millimeter-Wave System for High Data Rate Indoor Communications

3D MIMO Scheme for Broadcasting Future Digital TV in Single Frequency Networks

Radio direction finding applied to DVB-T network for vehicular mobile reception

Small Array Design Using Parasitic Superdirective Antennas

Linear MMSE detection technique for MC-CDMA

SUBJECTIVE QUALITY OF SVC-CODED VIDEOS WITH DIFFERENT ERROR-PATTERNS CONCEALED USING SPATIAL SCALABILITY

L-band compact printed quadrifilar helix antenna with Iso-Flux radiating pattern for stratospheric balloons telemetry

Reconfigurable antennas radiations using plasma Faraday cage

Influence of moving people on the 60GHz channel a literature study

QPSK-OFDM Carrier Aggregation using a single transmission chain

Hardware Simulator for MIMO Radio Channels: Design and Features of the Digital Block

Enhancement of Directivity of an OAM Antenna by Using Fabry-Perot Cavity

Wireless Energy Transfer Using Zero Bias Schottky Diodes Rectenna Structures

A design methodology for electrically small superdirective antenna arrays

Foam Based Luneburg Lens Antenna at 60 GHz

QPSK super-orthogonal space-time trellis codes with 3 and 4 transmit antennas

Analysis of the Frequency Locking Region of Coupled Oscillators Applied to 1-D Antenna Arrays

Optical component modelling and circuit simulation

A notched dielectric resonator antenna unit-cell for 60GHz passive repeater with endfire radiation

Reconfigurable Patch Antenna Radiations Using Plasma Faraday Shield Effect

Impact of Antennas and Correlated Propagation Channel on BD Capacity Gain for ac Multi-User MIMO in Home Networks

Dual Band Meander Line Antenna for Wireless LAN Communication

DUAL-BAND PRINTED DIPOLE ANTENNA ARRAY FOR AN EMERGENCY RESCUE SYSTEM BASED ON CELLULAR-PHONE LOCALIZATION

A 100MHz voltage to frequency converter

FeedNetBack-D Tools for underwater fleet communication

Measures and influence of a BAW filter on Digital Radio-Communications Signals

Doppler Radar for Heartbeat Rate and Heart Rate Variability Extraction

An improved topology for reconfigurable CPSS-based reflectarray cell,

An Operational SSL HF System (MILCOM 2007)

Concepts for teaching optoelectronic circuits and systems

High efficiency low power rectifier design using zero bias schottky diodes

Power- Supply Network Modeling

BANDWIDTH WIDENING TECHNIQUES FOR DIRECTIVE ANTENNAS BASED ON PARTIALLY REFLECTING SURFACES

NOVEL BICONICAL ANTENNA CONFIGURATION WITH DIRECTIVE RADIATION

Compound quantitative ultrasonic tomography of long bones using wavelets analysis

RFID-BASED Prepaid Power Meter

On the role of the N-N+ junction doping profile of a PIN diode on its turn-off transient behavior

Gis-Based Monitoring Systems.

Resonance Cones in Magnetized Plasma

Slotted waveguide antenna with a near-field focused beam in one plane

Indoor On-body Channel Ray Tracing and Motion Capture Based Simulation

Toward a Gigabit Wireless Communications System

Toward a Gigabit Wireless Communications System

Influence of ground reflections and loudspeaker directivity on measurements of in-situ sound absorption

The Galaxian Project : A 3D Interaction-Based Animation Engine

Direct optical measurement of the RF electrical field for MRI

New Structure for a Six-Port Reflectometer in Monolithic Microwave Integrated-Circuit Technology

DUAL-ANNULAR SLOT PHASE-SHIFTING CELL LOADED WITH MEMS SWITCHES FOR RECONFIGURABLE REFLECTARRAYS

A 180 tunable analog phase shifter based on a single all-pass unit cell

Design of an Efficient Rectifier Circuit for RF Energy Harvesting System

Floating Body and Hot Carrier Effects in Ultra-Thin Film SOI MOSFETs

STUDY OF RECONFIGURABLE MOSTLY DIGITAL RADIO FOR MANET

On the Use of Vector Fitting and State-Space Modeling to Maximize the DC Power Collected by a Wireless Power Transfer System

High finesse Fabry-Perot cavity for a pulsed laser

PMF the front end electronic for the ALFA detector

A New Approach to Modeling the Impact of EMI on MOSFET DC Behavior

Touch-less Heartbeat Detection and Measurement-based Cardiopulmonary Modeling

Gate and Substrate Currents in Deep Submicron MOSFETs

A high PSRR Class-D audio amplifier IC based on a self-adjusting voltage reference

Wireless Transmission in Ventilation (HVAC) Ducts for the Internet of Things and Smarter Buildings: Proof of Concept and Specific Antenna Design

A technology shift for a fireworks controller

STBC MC-CDMA systems for indoor and outdoor scenarios

Electronic sensor for ph measurements in nanoliters

INVESTIGATION ON EMI EFFECTS IN BANDGAP VOLTAGE REFERENCES

Design of Cascode-Based Transconductance Amplifiers with Low-Gain PVT Variability and Gain Enhancement Using a Body-Biasing Technique

A new radar sensor for cutting height measurements in tree harvesting applications

VR4D: An Immersive and Collaborative Experience to Improve the Interior Design Process

Long reach Quantum Dash based Transceivers using Dispersion induced by Passive Optical Filters

Performance of Frequency Estimators for real time display of high PRF pulsed fibered Lidar wind map

70km external cavity DWDM sources based on O-band Self Seeded RSOAs for transmissions at 2.5Gbit/s

Time Reversal UWB Communication: Experimental Study for High Data Rates in Dense Multipath. Propagation Channels

Dynamic Platform for Virtual Reality Applications

Hardware Simulator: Digital Block Design for Time- Varying MIMO Channels with TGn Model B Test

A sub-pixel resolution enhancement model for multiple-resolution multispectral images

On the robust guidance of users in road traffic networks

Characterization of Few Mode Fibers by OLCI Technique

Impact Of Optical Demultiplexers Based On Fiber Bragg Gratings On DWDM transmission system

Application of the multiresolution wavelet representation to non-cooperative target recognition

A Low-Profile Cavity-Backed Dual-Polarized Spiral Antenna Array

Benefits of fusion of high spatial and spectral resolutions images for urban mapping

MIMO Channel Sounder at 3.5 GHz: Application to WiMAX System

A Switched-Capacitor Band-Pass Biquad Filter Using a Simple Quasi-unity Gain Amplifier

Application of CPLD in Pulse Power for EDM

Augmented reality as an aid for the use of machine tools

Two Dimensional Linear Phase Multiband Chebyshev FIR Filter

Helical antenna characterization using the singularity expansion method

analysis of noise origin in ultra stable resonators: Preliminary Results on Measurement bench

Enhanced spectral compression in nonlinear optical

Time and frequency metrology accredited laboratories in Besançon

100 GHz RoF system based on two free running lasers and non-coherent receiver

Signal and Noise scaling factors in digital holography

Characteristics of radioelectric fields from air showers induced by UHECR measured with CODALEMA

Hybrid Architecture of a Compact, Low-cost and Gain Compensated Delay Line Switchable From 1 m to 250 m for Automotive Radar Target Simulator

Estimation of the uncertainty for a phase noise optoelectronic metrology system

MODELING OF BUNDLE WITH RADIATED LOSSES FOR BCI TESTING

Comparison of antenna measurement results in disturbed environment using a VHF spherical near field system

Design Space Exploration of Optical Interfaces for Silicon Photonic Interconnects

Local Oscillator Phase Noise Influence on Single Carrier and OFDM Modulations

Transcription:

Indoor Channel Measurements and Communications System Design at 60 Lahatra Rakotondrainibe, Gheorghe Zaharia, Ghaïs El Zein, Yves Lostanlen To cite this version: Lahatra Rakotondrainibe, Gheorghe Zaharia, Ghaïs El Zein, Yves Lostanlen. Indoor Channel Measurements and Communications System Design at 60. XXIX URSI General Assembly, Aug 2008, Chicago, United States. pp.rakotondrainibe, 2008. <hal-00348803> HAL Id: hal-00348803 https://hal.archives-ouvertes.fr/hal-00348803 Submitted on 22 Dec 2008 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Indoor Channel Measurements and Communications System Design at 60 L. Rakotondrainibe 1, G. Zaharia 1, G. El Zein 1, Y. Lostanlen 2 1 IETR-UMR CNRS 6164, 20 Av. des Buttes de Coësmes, CS 14315, 35043 Rennes Cedex, France 2 SIRADEL, 3, Allée Adolphe Bobierre, CS 24343, 35043 Rennes Cedex-France lrakoton@insa-rennes.fr; gheorghe.zaharia@insa-rennes.fr; ghais.el-zein@insa-rennes.fr; yves.lostanlen@ieee.org Abstract This paper presents a brief overview of several studies concerning the indoor wireless communications at 60 performed by the IETR. The characterization and the modeling of the radio propagation channel are based on several measurement campaigns realized with the channel sounder developed at IETR. Some typical residential environments were also simulated by ray tracing and Gaussian Beam Tracking. The obtained results show a good agreement with the similar experimental results. Currently, the IETR is developing a high data rate wireless communication system operating at 60. The single-carrier architecture of this system is also presented. 1. Introduction During the last decade, substantial knowledge about the 60- millimeter-wave (MMW) channel has been accumulated and different architectures have been analyzed to develop MMW communication systems for commercial applications [1-2]. The 60 bandwidth is suitable for high data-rate and short-distance wireless communications. This interest is particularly due to the large bandwidth and the important power loss caused by the free space and walls attenuation which permits to reuse the same frequency bandwidth even in the next floor of the same building. Concerning the 60 front-end technology, higher frequencies lead to smaller sizes of RF components including very small antennas. The cost is mainly related to the transceiver RF front ends. The development of new wireless communication systems requires accurate knowledge of the propagation channel to efficiently simulate and design them, including new modulation schemes, coded and multiple access techniques. The rest of this paper is organized as follows: section 2 presents an overview of several studies realized at IETR concerning the measurements and characterization of the 60 radio propagation channel. Section 3 reports recent work concerning of a 60- radio communication system. Some conclusions are drawn in section 4. 2. Channel measurements and characterization During the last decade, several research activities were carried out at IETR in the 60 bandwidth: the realization of the channel sounder, the indoor radio channel measurements, simulation and characterization. 2.1 Channel sounder A 60- wideband channel sounder was developed at IETR (Fig. 1). This channel sounder has 500 MHz bandwidth, 40 db relative dynamic and 2.3 ns effective time resolution, which means that two paths separated from by 70 cm can be correctly discriminated. Based on the sliding correlation technique, this sounder is optimized to

perform long term measurement campaigns. Some measurement results with Doppler analysis up to 20 khz are presented in [3]. Fig. 1 Channel sounder at 60 realized by IETR 2.2 Channel measurements and characterization In [4-6], the results of several studies concerning the radio propagation at 60 in residential environments were published. These studies are based on several measurement campaigns realized with the IETR channel sounder. The measurements have been performed in residential furnished environments. The study of the angles-ofarrival (AOA) shows the importance of openings (such as doors, staircase, etc.) for the radio propagation between adjacent rooms (Fig. 2). From the database of impulse responses, several propagation characteristics are computed: attenuation, delay spread, delay window, coherence bandwidth [5]. The wave propagation depends on antennas (beam-width, gain and polarization), physical environment (furniture, materials) and human activity. A particular attention is paid to the influence of the human activity on radio propagation. In [6], it is shown that people movements can make the propagation channel unavailable during about one second (Fig. 3). Attenuation (db) Measurement --- 5 db threshold Attenuation (channel static) + Shadowing beginning 0 Shadowing cluster beginning Time (min) Fig. 2 Received power in the horizontal plane (NLOS, with a receiving horn antenna) Fig. 3 Human activity measurement at 60 (Receiver antenna: horn, channel activity: 4 persons) However, the angular diversity can be used: when a path is shadowed, another one, coming from another direction, can maintain the radio link. From the characterization of the indoor radio propagation, several recommendations concerning the deployment of the very high data rate 60 wireless networks are derived in [5].

2.3 Deterministic simulation of the 60 radio channel Two deterministic simulation tools have been used to complement the experimental characterization: a ray-tracing tool [6] and a 3 D Gaussian Beam Tracking (GBT) technique [7]. Both tools provided comparable coverage simulations in a residential indoor environment (a house) at 60 and 500 MHz bandwidth. In Fig. 4, simulated coverage results based on GBT algorithm are shown. This method based on Gabor frame approach is particularly well suited to high frequencies and permits a collective treatment of rays which offers significant computation time efficiency. The advanced deterministic prediction tool X-Siradif based on ray-tracing has further shown a good agreement with the power-delay measurement results (see Fig. 5), which is important for such a wide bandwidth. Besides the ray-tracing technique can easily and accurately take into account any measured antenna patterns. In [6], other comparison results concerning the channel impulse response and the angles-of-arrival are given. Besides, the ray-tracing technique can easily and accurately take into account any measured antenna patterns. However at 60 static simulations are not sufficient to help for the design of communication systems. SIRADEL is still pursuing its investigation on indoor propagation by setting up dynamic scenarios to simulate the presence of people in the room (mobility models, direct path and obstruction). 3. Design of a 60 wireless communication system Studies for different types of single carrier (SC) modulation and orthogonal frequency division multiplexing (OFDM) were proposed in the IEEE 802.15.3 Task Group 3c for the future wireless communication systems operating at 60. The choice of modulation schemes for 60 radio is highly dependent on the characteristics of the propagation channel, the use of high gain antenna/antenna array and the limitations imposed by the RF technology. Some SC modulations as BPSK and QPSK are considered. The SC has two main advantages over OFDM: lower complexity and lower PAPR (peak-to average power ratio). IETR, one of the partners of the Techim@ges project, is currently involved in the design and the realization of a low-cost, high data rate (about 1 Gbps) and small-distance (d < 10 m) wireless communication system. Fig. 6 shows the single carrier system architecture proposed by IETR which uses a BPSK modulation. The 3.5 and 58.5 phase locked oscillators use a 70 MHz frequency synthesizer. At the receiver, the intermediate frequency and the clock are obtained from the received signal. The frequency-domain equalizer (FDE) and some error correcting codes are under study. In order to improve the link budget, especially for point-to-point applications, it is preferable to use high-gain directive antennas.

Data input Amp LNA CAG 60 3.5 56.5 Ref. 70 MHz 56.5 FI 3. 5 Ref. 70 MHz Data output Sampler Clock recovery Fig. 6 Single-carrier wireless communication system at 60 4. Conclusion In this paper, a brief overview of several studies performed at IETR on 60 indoor wireless communications is presented. The characterization of the radio propagation channel is based on several measurement campaigns realized with the channel sounder of IETR. Some typical residential environments were also simulated by ray tracing and Gaussian Beam Tracking. The obtained results show a good agreement with the experimental results. Currently, the IETR is developing a SC wireless communication system operating at 60. 5. Acknowledgments The study on the 60 indoor radio channel was supported by the French National Research Network in Telecommunications RNRT COMMINDOR. The realization of the 60 wireless communications system is part of the research project Techim@ges supported by the French Media & Network Cluster and the COMMIDOM project of the Région Bretagne. 6. References 1. H. Yang, P. F. M. Smulders, and M. H. A. J. Herben, Channel Characteristics and Transmission Performance for Various Channel Configurations at 60, EURASIP Journal on Wireless Communications and Networking, Volume 2007, ID 19613, 15 pages, March 2007. 2. N. Guo, R. C. Qiu, S. S. Mo, and K. Takahashi, 60- Millimeter-Wave Radio: Principle, Technology, and New Results, EURASIP Journal on Wireless Communications and Networking, ID 68253, 8 pages, Sept. 2006. 3. S. Guillouard, G. El Zein, and J. Citerne, Wideband Propagation Measurements and Doppler Analysis for the 60 Indoor Channel, IEEE MTT-S Digest, 1999. 4. S. Collonge, G. Zaharia, and G. El Zein, Wideband and Dynamic Characterization of the 60 Indoor Radio Propagation-future Home WLAN Architectures, Annals of Telecommunications, special issue on WLAN, March- April 2003, Vol. 58, N 3-4, pp. 417-447. 5. S. Collonge, G. Zaharia, G. El Zein, Influence of the human activity on wide-band characteristics of the 60 indoor radio channel, IEEE Trans. on Wireless Communications, Vol. 3, Issue 6, Nov. 2004, pp. 2396-2406. 6. Y. Lostanlen, Y. Corre, Y. Louët, Y. Le Helloco, S. Collonge, G. Zaharia, and G. El Zein, Comparison of Measurements and Simulations in Indoor Environments for Wireless Local Networks at 60, IEEE Vehicular Technology Conference 2002, Birmingham, USA, May 2002. 7. R. Tahri, D. Fournier, S. Collonge, G. Zaharia, and G. El Zein, Efficient and Fast Gaussian Beam-Tracking Approach for Indoor-Propagation Modelling, Microwave and Optical Technology Letters, Vol. 45, N 5, June 2005, pp. 378-381.