The radio operator decision support system model

Similar documents
Global Maritime Distress and Safety System (GMDSS)

JOURNAL OF MARITIME RESEARCH. The Architecture of Data Transmission in Inland Navigation

RECOMMENDATION ITU-R M.541-8*

American Marine Training Center, LLC AMTC (2682)

QUESTIONNAIRE ON SHORE-BASED FACILITIES FOR THE GLOBAL MARITIME DISTRESS AND SAFETY SYSTEM (GMDSS)

OPERATIONS SEAFARER CERTIFICATION GUIDANCE NOTE SA MARITIME QUALIFICATIONS CODE SHORT RANGE CERTIFICATE (SRC)

REVISED QUESTIONNAIRE ON SHORE-BASED FACILITIES FOR THE GLOBAL MARITIME DISTRESS AND SAFETY SYSTEM (GMDSS)

What are the GMDSS requirements?

ATTACHMENT E. How to Conduct a GMDSS Inspection.

CEPT/ERC/RECOMMENDATION E (Bonn 1994)

RESOLUTION A.659(16) adopted on 19 October 1989 PROVISION OF RADIO SERVICES FOR THE GLOBAL MARITIME DISTRESS AND SAFETY SYSTEM

GMDSS RADIO INSTALLATION

NC4FB FCC Commercial License Element 7 Questions

ARTICLE 32 Operational procedures for distress communications in the global maritime distress and safety system (GMDSS) (WRC-07) Section I _ General

The Future in Marine Radio Communication GMDSS. Department of Transportation United States Coast Guard

GMDSS for Recreational Boaters

L AGENCE NATIONALE DES FREQUENCES (ANFR) From Titanic to satellite from Morse to digital Entry in a new era for the maritime community

GMDSS communication systems

IMO RESOLUTION A.1001(25) Adopted on 29 November 2007 (Agenda item 9)

Digital Selective Calling (DSC) Radios

MARITIME RADIO SYSTEMS FOR DISTRESS ALERTING

Advantages of Preservation of Obligatory Voice Communication on the VHF Radio Channel 16

GMDSS modernisation and e-navigation: spectrum needs

Record of approved GMDSS radio installation

RESOLUTION A.803(19) adopted on 23 November 1995 PERFORMANCE STANDARDS FOR SHIPBORNE VHF RADIO INSTALLATIONS CAPABLE OF VOICE COMMUNICATION AND

RULES FOR THE CONSTRUCTION AND CLASSIFICATION OF MOBILE OFFSHORE DRILLING UNITS TITLE MOBILE OFFSHORE DRILLING UNITS NAUTIC AND ELECTRONICS CHAPTERS

WRITTEN TEST Certificate for the operation of maritime VHF radio systems (SRC)

Radio Log Book. for Canadian Flag Vessels. 1 Master s Signature. Transports Canada. Transport Canada TP 13926E MARINE SAFETY

INTERNATIONAL STANDARD

IMO GUIDELINES TO ADMINISTRATIONS ON REPORTING FALSE ALERTS

Manual. Navico DSC1400 Class D DSC Controller

IMO. Resolution A.954(23) Adopted on 5 December 2003 (Agenda item 17) PROPER USE OF VHF CHANNELS AT SEA

MARINE RADIO IN A NUTSHELLv5 CONTENTS

American Marine Training Center, LLC AMTC (2682)

Subelement A Rules & Regulations: 6 Key Topics, 6 Exam Questions

This circular summarizes the various important aspects of the LRIT system with a view to enabling companies to ensure compliance in a timely manner.

VHF SHORT RANGE CERTIFICATE PRE-COURSE READING

REVIEW AND MODERNIZATION OF THE GMDSS. Report of the Correspondence Group - First draft of the high level review. Submitted by the United States

COMMUNICATION SYSTEMS FOR SAFETY AND SECURITY OF SHIPS

Standard Operating Procedures for: VHF Marine Radio

DRAFT RESOLUTION MSC.199(80) (adopted on 16 May 2005) ADOPTION OF AMENDMENTS TO PROVISION OF RADIO SERVICES FOR THE GLOBAL MARITIME DISTRESS AND

The Automatic Identification System operating jointly with radar as the aid to navigation

- 1 - Rep. ITU-R M.2009 REPORT ITU-R M.2009 DIRECT-DIAL TELEPHONE SYSTEMS FOR THE MARITIME MOBILE SERVICE

FOR MORE INFORMATION ON GMDSS CONTACT:

Maritime Communications

Digital broadcasting systems under development within ITU-R of interest for the maritime community

MODULAR GMDSS COMMUNICATION SYSTEM DSC2 USER MANUAL. ICS Electronics Ltd

How to Conduct a Bridge to Bridge Inspection

RESOLUTION MSC.131(75) (adopted on 21 May 2002) MAINTENANCE OF A CONTINUOUS LISTENING WATCH ON VHF CHANNEL 16 BY SOLAS SHIPS WHILST AT SEA AFTER 1

Information for all SRC Radio students

TACTICALL MARITIME COMMUNICATION SOLUTION

Manual for use by the Maritime Mobile and Maritime Mobile-Satellite Services

FREQUENCIES FOR DISTRESS AND SAFETY, SEARCH AND RESCUE AND EMERGENCIES

MINIMIZING DELAYS IN SEARCH AND RESCUE RESPONSE TO DISTRESS ALERTS

AMENDMENTS TO RESOLUTION A.705(17) PROMULGATION OF MARITIME SAFETY INFORMATION

Working Party 5B DRAFT NEW RECOMMENDATION ITU-R M.[500KHZ]

TECHNICAL COMMITTEE 80: MARITIME NAVIGATION AND RADIOCOMMUNICATION EQUIPMENT AND SYSTEMS INTERNATIONAL ELECTROTECHNICAL COMMISSION

International Maritime Organization

International Maritime Organization DRAFT IMO POSITION ON WRC-19 AGENDA ITEMS CONCERNING MATTERS RELATING TO MARITIME SERVICES

GUIDANCE ON THE COSPAS-SARSAT INTERNATIONAL 406 MHz BEACON REGISTRATION DATABASE

Weatherdock explains: How does real DSC work in an emergency transmitter?

FOURTH SESSION OF THE SUB-COMMITTEE ON NAVIGATION, COMMUNICATIONS AND SEARCH AND RESCUE 6 to 10 March 2017

RECOMMENDATION ITU-R M.632-3*

GOVERNMENT GAZETTE REPUBLIC OF NAMIBIA

Meeting 5 18 July 2013 Agenda Item 2.1. Submitted by IHB SUMMARY

CONSIDERATION OF THE OUTCOME OF WRC-12 AND PREPARATION OF INITIAL ADVICE ON A DRAFT IMO POSITION ON WRC-2015 AGENDA ITEMS

Event Organisers are advised to consider having a dedicated channel for safety and rescue communications.

UK Interface Requirement 2039

ETSI EN V1.1.1 ( )

DSC WATCH - Coast stations participating in MF, HF and VHF watch-keeping using digital selective calling techniques

Merchant Shipping Act 57 of 1951 section 356

MARITIME MANAGEMENT Receive and transmit information

GMDSS GUIDE.

Digital Selective Calling. Safety at Sea for the 21 st Century

Cooperation Agreements for SAR Service and COSPAS-SARSAT

VHF 110/210 AIS Series. Owner s Manual

The ship safety zones in vessel traffic monitoring and management systems

Meeting 6 11 August 2014 Agenda Item 2.2a. Submitted by IHB SUMMARY

GX-1200 GMDSS DSC RADIO SIMULATOR

Transport System. Transport System Telematics. Modeling communication processes in maritime transport using computing with words

Emergency Marine Communications

Syllabus for the General Operator Certificate (GOC)

International Telecommunication Union

Extent of Consultation

ITU Service Publications (maritime) and MARS (Maritime mobile Access and Retrieval System)

RESOLUTION MSC.229(82) (adopted on 5 December 2006) ADOPTION OF A NEW MANDATORY SHIP REPORTING SYSTEM "IN THE GALAPAGOS PARTICULARLY SENSITIVE SEA

Integration of AIS functionalities

SCHEDULE. No. R April 2002 MERCHANT SHIPPING (RADIO INSTALLATIONS) REGULATIONS, Regulation No. PART 1 GENERAL

WWNWS8/3/4/1e Meeting 8 26 July 2016 Agenda Item 3.4.1e. Report of the Correspondence Group on the Review of the GMDSS. Submitted by IHB SUMMARY

REVISED INTERNATIONAL SAFETYNET MANUAL. Introductory text and Sections 1-14

Models: FS-1575 (150 W) FS-2575 (250 W) FS-5075 (500 W)

GMDSS TUTOR TGS-5000 V.8.3

SAFETY EQUIPMENT AND PREPARATION. S/V Odette USA 5619

National Marine Electronics Association International Marine Electronics Association. Technical Bulletin

The. MF/HF Radio Guide. For the Long Range Certificate of Competency in Radiotelephony TRG-6

DSC 9000 SERIES TECHNICAL MANUAL

ETSI EN V1.4.1 ( )

RESOLUTION MSC.80(70) (adopted on 8 December 1998) ADOPTION OF NEW PERFORMANCE STANDARDS FOR RADIOCOMMUNICATION EQUIPMENT

MARITIME SAFETY INFORMATION

Transcription:

Scientific Journals of the Maritime University of Szczecin Zeszyty Naukowe Akademii Morskiej w Szczecinie 2017, 52 (124), 120 127 ISSN 1733-8670 (Printed) Received: 23.11.2017 ISSN 2392-0378 (Online) Accepted: 04.12.2017 DOI: 10.17402/253 Published: 15.12.2017 Marcin Mąka, Piotr Majzner Maritime University of Szczecin 1-2 Wały Chrobrego St., 70-500 Szczecin, Poland e-mail: {m.maka; p.majzner}@am.szczecin.pl corresponding author Key words: radiocommunication, Radiocommunication Events Management System, GMDSS, decision model, graph theory, signals Abstract The article proposes a model of the system supporting the decision-making process relating to the radio operator on board a ship after a distress alert is received by a Digital Selective Calling (DSC) controller working on VHF channel 70. The model is aimed at the implementation into the system of radiocommunication event management. The system takes into account the existing Radio Regulations. The model makes use of Petri nets, which are elements of graph theory. The time domain is comprised in the developed graph, and the states (places) and transitions capable of autonomous functioning are separated, as are those places and transitions requiring direct operator action based on empirical knowledge. Introduction The main function of the Global Maritime Distress and Safety System (GMDSS) is transmitting signals from ships in distress to coastal radio stations and Rescue Coordination Centres (RCC) (Czajkowski, 2002; SOLAS, 2009; Uriasz & Majzner; 2013). The system is composed of 10 subsystems: 1. Digital Selective Calling (DSC); 2. Radiotelephone in the VHF band; 3. Radiotelephone in the MF/HF band; 4. NBDP; 5. Inmarsat; 6. Cospas-Sarsat; 7. Navtex; 8. SART; 9. MSI; 10. EPIRB. DSC is the principal subsystem, which allows: sending ship-to-shore and ship-to-ship alerts; initiating urgency and safety messages, subsequently broadcast via radiotelephone; establishing routine ship-to-ship and ship-toshore communications. Alarming by DSC is simple for operators. Problems arise when a ship on a sea voyage receives an alarm on its DSC controller from another vessel in distress. In such as case, the procedure after the receipt of a distress alert is defined by the Radio Regulations (RR). Despite the full operation of the GMDSS system for over 18 years, the interpretation of regulations in practice, particularly under stress, may result in operator errors that will lead to a delay in, or even the failure of, effective search and rescue operations by marine rescue services. It has been indicated in articles (Lisaj & Majzner, 2014; Majzner & Mąka, 2014; Lisaj, Majzner & Maka, 2015) that it is purposeful to develop a Radiocommunication Events Management System (REMS) at sea. One major component of such a system would be a radio operator decision support system. Characteristics of DSC VHF Maritime VHF comprises the 156 174 MHz band. The band is divided into channels, of which the most important are: 120 Scientific Journals of the Maritime University of Szczecin 52 (124)

Channel 70 designed for DSC, and the only DSC channel in this band; Channel 16 designed for distress, urgency and safety radiotelephone communications. In theory, the range of ultra short waves is restricted to line-of-sight. In practice, however, it is much larger, thanks to the tropospheric refraction and diffraction. The range of V-band communications (in nautical miles) is expressed by means of the following equation (Czajkowski, 2002): D 2. 5 h H (1) where: h height of the transmitting antenna; H height of the receiving antenna; V band communication range modelling consists of the determination of a circle of radius and D. The basic information unit in the DSC is a word consisting of 10 bits, of which the first seven are information, and the last three represent the number of zeroes found in the information. The information part may contain numeric values in the 0 127 range. The values 0 to 99 are interpreted as numbers, e.g. Maritime Mobile Service Identity (MMSI) number, coded position, etc., whereas values from 100 to 127 have special meaning depending on their position in the message. The distress alert of DSC consists of 12 elements: dot pattern; phasing signal; format specifier; address; category; self-identification (MMSI number of the ship); message 1 the nature of distress; message 2 the position of a ship in distress; message 3 the time of the position of a ship in distress; message 4 the kind of communication after sending the distress alert; end of sequence; error check symbol. A DSC message is repeated twice with 33.(3) ms delay and the whole distress alert is sent within approximately 0.5 seconds. The message contains information automatically appended by the controller connected to a VHF radiotelephone and a system providing a ship s position, but may also contain information specified by the operator, such as the nature of distress, and an updated position. The Radio Regulations The procedures for emergency situations and for such events as the reception of a message from a ship in distress are set forth in the RR (Salmonowicz, 2001). The operator of a vessel in distress, after sending a distress alert by DSC VHF controller in automatic or extended mode, prepares for communication by switching to radiotelephone channel 16; this may also be done automatically, as in most of today s ships. The DSC controller will automatically send an alarm at approximately 4-minute intervals containing all the items listed above, until receiving acknowledgement from the coast station. Such acknowledgement should be sent by the coast station immediately upon receipt. The acknowledgement is addressed to all ships and should not be sent by an operator of another ship. Next, the operator on the ship in distress may send a distress message via a radiotelephone as defined by the RR (COM- SAR.1 Circ 45). Currently the RR define only the Figure 1. Ranges of VHF band frequencies as a function of the height of the antenna (EGMDSS, 2017) Zeszyty Naukowe Akademii Morskiej w Szczecinie 52 (124) 121

Marcin Mąka, Piotr Majzner Figure 2. A flow chart of a radio operator s actions after a DSC VHF distress alert receipt (ITU-R M.541, 2004, (Annex 3) flow diagram 1) form of further communication between the participants in the rescue operation, the form of imposing silencing on stations which interfere with the traffic, and the form of finishing radio silence. The actions of the rescue operation participants are determined by the existing situation and IAMSAR regulations (IAMSAR, 2001). In a distress situation, the behaviour of radio operators on ships in the vicinity is of particular importance after they receive a DSC VHF distress alert. The operational procedures are set forth in ITU-R M. 541 (Annex 3), illustrated in Figure 2. This procedure is the same for the receipt of a distress alert by a DSC in the VHF and in MF bands. The operator on the ship, after receiving a DSC VHF distress alert (block 1 in Figure 2), should get ready for distress communication by ensuring sure that VHF channel 16 is switched on with the noise reduction disabled (block 2, Figure 2). Then the operator should wait for a maximum of five minutes. In the meantime, s/he will check: if any coast station has acknowledged the alert to the ship in distress via DSC (block 3, Figure 2); or if any distress traffic can be heard (block 4, Figure 2). An affirmative answer to any of the two checks creates a situation in which the radio operator should assess the possibility of providing effective assistance to the ship in distress (block 5, Figure 2). If the assessment by the ship s captain, watch officer or radio operator is positive, i.e. the ship receiving the distress alert is able to provide effective assistance to the ship in distress and its crew, the ship acknowledges receipt of the alert in line with the following form (block 7, Figure 2): MAYDAY Name, call sign, MMSI (if the initial alert is sent by DSC) of the ship in distress This is Name, call sign, or other identification of the ship which received the distress alert Received MAYDAY In addition, radio operators should transmit to the ship in distress information on their present position, course and speed, and estimated time of arrival at the distress position. Then the radio operator should notify the nearest coast station of such communication events, enter the details of communications in the radio log and reset the system. In the radio space, the distress communication should continue, depending on the actions of rescue operation participants and IAMSAR regulations (IAMSAR, 2001). If the assessment by the ship s captain, watch officer or radio operator is negative, i.e. the ship that received the distress alert is not able to provide effective assistance, the radio operator should only enter the details of communications in the radio log (block 9, Figure 2) and reset the system (block 10, Figure 2). If after five minutes the DSC controller has not received acknowledgement of the distress alert sent by the coast station and the radio operator has not heard on channel 16 any distress message, but has again received a DSC distress alert (block 6, Figure 2), s/he should acknowledge receipt to the ship in distress (block 7, Figure 2), notify the coast station of the communication events, (block 8, Figure 2), enter the details of the communication in the radio log (block 9, Figure 2) and reset the system (block 10, Figure 2). 122 Scientific Journals of the Maritime University of Szczecin 52 (124)

In a situation in which a distress alert has been received only once, the radio operator who received the alert should notify the coast of the communication events (block 8, Figure 2), enter the details of communications in the radio log (block 9, Figure 2) and reset the system (block 10, Figure 2). According to the above description, the operator s conduct upon reception of a distress alert by means of the DSC controller is complex, and requires making quick and accurate decisions and the proficient operation of radio equipment in distress communications. Even small mistakes by the radio operator can result in interference with, or failure to carry out, the rescue operation. A model of the decision-making process based on Petri nets The decision process resulting from the binding procedure has been defined herein using the methods and tools typical of process exploration, Petri nets in particular (van der Aalst, 1998; 2013). The Petri net (Jensen & Kristensen, 2009; Jensen & van der Aalst, 2009) is the five: PM = (P, T, A, W, s 0 ), where: P (finite) set of places; T (finite) set of transitions; A P T T P set of arcs; W: A N function of weights ascribing labels (natural numbers) to each arc; s 0 : P *N function describing the initial marking, where *N is the set of non-negative integers, i.e. N* = N {0}. It is assumed that for each net specified as above this condition is fulfilled: P T = Ø & P T Ø. In the process of modelling, we initially assumed that the individual components of the developed net are: places states, individual actions essential for the process; transitions changes of a state, completion of actions, decisions made; tokens and their location information, representation of the status of the decision-making process referring to a specific distress situation; input reception of a radio message (DSC and voice); output completion of distress communications; state of a Petri net set of actions taken at a given instant, representing the status of the decision-making process. Denotations in Figure 3 represent, respectively: places: p1 received a DSC distress alert; p2 listening on VHF channel 16; p3 analysis of the possibility of coming to assistance; p4 acknowledgement to the sinking vessel; p5 notification of the coast station; p6 entry made in the radio log. Reset the system; transitions: t1 setting channel 16; t2 repeated receipt of a distress alert; t3 five minutes elapsed; t4 received acknowledgement from the coast station; t5 distress communication in progress; t6 commencement of rescue operation; t7 no rescue actions taken, continuing with the voyage; t8 acknowledgement sent to the ship; t9 notification sent to the coast station. t2 t3 p1 t1 p2 t4 p3 t6 p4 t8 p5 t9 p6 t5 t7 Figure 3. The Petri net operator s actions after the receipt of a DSC VHF distress alert Zeszyty Naukowe Akademii Morskiej w Szczecinie 52 (124) 123

Marcin Mąka, Piotr Majzner This interpretation of the procedure diagram in Figure 2, presented in the form of a Petri net (Figure 3), reflects the correct course of action in the decision-making process after the receipt of a DSC VHF distress alert. The net presented in Figure 3 allows us to directly implement the application, an element of the REMS presented in the next chapter. In addition, the net model thus developed helps to isolate elements which indicate: actions carried out autonomously by the radiocommunication equipment, (col. 3, Table 1); elements of the decision-making process which currently require operator activity and may be executed in the newly developed REMS system (col. 4, Table 1); elements of the decision-making process which require direct actions to be taken by the operator (col. 5, Table 1). Table 1 illustrates elements of the decision-making process from Figure 2, decomposed in the Petri net from Figure 3. Table 1. Some decision process elements No. Block number in Figure 2 Radiocommunication units autonomous actions REMS autonomous actions Operator s actions (1) (2) (3) (4) (5) 1 Block 1 p1 2 Block 2 p2, t1 3 Block 3 t4 4 Block 4 t5 5 Block 5 p3, t6 6 Block 6 t2, t3 7 Block 7 p4, t8 8 Block 8 p5, t9 9 Block 9 p6, t7 10 Block 10 p6, t7 The above Petri net, however, does not provide the proper opportunities for proper analysis of the net in the time domain. It is necessary to adjust the net to a form in which places and tokens located in them will represent only statuses of the decision-making process and the termination of each action essential for the process. Transitions will be changes of the state, individual actions and decisions made (Figure 4). Denotations in Figure 4 represent, respectively: places: p1 received a DSC distress alert, START; p2, p3, p4, p5, p6, n statuses of the decision-making process; p8 completion of the decision-making process. STOP; transitions (C actions, D decisions): t1 C: checking if channel 16 is set/setting channel 16; t2 C: start listening on channel 16; t3 C: repeated receipt of a distress alert; t4 C: five minutes elapsed (waiting); t5 C: received acknowledgement from a coast station; t6 C: distress communication in progress; t7 D: making a decision to provide assistance; t8 D: making a decision not to provide assistance and continue the voyage; t9 C: sending an acknowledgement to the ship in distress; t10 C: notification of the coast station; t11 C: entry in the LOG. Reset the system. In the net thus defined, all time parameters are associated only with transitions. It is then much easier to analyse the whole process in the time domain, the basis for the presentation of the whole procedure in the form of an event-decision diagram. It is also a basis for planned research into the optimisation of the process in the time domain. t3 t4 p1 t1 p2 t2 p3 t5 p4 t7 p5 t9 p6 t10 p7 t11 p8 t6 t8 Figure 4. A modified Petri net 124 Scientific Journals of the Maritime University of Szczecin 52 (124)

Implementation of the decision-making process model Taking into account the binding procedure scheme (Figure 2) we have developed an application supporting the operator in making decisions on the ship. The application defines subsequent stages of the decision-making process, the scope of decisions and the decision-making procedures followed when assistance is provided in accordance with the RR. This requires defining the criteria, derived from the procedure, for the situation analysis and assessment, including the possibility of providing assistance to the ship in distress. The key steps in the process are the user s decisions responses to system-generated questions concerning the course of action in the situation of providing assistance. To facilitate responses, apart from the questions generated by the system, the application presents a procedure diagram, as required by regulations, in the event of distress alert reception (Figure 5). The data source for the REMS subsystem and subsequently generated event-decision diagram are streams of random events, related and not related to radiocommunication, internal and external. The questions and suggestions for further actions, generated by the system, are displayed to the navigator in the proper sequence, making it easier for him or her to make an appropriate decision (Figure 6). Decisions and actions that the navigator/gmdss operator has to take are marked with colours, in accordance with the procedure diagram (Figures 2 and 5). The presentation and archiving of the decision-making process makes use of the event-decision diagram proposed previously in articles (Majzer & Mąka, 2014; Lisaj, Majzner & Mąka, 2015).The diagram presents and allows us to archive questions concerning necessary decisions, directed to the system operator, and the solutions developed by the REMS subsystem. The process of creating the diagram shown in Figure 7 is based on the previously described Petri net and the fundamental procedure for actions after the receipt of a DSC VHF distress alert (Figure 2). The diagram in Figure 7 illustrates a fragment of communication, in which the respective actions are as follows: 1. We receive on DSC VHF channel 70 an alert transmitted by a ship in distress. 2. We make a decision / answer the question: Is the alert acknowledged by the coast station?. 3. We receive the distress alert acknowledgement sent by the coast station on VHF channel 70. 4. We receive a distress call and message sent subsequently by radiotelephone on VHF channel 16. 5. We receive a distress relay transmitted by the coast station by radiotelephone on VHF channel 16. Figure 5. Fragment of the screenshot from the programme of operator decision support immediately after alert receipt Zeszyty Naukowe Akademii Morskiej w Szczecinie 52 (124) 125

Marcin Mąka, Piotr Majzner Figure 6. Fragment of the screenshot of the programme for operator decision support, showing blocks 5 and 7 from Figure 2 0 INPUT EVENTS DECISION OUTPUT EVENTS Received DSC VHF Distress Alert 0 20 Received Distress Acknowledgement on VHF DSC ) from Coast Station Received Distress Alert on VHF RTL, ch. 16 VHF Is Distress alert received on DSC? YES 20 40 60 Received Distress Announcement on VHF RTL, ch. 16 VHF Is own vessel able to assist? 40 60 80 80 100 Received Distress Relay from Coast Station on ch. 16 VHF 100 120 YES 120 140 Transmit on ch. 16 VHF acknowledgement of receiving of alarm 140 160 180 On ch. 16 VHF, the message beginning correspondence in distress was received 160 180 200 t [s] Correspondence in distress on ch. 16 VHF 200 t [s] Figure 7. Time-decision diagram for the decision-making process, based on Figures 2 and 4 6. During the actions under pp. 5 and 6 we make a decision on the possibility of providing assistance. 7. We can provide assistance; therefore, in accordance with the diagram in Figure 2, we have sent an acknowledgement of distress alert receipt by radiotelephone on VHF channel 16. 8. The coast station begins distress communication and coordination of the rescue operation. 126 Scientific Journals of the Maritime University of Szczecin 52 (124)

Conclusions The article presents a model of the decision support system aimed at assisting the radio operator on a ship after receipt of a distress alert by DSC VHF on channel 70. The following conclusions can be drawn: The process of decision making involving the radio operator on a ship after distress alert reception by means of the DSC VHF controller is complex and may turn out difficult, even for experienced users. The operator has to be competent and proficient in handling the device. While developing the graph of the Petri net, these authors took into account the states executed automatically by the equipment, states that may be a component of an autonomous REMS and states dependent on operator intervention. The two models of the Petri net allowed the modelling of the decision-making process, which resulted in the development of operator decision-making support and the generation of a time diagram. Based on the Petri net, the proposed system of operator decision-making support allows the time the radio equipment is handled to be shortened, thus giving more time for heuristic analysis of the existing situation and optimising decisions for the most effective rescue operation. These conclusions confirm that there is a need to conduct further research in order to develop a radio operator decision support system as an integral part of the REMS. References 1. van der Aalst W.M.P. (1998) The application of Petri nets to workflow management. Journal of circuits, systems, and computers 8.01, pp. 21 66. 2. van der Aalst W.M.P. (2013) Decomposing Petri nets for process mining: a generic approach, distributed and parallel databases. Erratum 31(4), pp. 471 507. 3. Czajkowski, J. (2002) System GMDSS regulaminy, procedury i obsługa. Gdańsk: Skryba. 4. EGMDSS (2017) [Online] Available from: www.egmdss. com [Accessed: November 20, 2017] 5. IAMSAR (2001) Międzynarodowy Lotniczy i Morski Poradnik Poszukiwania i Ratowania. Tom III Środki mobilne. Gdynia: Wydawnictwo Trademar. 6. ITU-R M.541 (2004) ITU-R M.541. Operational procedures for the use of digital selective-calling equipment in the maritime mobile service. Annex 3 Operational procedures for ships for digital selective calling communications on MF, HF and VHF. 7. Jensen, K. & Kristensen, L.M. (2009) Coloured Petri Nets Modelling and Validation of Concurrent Systems. Berlin: Springer International Publishing AG. 8. Jensen, K. & van der Aalst, W.M.P. (2009) Transactions on Petri nets and other models of concurrency II. Berlin Heidelberg: Springer-Verlag. 9. Lisaj, A. & Majzner, P. (2014) A Model of Radiocommunication Events Management System. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 38 (110), pp. 57 61. 10. Lisaj, A., Majzner, P. & Mąka, M. (2015) Area Model in the Radio Communication Event Management System. Archives of Transport Systems Telematics 8, 3, pp. 30 34. 11. Majzner, P. & Mąka, M. (2014) A Simulation Model of Radiocommunication Events Management. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie Nr 37 (109), pp. 61 65. 12. Salmonowicz, W. (2001) Łączność w niebezpieczeństwie GMDSS. Szczecin. 13. SOLAS (2009) Consolidated edition. International Maritime Organization. 14. Uriasz, J. & Majzner, P. (2013) Systemy łączności morskiej. In: Nowoczesne systemy łączności i transmisji danych na rzecz bezpieczeństwa. Szanse i zagrożenia. Pach, A., Rau, Z. & Wągrowski, M. (Eds). Warszawa: LEX a Wolter Kluwert Bussines. Zeszyty Naukowe Akademii Morskiej w Szczecinie 52 (124) 127