Trend of CMOS Imaging Device Technologies

Similar documents
DURING the past few years, fueled by the demands of multimedia

Fundamentals of CMOS Image Sensors

EE 392B: Course Introduction

Photons and solid state detection

A Dynamic Range Expansion Technique for CMOS Image Sensors with Dual Charge Storage in a Pixel and Multiple Sampling

A CMOS Image Sensor with Ultra Wide Dynamic Range Floating-Point Pixel-Level ADC

Comparative Analysis of SNR for Image Sensors with Enhanced Dynamic Range

Ultra-high resolution 14,400 pixel trilinear color image sensor

A Low Power Dual CDS for a Column-Parallel CMOS Image Sensor

Demonstration of a Frequency-Demodulation CMOS Image Sensor

TRIANGULATION-BASED light projection is a typical

FUTURE PROSPECTS FOR CMOS ACTIVE PIXEL SENSORS

ACTIVE PIXEL SENSORS VS. CHARGE-COUPLED DEVICES

A fps CMOS Ion-Image Sensor with Suppressed Fixed-Pattern-Noise for Accurate High-throughput DNA Sequencing

COMPACT digital cameras now require a high pixel count,

CHARGE-COUPLED device (CCD) technology has been. Photodiode Peripheral Utilization Effect on CMOS APS Pixel Performance Suat Utku Ay, Member, IEEE

E19 PTC and 4T APS. Cristiano Rocco Marra 20/12/2017

A High Image Quality Fully Integrated CMOS Image Sensor

VLSI DESIGN OF A HIGH-SPEED CMOS IMAGE SENSOR WITH IN-SITU 2D PROGRAMMABLE PROCESSING

Introduction to Computer Vision

A 1Mjot 1040fps 0.22e-rms Stacked BSI Quanta Image Sensor with Cluster-Parallel Readout

A 3MPixel Multi-Aperture Image Sensor with 0.7µm Pixels in 0.11µm CMOS

A 200X100 ARRAY OF ELECTRONICALLY CALIBRATABLE LOGARITHMIC CMOS PIXELS

CMOS Active Pixel Sensor Technology for High Performance Machine Vision Applications

A CMOS Image Sensor With Dark-Current Cancellation and Dynamic Sensitivity Operations

IN RECENT years, we have often seen three-dimensional

A 1 µm-pitch Quanta Image Sensor Jot Device With Shared Readout

IEEE. Proof. CHARGE-COUPLED device (CCD) technology has been

A Digital High Dynamic Range CMOS Image Sensor with Multi- Integration and Pixel Readout Request

Low Power Highly Miniaturized Image Sensor Technology

Introduction. Chapter 1

Noise Performance of Time-Domain CMOS Image Sensors

A Digital High Dynamic Range CMOS Image Sensor with Multi- Integration and Pixel Readout Request

Quanta Image Sensor (QIS) - an oversampled visible light sensor

Cameras CS / ECE 181B

A 1.3 Megapixel CMOS Imager Designed for Digital Still Cameras

Lecture Notes 5 CMOS Image Sensor Device and Fabrication

Three Dimensional Image Sensor for Real Time Application Based on Triangulation

Factors Affecting Pixel Scaling Limits for cellphone imaging systems

Active Pixel Sensors Fabricated in a Standard 0.18 um CMOS Technology

Simultaneous Image Formation and Motion Blur. Restoration via Multiple Capture

IISW 2009 Backside Illumination Symposium

Agilent 2AZ1A CMOS Image Sensor Process Review

A DIGITAL CMOS ACTIVE PIXEL IMAGE SENSOR FOR MULTIMEDIA APPLICATIONS. Zhimin Zhou, Bedabrata Paint, Jason Woo, and Eric R. Fossum*

Quanta Image Sensor (QIS) Concept and Progress

Power and Area Efficient Column-Parallel ADC Architectures for CMOS Image Sensors

MOSFET short channel effects

RECENTLY, CMOS imagers, which integrate photosensors, A New CMOS Pixel Structure for Low-Dark-Current and Large-Array-Size Still Imager Applications

Low Voltage Low Power CMOS Image Sensor with A New Rail-to-Rail Readout Circuit

Multi-bit Quanta Image Sensors

MOSFET MODULATED DUAL CONVERSION GAIN CMOS IMAGE SENSORS

EVALUATION OF RADIATION HARDNESS DESIGN TECHNIQUES TO IMPROVE RADIATION TOLERANCE FOR CMOS IMAGE SENSORS DEDICATED TO SPACE APPLICATIONS

CMOS Active Pixel Sensor (APS) Imager for Scientific Applications. Micron Imaging, 135 N. Los Robles Ave. 7 th Floor, Pasadena, CA

A flexible compact readout circuit for SPAD arrays ABSTRACT Keywords: 1. INTRODUCTION 2. THE SPAD 2.1 Operation 7780C - 55

Micron MT9T Megapixel, ¼ Optical Format, 1.75 µm Pixel Size System-on-Chip (SOC) CMOS Image Sensor

Active Pixel Sensors Dr. Eric R. Fossum Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA USA

A Low Noise and High Sensitivity Image Sensor with Imaging and Phase-Difference Detection AF in All Pixels

Fully depleted, thick, monolithic CMOS pixels with high quantum efficiency

Application of CMOS sensors in radiation detection

Automotive Image Sensors

Sony IMX Megapixel, 1.4 µm Pixel 1/3.2 Optical Format CMOS Image Sensor

Lecture 7. July 24, Detecting light (converting light to electrical signal)

Jan Bogaerts imec

Overview. Charge-coupled Devices. MOS capacitor. Charge-coupled devices. Charge-coupled devices:

(12) United States Patent (10) Patent No.: US 6,388,243 B1. Berezin et al. (45) Date of Patent: May 14, 2002

More Imaging Luc De Mey - CEO - CMOSIS SA

STA1600LN x Element Image Area CCD Image Sensor

(12) United States Patent (10) Patent No.: US 6,888,122 B2

Characterisation of a CMOS Charge Transfer Device for TDI Imaging

STA3600A 2064 x 2064 Element Image Area CCD Image Sensor

Aptina MT9P111 5 Megapixel, 1/4 Inch Optical Format, System-on-Chip (SoC) CMOS Image Sensor

Development of ultra-high-speed video cameras for PIV

A CMOS image sensor working as high-speed photo receivers as well as a position sensor for indoor optical wireless LAN systems

Low Power Sensors for Urban Water System Applications

Review of ADCs for imaging

PAPER Pixel-Level Color Demodulation Image Sensor for Support of Image Recognition

Active Pixel Sensors Fabricated in a Standard 0.18 urn CMOS Technology

Digital Photographs, Image Sensors and Matrices

High Conversion-Gain Pinned-Photodiode Pump-Gate Pixels in 180-nm CMOS Process

Quantitative Study of High Dynamic Range Sigma Delta-based Focal Plane Array Architectures

High-end CMOS Active Pixel Sensor for Hyperspectral Imaging

2 nd Generation CMOS Charge Transfer TDI: Results on Proton Irradiation

IEEE SENSORS JOURNAL, VOL. 4, NO. 1, FEBRUARY

Characterization of CMOS Image Sensors with Nyquist Rate Pixel Level ADC

A 3D Multi-Aperture Image Sensor Architecture

A High-Speed, 240-Frames/s, 4.1-Mpixel CMOS Sensor

NEW CIRCUIT TECHNIQUES AND DESIGN METHODES FOR INTEGRATED CIRCUITS PROCESSING SIGNALS FROM CMOS SENSORS

Charge-integrating organic heterojunction

A pix 4-kfps 14-bit Digital-Pixel PbSe-CMOS Uncooled MWIR Imager

IRIS3 Visual Monitoring Camera on a chip

CCD1600A Full Frame CCD Image Sensor x Element Image Area

Open Access. C.H. Ho 1, F.T. Chien 2, C.N. Liao 1 and Y.T. Tsai*,1

Sony IMX118CQT 18.5 Mp, 1.25 µm Pixel Pitch Back Illuminated CIS from the Sony DSC-WX100 Camera

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1

Design and Simulation of High Speed Multi-Processing CMOS Image Sensor

(10) Patent No.: US 7, B2

Design of an Integrated Image Sensor System

Integrated Multi-Aperture Imaging

Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias

Polarization-analyzing CMOS image sensor with embedded wire-grid polarizers

Transcription:

004 6 ( ) CMOS : Trend of CMOS Imaging Device Technologies 3 7110 Abstract Which imaging device survives in the current fast-growing and competitive market, imagers or CMOS imagers? Although this question is still argued among experts, the conclusion has not come out yet. In recent years, the power balance of imagers and CMOS imagers has been changing quickly every two years. Now, CMOS image sensors challenge to take the market of s again. In this paper, I introduce the state-of-the-art technologies of CMOS image sensors behind the present trend of the image sensor market. 1 The Number of Image Sensor Products 700M 600M 00M 400M 300M 00M 100M 0 1997 1998 1999 000 001 00 003 004 00 Year Fig. 1. Trend of the world-wide image sensor products [1]. (Fig.1) vs. CMOS 30 MOS [] 3 CMOS 004 00 [3] CMOS 1993 E. R. Fossum CMOS APS (Active Pixel Sensor)[4] CMOS vs. CMOS CMOS (FPN) CMOS vs. CMOS 000 CMOS 1 00 CMOS CMOS 1970 [3] Fig. (a),(b) (a) ( ) (b) 0% Fig. (c) 1

(a) Full-frame sensor array VDD VDD vertical transfer horizontal transfer (b) Interline transfer vertical transfer horizontal transfer (c) operation V3 V3 V3 V1 V1= +Vo V= +Vo V3= +3Vo V V3 V1 V V3 V1 V V3 V1= +Vo V= +Vo V3= +Vo V1= +Vo V= +3Vo V3= +Vo RST n + n + MR (a) Photodiode CMOS APS (a) before 001 Quality Power Cost Module size For movie VDD X Vb pixel PG TX RST n + n + FD MR VDD (b) Floating gate CMOS APS Fig. 4. Basic structures of CMOS APS. CMOS APS (b) after 00 Quality Power Cost Module size For movie X Vb pixel CMOS APS Fig.. Comparison between imager and CMOS imager: (a) before 001, (b) after 00 []. Fig.. Basic structure and operation of image sensor. (a) passive pixel sensor row1 row row3 out col1 col col3 (b) active pixel sensor (APS) row1 row row3 col1 col col3 CDS CDS CDS Fig. 3. Passive and active CMOS image sensors. (FPN) n 10 V 1967 MOS Passive Pixel Sensor(PPS) Fig.3 (a) MOS PPS CMOS Active Pixel Sensor(APS) CMOS APS 1993 CMOS Fig.3 (b) Fig.4 (a) PN 3 (b) CMOS APS PPS (CDS) CMOS 1990 3 vs. CMOS 3.1 (000 00 ) 000 CMOS

Pixel pitch (µm) 6 4 3 1 000 001 CMOS APS For over 100M pixel image sensor on Cellphone 00 003 004 00 006 007 Fig. 6. Pixel pitch of and CMOS APS [, 7]. Year CMOS APS CMOS (a) CMOS CMOS CMOS 1? 3. (00 004 ) 00 30 100 (a) CMOS APS (b) <10% PD amp. PD circuit 30% transfer Fig. 7..8 µm-pitch pixel layout: (a) CMOS APS, (b). 1 V 1 V 7V 8V [6] CMOS CMOS 000 CMOS Fig.6 100 003 7mm 1/4 [7] 100 130 3 µm Fig.6 Fig.7 (a) CMOS APS 3.8 µm 10%.8 µm 30% 00 003 100 CMOS CMOS 00 CMOS 000 Fig. (b) 4 vs. CMOS 004 S/N 3

Minumum lithographic feature size (µm) CMOS imager pixel size (µm) future prospects 1980 1983 1986 1989 199 199 1998 001 004 007 010 1. 1.0 0.7 0. 0.3 0. 0.18 0.13 0.1 0.07 40 8 0 14 10 7 (3.) (.4) (1.7) (1.) Fill factor (%) 3 () 8 () 91 () 96 () Fig. 8. Future prospects at 1996 [8]. 004 Fig.6 1996 000 [8, 9] 4.1 1996 1996 [8] Moore [10] 1996 Fig.8 CMOS 001 µm Fig. 9. Input referred noise charges as a function of the minimum feature size [8]. 70 S/N 0. µm CMOS 6 CMOS 60 Fig.9 4. 000 000 [9] (DR) SN (SNR) DR = 0 log 10 i max i min = 0 log 10 q max i dc t int σ r + qi dc t int (1) DR and SNR (db) 0 4 40 DR SNR 3 6 7 8 9 10 11 1 13 14 1 Pixel size (µm) Fig. 10. Dynamic range and signal-to-noise ratio as a function of pixel size [9]. i max i min q i dc t int σ r ktc ( ) SN i ph SNR(i ph ) = 0 log 10 i ph t int σ r + q(i ph + i dc )t int () [11] Fig.10 SN q max C V s C ktc i ph SN CDS / 1 Fig.11 S-CIELAB[1] 4

Average E. 4. 4 3. 3. 0.3µm 0.µm 0.18µm Conventional color imager three color filters X3 image sensor three separate layers Red Green Blue RGB colors are detected by different pixels Blue Green Red RGB colors are detected by the same pixel Blue Green Red Mosaic three images Blue Green Red Complete three images 1. 1 3 4 6 7 8 9 10 11 1 13 14 1 Pixel size (µm) Fig. 11. Average E versus pixel size as technology scales (estimated at 000) [9]. column read line column reset line P HAD row address line M1 M4 N M M3 N + N + FD M signal line Fig. 13. [14]. X3 photodiode structure Incident light n lightly doped drain p-well n-well p-substrate Blue photo collection Green photo collection Red photo collection 0. µm 0.6 µm.0 µm Sensing scheme and photodiode structure of X3 HAD M1 FD Fig. 1. Buried photodiode structure with a transfer gate and a floating diffusion region [13]. Fig. 14. VMIS pixel structure [16]. CSF(Contrast Sensitivity Function) E E CMOS CMOS 0. µm 1996 µm CMOS 004 0. µm CMOS Fig.6 100 (3 µm ) CMOS 003 1996 000 µm 4 µm CMOS [13] [17] 004 3 µm CMOS [18] [0] (Fig.6) 004 vs. CMOS CMOS CMOS.1 CMOS CMOS 000 CMOS CMOS CMOS [13] Fig.4(b) CMOS APS CMOS APS S/N 00 CMOS 4 µm CMOS Fig.(b) PD CMOS

(a) conventional structure <10% PD amp. PD circuit 30% (b) new structure amp. circuit Fig. 1..8 µm-pitch pixel layout: (a) the conventional structure (see Fig.7(a)), (b) a new structure. CMOS X3 [14, 1] VMIS [16, 17] CMOS X3 Fig.13 3 RGB 1 3 4 1 VMIS Fig.14 p+ (Hole Pocket) 0% 4. µm 00. CMOS 3 µm Fig.7 004 4 Canon ( ) Sony 3 Fig.1.8 µm 30% Fig.16 νmaicovicon [19] CMOS CMOS Fig. 16. Pixel structure [19, 1]. Fig. 17. Fill factor as a function of the number of transistors per pixel [19, 1]. CMOS CMOS MOS XY νmaicovicon Dynastron CMOS CMOS CMOS Fig.16 4 FD 3 4 1 7 1 1.7 [19] 0. µm. µm % (Fig.6, Fig.7, Fig.1 ) Fig.17.µm 1 4 % % 6

(a) reference level detection (b) signal level detection (c) timing diagram Fig. 18. Readout operation diagram [19, 1]. (a) structure diagram (a) chip microphotograph (b) sample image Fig. 1. Chip microphotograph and sample image [19, 1]. (b) potential diagram Table 1. Chip specifications [19]. Pixel size. µm. µm Optical format 1/4 inch The number of pixels 1616 (H) 117 (V) = M Transistors per pixel 1.7 Fill factor % Saturation 000 electrons Sensitivity 3800 electrons/lx s Frame rate 1 frames/s Image lag No image lag Power supply voltage. V 6 CMOS APS Fig. 19. Device structure [19, 1]. Pixel pitch (µm) 4 3 Target.80µm new CMOS APS.µm 1 000 001 00 003 004 00 006 007 Year Fig.. Leading-edge trend of pixel pitch of and CMOS APS. Fig. 0. Potential diagram of a readout part [19, 1]. Fig.18 4 OFF CDS ON FD Fig.19. V 60% P Fig.0 60% FD Fig.1 1/4 (30 µm 640 µm) 00 Table 1 6 vs. CMOS CMOS (Fig.6) CMOS Fig.6. µm 004.80 µm 004 CMOS 7

Table. Comparison among the latest and scheduled products of and CMOS imagers [7]. Types Pixel reso. Pixel pitch Min. lux. Power Commercial production Matsushita CMOS M.8 µm lx (7. fps).9 V Mar. 004 Sony CMOS M.9 µm lx (1 fps).7/1.8 V 3rd Qtr of 004 Toshiba CMOS 1.3 M 3.3 µm lx.8/1. V nd Qtr of 004 Renesas Tech. CMOS 1.3 M 3.8 µm.8/1.8 V 3rd Qtr of 004 Micron Tech. CMOS 1.3 M 3.6 µm 3 lx. 3.1 V Now available Sony 1.3 M 3.1 µm lx (1 fps) 1.//3/ 6. V Mar. 003 Sharp M 3. µm lx ( fps) 1 8 V Dec. 003 Sanyo 1 M.7 µm.9 V Aug. 004 Fuji Film 1 M lx 3.. V Oct. 003 / 00 300 CMOS [] Table CMOS 100 CMOS CMOS CMOS 7 vs. CMOS CMOS 004 1 CMOS CMOS CMOS CMOS CMOS [1] 003, No. 840, BP. [] G. P. Weckler, Operation of p-n junction photodetectors in a photon flux integration mode, IEEE J. Solid-State Circuits, vol. SC, pp. 6 73, 1967. 8 [3] W. S. Boyle and G. E. Smith, Charge-coupled semiconductor devices, Bell Systems Technical Journal, vol. 49, pp. 87 93, 1970 [4] E. R. Fossum, Active Pixel Sensors: Are s Dinosaurs?, in Proc. SPIE, vol. 1900, pp. 14, 1993. [] 003 1, No. 11, BP. [6] SANYO NewRelease, Feb. 7, 001 (http://www.sanyo. co.jp/koho/hypertext4/010news-j/007-.html) [7] 004 4, No. 6, BP. [8] H. S. Wong, Technology and Device Scaling Considerations for CMOS Imagers, IEEE Trans. Electron Devices, vol. 43, no. 1, 1996. [9] T. Chen, P. Catrysse, A. E. Gamal, and B. Wandell, How Small Should Pixel Size Be? in Proc. SPIE, vol. 396, pp. 41 49, 000. [10] G. E. Moore, Cramming More Components Onto Integrated Circuits, Electronics, vol. 38, no. 8, pp. 114 117, 196. [11] D. X. Yang and A. E. Gamal, Comparative Analysis of SNR for Image Sensors with Enhanced Dynamic Range, in Proc. SPIE, vol. 3649, pp. 197 11, 1999. [1] Z. Zhang and B. A. Wandell, A Spatial Extension of CIELAB for Digital Color Image Reproduction, Society for Information Display Symposium Technical Digest, vol. 7, pp. 731 734, 1996. [13] K. Yonemoto and H. Sumi, A CMOS Image Sensor with a Simple Fixed-Pattern-Noise-Reduction Technology and a Hole Accumulation Diode, IEEE J. Solid-State Circuits, vol. 3. no. 1, 000. [14] Foveon Inc., http://www.foveon.com/ [1] United States Patent,96,87 [16] T. Miida, K. Kawajiri, H. Terakago, T. Endo, T. Okazaki, S. Yamamoto, and A. Nishimura, A 1.M Pixel Imager with Localized Hole-Modulation Method, IEEE ISSCC Dig. of Tech. Papers, pp. 4 43, 00. [17] United States Patent 6,01,87 [18] H. Takahashi, M. Kinoshita, K. Morita, T. Shirai, T. Sato, T. Kimura, H. Yuzurihara, and S. Inoue, A 3.9µm Pixel Pitch VGA Format 10b Digital Image Sensor with 1.- Transistor/Pixel, IEEE ISSCC Dig. of Tech. Papers, pp. 108 109, 004. [19] M. Mori, M. Katsuno, S. Kasuga, T. Murata, and T. Yamaguchi, A 1/4in M Pixel CMOS Image Sensor with 1.7 Transistor/Pixel, IEEE ISSCC Dig. of Tech. Papers, pp. 110 111, 004. [0] K. Mabuchi, N. Nakamura, E. Funatsu, T. Abe, T. Umeda, T. Hoshino, R. Suzuki, and H. Sumi, CMOS Image Sensor Using a Floating Diffusion Driving Buried Photodiode, IEEE ISSCC Dig. of Tech. Papers, pp. 11 113, 004. [1],,,,, 1.7 1/4 00 CMOS,, vol. 8, no. 3, pp. 31 34, 004. [] 004 3, No., BP.