Optical fiber-fault surveillance for passive optical networks in S-band operation window

Similar documents
S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

A broadband fiber ring laser technique with stable and tunable signal-frequency operation

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode

Optical monitoring technique based on scanning the gain profiles of erbium-doped fiber amplifiers for WDM networks

Long-distance fiber grating sensor system using a fiber ring laser with EDWA and SOA

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Linear cavity erbium-doped fiber laser with over 100 nm tuning range

DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs)

Utilizing Self-Seeding RSOA with Faraday Rotator Mirror for Colorless Access Network

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

Gain-clamping techniques in two-stage double-pass L-band EDFA

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source

Multiwavelength and Switchable Erbium-Doped Fiber Lasers

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

Multiwavelength Single-Longitudinal-Mode Ytterbium-Doped Fiber Laser. Citation IEEE Photon. Technol. Lett., 2013, v. 25, p.

Colorless Amplified WDM-PON Employing Broadband Light Source Seeded Optical Sources and Channel-by-Channel Dispersion Compensators for >100 km Reach

Single-Frequency, 2-cm, Yb-Doped Silica-Fiber Laser

A WDM passive optical network enabling multicasting with color-free ONUs

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Stabilisation of Linear-cavity Fibre Laser Using a Saturable Absorber

A tunable and switchable single-longitudinalmode dual-wavelength fiber laser with a simple linear cavity

To generate a broadband light source by using mutually injection-locked Fabry-Perot laser diodes

MULTIFREQUENCY CONTINUOUS WAVE ERBIUM DOPED FIBER NON-RESONANT OPTICAL SOURCE

Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection

Supplementary Figures

Channel wavelength selectable singleõdualwavelength erbium-doped fiber ring laser

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

LABORATORY INSTRUCTION NOTES ERBIUM-DOPED FIBER AMPLIFIER

ESTIMATION OF NOISE FIGURE USING GFF WITH HYBRID QUAD PUMPING

EDFA WDM Optical Network using GFF

Fiber optics devices for photonic communication and network

Single-longitudinal mode laser structure based on a very narrow filtering technique

The Report of Gain Performance Characteristics of the Erbium Doped Fiber Amplifier (EDFA)

OPTICAL COMMUNICATIONS S

CSO/CTB PERFORMANCE IMPROVEMENT BY USING FABRY-PEROT ETALON AT THE RECEIVING SITE

Optical Fiber Technology. Using 10 Gb/s remodulation DPSK signal in self-restored colorless WDM-PON system

Progress In Electromagnetics Research C, Vol. 15, 37 48, 2010 TEMPERATURE INSENSITIVE BROAD AND FLAT GAIN C-BAND EDFA BASED ON MACRO-BENDING

Optical Fiber Technology

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers

A novel 3-stage structure for a low-noise, high-gain and gain-flattened L-band erbium doped fiber amplifier *

Novel High-Q Spectrum Sliced Photonic Microwave Transversal Filter Using Cascaded Fabry-Pérot Filters

22-Channel Capacity of 2.5Gbit/s DWDM-PON ONU Transmitter by Direct-Modularly Side-Mode Injection Locked FPLD

FIBER OPTICAL PARAMETRIC OSCILLATOR WITH SWITCHABLE AND WAVELENGTH-SPACING TUN- ABLE MULTI-WAVELENGTH

Tunable Single-Mode Fiber Laser with a Low-Cost Active Fabry-Perot Filter of Ultra-Narrow-Linewidth and High Side-Mode-Suppressing Ratio

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs)

LW Technology. Passive Components. LW Technology (Passive Components).PPT - 1 Copyright 1999, Agilent Technologies

BROAD-BAND rare-earth-doped fiber sources have been

Optical Fibre Amplifiers Continued

AN EXPERIMENT RESEARCH ON EXTEND THE RANGE OF FIBER BRAGG GRATING SENSOR FOR STRAIN MEASUREMENT BASED ON CWDM

A HIGH SPEED WDM PON FOR DOWNSTREAM DPSK ASK SIGNALS AND UPSTREAM OOK SIGNAL WITH BROADCAST CAPABILTY

Tunable single frequency fiber laser based on FP-LD injection locking

Tunable Multiwavelength Erbium-Doped Fiber Laser Employing PM-FBG and Mach Zehnder Interferometer with Optical Fiber Delay Line

Full duplex 60-GHz RoF link employing tandem single sideband modulation scheme and high spectral efficiency modulation format

Recon gurable WDM add/drop multiplexer based on optical switches and bre Bragg gratings

Thermal treatment method for tuning the lasing wavelength of a DFB fiber laser using coil heaters

Recent Developments in Fiber Optic Spectral White-Light Interferometry

Optical Fiber Amplifiers. Scott Freese. Physics May 2008

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration

Demonstration of multi-cavity optoelectronic oscillators based on multicore fibers

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings

Index Terms WDM, multi-wavelength Erbium Doped fiber laser.

I. INTRODUCTION II. FABRICATION AND OPERATION OF SLM FIBER LASER

Performance of optical automatic gain control EDFA with dual-oscillating control lasers

Single mode EDF fiber laser using an ultra-narrow bandwidth tunable optical filter

Evolution from TDM-PONs to Next-Generation PONs

Stabilized Interrogation and Multiplexing. Techniques for Fiber Bragg Grating Vibration Sensors

Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser

sensors ISSN

A continuously tunable and filterless optical millimeter-wave generation via frequency octupling

1014 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 40, NO. 8, AUGUST 2004

Elements of Optical Networking

Loop Mirror Multi-wavelength Brillouin Fiber Laser Utilizing Semiconductor Optical Amplifier and Fiber Bragg Grating

EDFA-WDM Optical Network Analysis

A bidirectional radio over fiber system with multiband-signal generation using one singledrive

Temporal coherence characteristics of a superluminescent diode system with an optical feedback mechanism

AN EFFICIENT L-BAND ERBIUM-DOPED FIBER AMPLIFIER WITH ZIRCONIA-YTTRIA-ALUMINUM CO-DOPED SILICA FIBER

High bit-rate combined FSK/IM modulated optical signal generation by using GCSR tunable laser sources

FI..,. HEWLETT. High-Frequency Photodiode Characterization using a Filtered Intensity Noise Technique

1.25 Gb/s Broadcast Signal Transmission in WDM-PON Based on Mutually Injected Fabry-Perot Laser Diodes

A continuous-wave Raman silicon laser

Ultra-short distributed Bragg reflector fiber laser for sensing applications

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise

Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

OptoSci Educator Kits an Immediate Solution to Photonics Teaching Laboratories

Faculty of Science, Art and Heritage, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia.

Multiwatts narrow linewidth fiber Raman amplifiers

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

MICROWAVE photonics is an interdisciplinary area

Transient Control in Dynamically Reconfigured Networks with Cascaded Erbium Doped Fiber Amplifiers

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links

HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS

Introduction Fundamental of optical amplifiers Types of optical amplifiers

Tunable single-frequency fiber laser based on the spectral narrowing effect in a nonlinear semiconductor optical amplifier

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 23, NO. 3, MARCH

DIRECT MODULATION WITH SIDE-MODE INJECTION IN OPTICAL CATV TRANSPORT SYSTEMS

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

Transcription:

Optical fiber-fault surveillance for passive optical networks in S-band operation window Chien-Hung Yeh 1 and Sien Chi 2,3 1 Transmission System Department, Computer and Communications Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu 310, Taiwan depew@itri.org.tw; depew.eo89g@nctu.edu.tw 2 Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan 3 Department of Electrical Engineering, Yuan Ze University, Chung-Li 320, Taiwan Abstract: An S-band (1470 to 1520 nm) fiber laser scheme, which uses multiple fiber Bragg grating (FBG) elements as feedback elements on each passive branch, is proposed and described for in-service fault identification in passive optical networks (PONs). By tuning a wavelength selective filter located within the laser cavity over a gain bandwidth, the fiber-fault of each branch can be monitored without affecting the in-service channels. In our experiment, an S-band four-branch monitoring tree-structured PON system is demonstrated and investigated experimentally. 2005 Optical Society of America OCIS codes: (060.2330) Fiber optics communications; (060.2320) Fiber optics amplifiers and oscillators; (060.2340) Fiber optics components References and links 1. I. Sankawa, Fault location technique for in-service branched optical fiber networks, IEEE Photon. Technol. Lett. 2, 766 1768 (1990). 2. Y. Koyamada, T. K. Horiguchi, and S. Furukawa, Recent progress in OTDR technologies for maintaining optical fiber networks, in Tech. Dig., IOOC 95 (Hong Kong, 1995), FA1-4. 3. C. K. Chen, F. Tong, L. K. Chen, J. Song, and D. Lam, A practical passive surveillance scheme for optical amplified passive branched optical networks, IEEE Photonics Technol. Lett. 9, 526 528 (1997). 4. C. K. Chen, F. Tong, L. K. Chen, K. P. Ho, and D. Lam, Fiber-fault identification for branched access networks using a wavelength-sweeping monitoring source, IEEE Photonics Technol. Lett. 5, 614 616 (1999). 5. A. D. Kersey, and W. W. Morey, Multi-element Bragg-grating based fiber-laser strain sensor, Electron. Lett. 29, 964 966 (1993). 6. C. H. Yeh, C. C. Lee, and S. Chi, A tunable s-band erbium-doped fiber ring laser, IEEE Photonics Technol. Lett. 15, 1532 1534 (2003). 7. C. H. Yeh, C. C. Lee, C. Y. Chan, and S. Chi, S-band gain-clamped erbium-doped fiber amplifier by using optical feedback method, IEEE Photonics Technol. Lett. 16, 90 92 (2004). 1. Introduction Passive optical networks (PONs) are the major role in alleviating the last mile bottleneck for next generation broadband optical access network. For the enormous communication capacity of the fiber link, any service outage due to fiber cut will lead to tremendous loss in business. Furthermore, a simple and effective monitoring configuration is highly desirable for timely fault identification along the fiber link. Moreover, the monitoring should be performed constantly while other channels are still in service to maximize the link utilization. In a treestructured PON, fiber failure detection by an optical time domain reflectometer (OTDR) is not suitable because the Rayleigh back-scattered light from different branches cannot be distinguished at the OTDR. To overcome this drawback, several methods based on multiwavelength OTDR [1, 2], and reflection of optical amplifier s residual amplified spontaneous emission (ASE) [3-5], have been proposed. However, in practical application of the (C) 2005 OSA 11 July 2005 / Vol. 13, No. 14 / OPTICS EXPRESS 5494

conventional PON systems, the wavelength of 1490 nm is allocated for downstream channel from an optical line terminator (OLT) and the 1310 nm is for upstream data service from each. Recently, an S-band (1470 to 1520 nm) amplification technique, which employs the erbium-doped silica fiber with depressed cladding design and 980-nm pump laser to generate EDF gain extension effect, has been reported [6,7]. Therefore, a fiber-fault monitoring technique is expected to extend to S-band by using this S-band amplifier module. And than, unitization of an S-band amplifier and the fiber Bragg gratings (FBGs) can be employed to monitor the fiber-fault of the passive branches in PON architectures. In this paper, we describe results obtained for the proposed fiber-fault monitoring system based on an S-band erbium-doped fiber (EDF) laser scheme, which uses the fiber Bragg grating as a feedback element on each branch of the tree-structured PON in front of the optical network unit (). By tuning a wavelength selective filter located within the laser cavity over the S-band gain bandwidth, the proposed laser selectively lases from each of the Bragg wavelengths of the reflectors. Experimental results retrieved using the four-branch monitoring system in an S-band region are presented. 2. Principle and experiment Figure 1 shows the proposed fiber laser configuration for the fiber-fault monitoring in treestructured PON, and the length of each passive branch is nearly 10 km long between the optical splitter (OS) to FBG. The experimental setup composes of an S-band EDFA, which consists of two stage EDFA and a power-sharing 980 nm laser, a fiber Fabry-Perot tunable filter (FFP-TF), a 2 2 optical coupler, a 2 4 optical splitter (OS) and the four different central wavelength FBGs. The central wavelength and reflectivity of the FGB 1 to FBG 4 are 1511.39 nm and 91.8%, 1513.42 nm and 93.1%, 1515.69 nm and 95.9%, and 1517.37 nm and 82.9 %, respectively. OLT 1 λ 1 2 λ 2 FFP-TF C OS 3 λ 3 S-Band EDFA Module Output Port 4 λ 4 EDF EDF W Isolator C 980 nm Pump Laser W C : 2 2 Optical Coupler W : 980/1480 WDM Coupler OS : 2 4 Optical Splitter : Single Mode Fiber FBG : Fiber Bragg Grating EDF : Erbium-Doped Fiber OLT : Optical Line Termination : Optical Network Unit FFP-TF : Fiber Fabry-Perot Tunable Filter Fig. 1. Experimental setup of the proposed S-band EDF laser scheme for monitoring the fiber-fault in passive optical networks. The S-band EDF inside EDFA module has a depressed cladding design in order to provide a sharp, high-attenuation, long-wavelength cutoff filter into active fibers. The erbium-doped fibers in the first and second stages have different characteristics. The fiber in the first stage has the fiber length of 20 m, and can provide low noise figure and medium gain by forward pumping. The fiber in the second stage has the fiber length of 30 m, and can produce large (C) 2005 OSA 11 July 2005 / Vol. 13, No. 14 / OPTICS EXPRESS 5495

output power by backward pumping. In addition, the optical isolator between these two stages can reduce backward amplified spontaneous emission (ASE) and improve noise figure performance. The gain and noise figure can reach 32 db and 5.7 db at 1500 nm for input power of 25 dbm, and the saturated output power at 1500 nm can be up to 14 dbm for input power of 0 dbm. The total pump power of this amplifier module can be up to 280 mw while the bias current is operated at 356 ma. The FFP filter is an all-fiber device having a widely tunable range, low insertion loss (<0.5 db), and low polarization-dependent loss (~0.1 db). This FFP filter having the free spectral range (FSR) of 44 nm, the finesse of ~110 and 3 db bandwidth of 0.4 nm can provide wavelength selection in the ring laser cavity by applying external voltage (< 12 V) on the piezoelectric transducer (PZT) of FFP filter. The optical output results are observed by an optical spectrum analyzer (OSA) with a 0.05 nm resolution. 20 λ1 = 1511.39 nm λ2 = 1513.42 nm λ3 = 1515.69 nm λ4 = 1517.37 nm 0-20 -40-60 1505 1510 1515 1520 1525 Fig. 2. Laser output at four different lasing wavelengths corresponding to the four FBG wavelengths. The proposed fiber laser configuration containing the S-band erbium-doped gain section is a loop reflected which operates in a unidirectional manner due to the inclusion of an isolator. The other cavity reflection point is provides by one of a parallel of FBG elements at nominally different wavelengths on each passive branches. The FBG elements serve as the reflectors, and can be connected as part of the cavity via a fiber. Due to the inclusion of the wavelength filter within the loop reflector, lasing of the system occurs only when the filter transmission passband is aligned in wavelength with one of the fiber Bragg elements. However, the insertion loss of the OS will slightly reduce the output power of the lasing lightwave. In our proposed S-band passive fiber-fault monitoring method, the 1490 nm downstream wavelength of B-PON or GE-PON may be interfered due to the proposed test signal source (1470 to 1520 nm). To avoid the drawback, we apply the different central wavelength of FBG used to isolate the 1490 nm wavelength for avoiding the optical interference effect. 3. Results and discussion Figure 2 shows the output lasing wavelengths of the PON system for the case where the FFP- TF is tuned to sequentially address each FBG on each corresponding breach. As can be seen, the fiber ring laser is forced to lase at a series of wavelengths: 1511.39, 1513.42, 1515.69, and 1517.37 nm, as determined by each central wavelength of the FBG. Between these points, the net cavity gain in the system was less than unity, and thus only ASE was observed at the output port. Figure 3 shows the ASE spectrum of the S-band EDFA. The effectively operation (C) 2005 OSA 11 July 2005 / Vol. 13, No. 14 / OPTICS EXPRESS 5496

bandwidth is from 1478 to 1526 nm while the output power level is higher than 40 dbm. It is noted that by using an output coupler between the FFP-TF and gain section to observe the laser output, the out-of band ASE signal could be largely rejected. To verify the fiber-fault monitoring technique based on the proposed fiber laser scheme in tree-structured PON, each FBG should be linked at each optical network unit (). According to the proposed operation principle, the different lasing wavelength will represent the fiber-fault behavior. So, each fiber branch has its accordingly lasing wavelength. While the fiber fault occurs on the passive branch 2 and 3, then the lasing wavelength will only show the wavelength λ 1 and λ 4 in the proposed architecture, as shown in Figure 4. Even if the FBGs are installed in the branch fibers and rejects a part of the light source, the effective rejection ratio is not enough in order to test the in-service lines. Because the fiber fault occurs on the one fiber of the branch fibers of PON, the others are still on-service. As a result, when the external variation causes the fiber-fault of the passive branch, the proposed fiber laser scheme can monitor the broken branch by observing the accordingly lasing wavelengths (FGBs) in the tree-structured PON. -15 S-Band ASE -25-35 -45 1460 1480 1500 1520 1540 Fig. 3. The ASE spectrum of the S-band EDFA. 4. Conclusion In summary, we have studied the operation of a novel method for addressing a parallel of FBG sensor elements configured as feedback elements of an S-band EDF ring laser. The S- band laser uses a unidirectional loop reflector, which contains a tunable wavelength selective filter. Tuning of this element provide for selective operation of the laser at each of the Bragg wavelengths. Determination of the Bragg wavelengths can then be used to monitor fiber-fault on each passive branch in tree-structured PON. (C) 2005 OSA 11 July 2005 / Vol. 13, No. 14 / OPTICS EXPRESS 5497

20 λ1 = 1511.39 nm λ4 = 1517.37 nm 0-20 -40-60 1505 1510 1515 1520 1525 Fig. 4. Two output lasing wavelengths of λ 1 and λ 4, while the fiber fault occurs at the passive branch 2 and 3. Acknowledgments This work was supported in part by the National Science Council (NSC) of Taiwan (R.O.C.) under grants NSC 93-2215-E-115-004 and NSC 93-2215-E-115-005. The authors thank K. C. Hsu for providing the FBGs and M. C. Lin for help with the experiments. (C) 2005 OSA 11 July 2005 / Vol. 13, No. 14 / OPTICS EXPRESS 5498