Wireless Power Transmission using Magnetic Resonance

Similar documents
The Retarded Phase Factor in Wireless Power Transmission

Wireless Power Transmission: A Simulation Study

Flexibility of Contactless Power Transfer using Magnetic Resonance

Wireless Transmission Network : A Imagine

Optimum Mode Operation and Implementation of Class E Resonant Inverter for Wireless Power Transfer Application

Hybrid Impedance Matching Strategy for Wireless Charging System

Designing and Implementing of 72V/150V Closed loop Boost Converter for Electoral Vehicle

Transistor Digital Circuits

EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS. Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET REV. NO. : REV.

Analysis and Optimization of Magnetic Resonant Wireless Power Transfer System

Wireless Power Transmission from Solar Input

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

Analysis and Optimization of Strongly Coupled Magnetic Resonance for Wireless Power Transfer Applications

Wireless Signal Feeding for a Flying Object with Strongly Coupled Magnetic Resonance

Analysis of Wireless Power Transmission Using Resonant Inductive Coupling for small distance

GATE: Electronics MCQs (Practice Test 1 of 13)

2. Measurement Setup. 3. Measurement Results

55:041 Electronic Circuits

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 ISSN

Journal of Faculty of Engineering & Technology WIRELESS POWER TRANSMISSION THROUGH MAGNETIC RESONANCE COUPLING

Keywords Wireless power transfer, Magnetic resonance, Electric vehicle, Parameter estimation, Secondary-side control

NOORUL ISLAM COLLEGE OF ENGG, KUMARACOIL. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGG. SUBJECT CODE: EC 1251 SUBJECT NAME: ELECTRONIC CIRCUITS-II

Chapter 21. Alternating Current Circuits and Electromagnetic Waves

An Efficient and Low - Cost Technique for Charging Nodes in Wireless Sensor Network

Expect to be successful, expect to be liked,

An induced emf is the negative of a changing magnetic field. Similarly, a self-induced emf would be found by

RC circuit. Recall the series RC circuit.

An Oscillator is a circuit which produces a periodic waveform at its output with only the dc supply voltage at the input. The output voltage can be

OBJECTIVE TYPE QUESTIONS

UNIT 1 MULTI STAGE AMPLIFIES

1. An engineer measures the (step response) rise time of an amplifier as. Estimate the 3-dB bandwidth of the amplifier. (2 points)

DEFINITION: Classification of oscillators Based on the frequency generated Oscillator type Frequency range

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics

Multivibrators. Department of Electrical & Electronics Engineering, Amrita School of Engineering

Applied Electronics II

Lab 1. Resonance and Wireless Energy Transfer Physics Enhancement Programme Department of Physics, Hong Kong Baptist University

Summer 2015 Examination

OSCILLATORS AND WAVEFORM-SHAPING CIRCUITS

Simulation, Design and Implementation of High Frequency Power for Induction Heating Process

Coupling Coefficients Estimation of Wireless Power Transfer System via Magnetic Resonance Coupling using Information from Either Side of the System

State the application of negative feedback and positive feedback (one in each case)

HIGH LOW Astable multivibrators HIGH LOW 1:1

ECE 363 FINAL (F16) 6 problems for 100 pts Problem #1: Fuel Pump Controller (18 pts)

e base generators Tim 1

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation

Transcutaneous Energy Transmission Based Wireless Energy Transfer to Implantable Biomedical Devices

Massachusetts Institute of Technology MIT

EMT212 Analog Electronic II. Chapter 4. Oscillator

Electronic Instrumentation

Switched Capacitor Boost Converter

GATE SOLVED PAPER - IN

Study of Resonance-Based Wireless Electric Vehicle Charging System in Close Proximity to Metallic Objects

Detailed measurements of Ide transformer devices

WIRELESS POWER TRANSFER PROJECT 072 STUDENT NAME : WAMALWA PAUL WAMBOKA SUPERVISOR : DR. DHARMADHIKARY EXAMINER : DR. AKUON

Investigation on Maximizing Power Transfer Efficiency of Wireless In-wheel Motor by Primary and Load-Side Voltage Control

Scheme I Sample Question Paper

Design & Implementation of PWM Based 3-Phase Switch-Mode Power Supply (SMPS)

Preface... iii. Chapter 1: Diodes and Circuits... 1

Electric Circuit Fall 2016 Pingqiang Zhou LABORATORY 7. RC Oscillator. Guide. The Waveform Generator Lab Guide

Chapter.8: Oscillators

Analysis of RWPT Relays for Intermediate-Range Simultaneous Wireless Information and Power Transfer System

Introductory Electronics for Scientists and Engineers

Experiment DC-DC converter

Conventional Paper-II-2011 Part-1A

EEE118: Electronic Devices and Circuits

Wireless Transfer of Solar Power for Charging Mobile Devices in a Vehicle

Lecture 28 RC Phase Shift Oscillator using Op-amp

An Acoustic Transformer Powered Super-High Isolation Amplifier

Chapter 16: Oscillators

ASTABLE MULTIVIBRATOR

Time: 3 hours Max. Marks: 70 Answer any FIVE questions All questions carry equal marks

FREQUENCY TRACKING BY SHORT CURRENT DETECTION FOR INDUCTIVE POWER TRANSFER SYSTEM

Wireless Energy Transfer in a Medium-Range Charging Area

Hydra: A Three Stage Power Converter

ELECTRONICS ADVANCED SUPPLEMENTARY LEVEL

Physics Jonathan Dowling. Lecture 35: MON 16 NOV Electrical Oscillations, LC Circuits, Alternating Current II

Optimization of Wireless Power Transmission through Resonant Coupling

Feedback and Oscillator Circuits

AP Physics C. Alternating Current. Chapter Problems. Sources of Alternating EMF

Experiment 12: Microwaves

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS

Associate In Applied Science In Electronics Engineering Technology Expiration Date:

DIRECT TO HOME ELECTRICITY

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. ELECTRONIC PRINCIPLES AND APPLICATIONS

PHYS225 Lecture 18. Electronic Circuits

BASIC ELECTRONICS/ ELECTRONICS

UNIT 1. 9 What is the Causes of Free Response in Electrical Circuit. 12 Write the Expression for transient current and voltages of RL circuit.

Design of Low-Cost Multi- Waveforms Signal Generator Using Operational Amplifier

Experimental Verification of Rectifiers with SiC/GaN for Wireless Power Transfer Using a Magnetic Resonance Coupling

Test Your Understanding

Design of Handphone Wireless Charger System Using Omnidirectional Antenna

PIERS 2013 Stockholm. Progress In Electromagnetics Research Symposium. Proceedings

Wireless Power Transfer System via Magnetic Resonant Coupling at Fixed Resonance Frequency Power Transfer System Based on Impedance Matching

UNIVERSITI MALAYSIA PERLIS

Analysis and Design of Class-E Switching Circuits for Inductively Coupled Wireless Power Transfer Systems. January 2015

LINEAR IC APPLICATIONS

Webpage: Volume 3, Issue IV, April 2015 ISSN

ENGR4300 Test 3A Fall 2002

Transcription:

Wireless Power Transmission using Magnetic Resonance Pradeep Singh Department Electronics and Telecommunication Engineering K.C College Engineering and Management Studies and Research Thane, India pdeepsingh91@gmail.com Abstract - With Electronics gadgets, appliances and products becoming a basic part our life, their source Power i.e. Electricity is always been a problem. Due to many reasons in country like India large percentage population still don t have any access to electricity, due to which they can t even use electronic gadgets in their household activities. In this paper a new proposal has been made so as to provide electricity to electronic gadgets wirelessly i.e. without the use wire. This is done with the help Magnetic Resonance. In this paper I have investigated the need and usefulness Wireless Power Transmission and the feasibility using Magnetic Inductive coupling as the means Wireless Power Transmission. This paper will outline the design process and will also tell about results that were observed with the help simulating our setup in NI Multisim simulator. I have also discussed about repeaters that can be used to increase the range transmission. These repeaters are made up special kind fiber material. With the above setup need for long and massy wire which is used to provide electricity to every individual will be eliminated. Also the transmission losses will be decreased to large extent. As a result large amount electricity will be saved. And thus those who don t have access to electricity, even they can use it and it will make their life much better. Keywords Wireless power transmission, Magnetic Resonance, Evanescent-wave coupling, Relaxation Oscillator. omnidirectional nature. There is also an alternative approach that exploited interaction between source and load, so that efficient power transfer was possible. The approach was evanescent wave coupling. II. INTRODUCTION Evanescent-wave coupling is basically identical to near field interaction in electromagnetic field theory. Electromagnetic induction works on the principal primary coil generating a magnetic field and a secondary coil being within that field so a current is induced within its coil. This causes the relatively short range due to the amount power needed to produce an electromagnetic field. Over larger distance this method is inefficient and wastes much the transferred energy just to increase range. This is where resonance comes into picture and increases the efficiency drastically. Theoretical analysis shows that by sending electromagnetic waves around in a highly angular waveguide, evanescent waves are produced which carry no energy. If a proper waveguide is brought near the transmitter, the evanescent can allow the energy to tunnel to the power drawing waveguide, where they can be rectified in DC power. Since the electromagnetic waves would tunnel, they would not propagate through the air to be absorbed or be dissipated, and would not disrupt electronics devices or cause any sort injury or physical destruction. I. LITERATURE SURVEY Previous methods for wireless transmission include attempt by the late scientist Nikola Tesla and the Microwave Power Transmission. Both Tesla design and later microwave power were forms radiative power transfer. Radiative power transfer used in wireless communication, is not suitable or feasible for power transmission due to its low efficiency and radiative loss because its III. DESGIN OF SYSTEM Now a system is designed which can transmit power without using wires i.e. wirelessly. In which first all we have designed a oscillator which would provide the carrier signal with which to transmit the power. Oscillators are not generally designed to deliver power, thus it was important to create a power amplifier to amplify the oscillating signal. The power amplifier would then transfer the output power to 396

transmission coil. Next a receiver coil is constructed to receive the transmitted power. But the receiver power would have an Alternating current, which is not desirable for powering DC load. Thus we have to use rectifier to rectify the AC voltage to output a clean DC voltage. From where power will be transmitted to Load. In between Transmitter and Receiver coil repeaters can also be used in order to increase the distance between them. Fig. 1 Block diagram Wireless system Fig.2 Block diagram Wireless System IV.OSCILLATOR Oscillators are generally two types, sinusoidal and relaxation. Op-amp sinusoidal oscillators operate with some combination positive and negative feedback to drive the op-amp into unstable state, causing the output transition back and forth at a continuous rate. Relaxation op-amp oscillator operates with capacitor, a resistor or a current source to charge discharge the capacitor. The oscillator design that we used was relaxation oscillator using a single operational amplifier. This oscillator was square wave generator and can be classified under astable multivibrator category. A. Design In this design relaxation oscillator has been simulated as shown in Fig.3. Below, we used a high speed operational amplifier, AD828, which had very high frequency response. The operational amplifier was connected in Schmitt-trigger configuration with positive feedback through a resistor 500 Ohms and a variable resistor 1K. The inverting input the op-amp with capacitor 20pF and resistor 200 Ohms. B. Working Principle Fig.3 Circuit Diagram Oscillator Initially, the non-inverting input at the op-amp is biased at a voltage V out * R2 / (R1 + R2) and the op-amp output is saturated at that particular voltage level. Since the op-amp always attempt to keep both inverting and the non-inverting inputs, V + and V - equal to each other, the feedback causes the 20pF capacitor to charge and make the value V - equal to V +. When V - reaches the value V +, a switch to negative saturation at the output occurs and the capacitor begins to discharge. The charging and the discharging the oscillator effectively causes oscillation signal to output. The general equation for charging a capacitor is given by, q= CV (1-e -t/rc ) + q 0 e -t/rc In this case, V is V out and if the voltage is V + is called as ƛVout, q 0 becomes CV out. The charging equation then becomes, q= -CV out (1-e -t/rc ) + ƛCV out e -t/rc When q gets to -ƛC Vout, another switch will occur. This time it is half the period square wave. Therefore, -ƛCV out = -CV out (1- e t/rc ) + ƛCV out e t/rc Solving for T gives, T = 2RC ln [1+ƛ/1-ƛ], where ƛ = R 2 /R 1 +R 2 The frequency Oscillation can be determined by 1/T. B. Results The waveform below shows the signal at the output from the Oscillator circuit that was simulated using NI Multisim stware. The signal was very stable and free any noise that may causes distortion. At different frequency ranges, the signal that we got was different. 397

And, as the frequency range increase the signal becomes triangular in shape. This shows and proves that as Frequency range increase the signal becomes more and more triangular in shape. Fig.4 Waveform Oscillator in frequency range between 16.89 MHz At frequency ranges between 1 MHZ to 6.89 MHZ, the signal was a square wave. V. POWER AMPLIFIER In order to generate the maximum flux which could induce the largest voltage receiving coil, a large amount to current must be transferred into the transmitting coil. The oscillator will not be able to supply this amount to current, so output from oscillator can be directly be passed through Power amplifier to amplify current. The most important aspect using Power amplifier was to produce enough current. For this use we can use a simple switch-mode amplifier. A. Design The basic and main idea behind switch mode Power amplifier technology is to operate a MOSFET in saturation so that either voltage or current is switched on and f. Fig.7.below shows the power amplifier. Fig.5 Waveform Oscillator in frequency range between 7-22 MHz In frequency range between 7 MHZ to 22 MHz the signal was a triangular in shape. Fig. 7 Circuit Diagram Power Amplifier Fig.6 Waveform Oscillator in frequency range between 22-30 MHz Our switched mode design consisted a MOSFET IRF 510, which when turned on allowed large current from DC power supply to flow through resistor 50 Ohms and through the transmitting antenna to transfer current from the power supply through the transmitting coil. The larger current from the transmitting coil was able to generate a large flux to induce a high voltage in receiving coil. The current and the voltage required to derive MOSFET IR 510 was supplied by IR 640. 398

Receiving Antenna No turns 2 44.6 cm 0.23 cm Fig.8 Waveform Power Amplifier VI. HARDWARE DESIGN A. Transmitter and Receiver Coil The transmitter and Receiver circuit is called as coupling circuit. It is the heart entire system as the actual wireless power transmission takes place here. This circuit efficiency determines the amount power available for receiver. a. Design The transmitter and Receiver coils that we can use have resonant frequency 4.8 MHz 5.3 MHz which could be tuned with our oscillator to get to resonant frequency coils. The basic configuration the design can be seen below. Transmitting Coil No turns 10 Receiving Coil No turns 10 Transmitting Antenna No turns 1 60.32 0.95 cm 60.32 0.95 cm 56.1 cm 0.23 cm B. Repeaters Fig.9 Transmitting coil Fig.10 Receiving Coil A Repeaters is a device that retransmit a received signal with more power and to extended geographical and topological network boundary than what would be capable with the original signal. These types devices i.e. Repeaters are very helpful in Wireless Power Transmission as it will extend the length or area up to which we can transmit power without the use wire. They are used in between Transmitting and Receiving coil. 399

C. Voltage Rectifier A rectifier is also used to rectify AC Voltage received from the receiver coil to drive a DC load. A type circuit that produces an output waveform that generates an output voltage which is purely DC is called as Full wave bridge rectifier. This type single phase rectifier uses four individual rectifying diodes connected in a close loop bridge configuration to produce the desired output. The smoothing capacitor connected to the bridge circuit converts full-wave rippled output the rectifier into a smooth DC output voltage. frequency range is between 1MHz to 6.89 MHz power transmission will be take place. But, ideally 4.8 MHz to 5.3 MHz is the range where power transmission will be most efficient. I was also able to simulate relaxation oscillator, switch mode power amplifier and a full bridge voltage rectifier for the system. The nature waves at different frequencies at every level the system was also studied. REFERENCES: IX. EXPERIMENTAL OBSEVATION AND ITS RESULTS The coils that we can use in this systems had resonant frequency 4.8 MHz to 5.3 MHz The oscillator that I simulated in NI Multisim Stware gives square wave when frequency region is between 1 MHz-6.89 MHz.Moreover, the resultant waveform were free distortion and noise. Thus, In between 1MHz to 6.89 MHz, the transmitting coil can be tuned very easily with Oscillator to get the resonant frequency coils. And once the both the coil have reached to their resonance frequency, the power transmission between them will take place. Also, as the distance between them will increase the amount power reached to the receiver coil will also decrease. This shows that there will be exponential decay in voltage as an increase in distance between transmitter and receiver coil. In that case we can use repeaters to transmit power for long distance depending upon strength repeaters. [1] Andre Kurs, Aristeidis Karalis, Robert Mfatt, J. D. Joannopoulos, Peter Fisher, Marin Soljacic. 2008. Wireless Power Transfer via Strongly Coupled Magnetic Resonances. Science. http://www.sciencemag.org/cgi/rapidpdf/1143254?ijkey=94ff. Ay4jRMqU&keytype=ref&siteid=sci. [2] G. L. Peterson, THE WIRELESS TRANSMISSION OF ELECTRICAL ENERGY, [online document], 2004. http://www.tfcbooks.com/articles/tws8c.htm [3] U.S. Department Energy, Energy Savers: Solar Power Satellites, [online document] rev 2004 June 17, [cited 12/10/04], http://www.eere.energy.gov/consumerinfo/factsheets/l123.htm l [4] S. Kopparthi, Pratul K. Ajmera, "Power delivery for remotely located Microsystems," Proc. IEEE Region 5, 2004 Annual Tech. Conference, 2004 April 2, pp. 31-39. [5] Neha Bagga, Joshua Gruntmeir, Samuel Lewis, Wireless Power Transmission, Dec.2004. X. CONCLUSION At the end this paper, I was able to design a system through simulation in NI Multisim stware for transmitting power wirelessly from transmitting coil to receiving coil. I also conclude that if the [6] Online source, http://diranieh.com/electrenicas/opamps3.htm#relaxation_o scillator. [7] Online source, http://www.scribd.com/doc/51651503/81/relaxation- Oscillators-Using-Operational-Amplifier. 400