CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER

Similar documents
CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER

VALLIAMMAI ENGINEERING COLLEGE

CHIEF ENGINEER REG III/2 MARINE ELECTROTECHNOLOGY

C A R I B B E A N E X A M I N A T I O N S C O U N C I L MAY/JUNE 2013 ELECTRICAL AND ELECTRONIC TECHNOLOGY TECHNICAL PROFICIENCY EXAMINATION

Level 6 Graduate Diploma in Engineering Electro techniques

CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER

THE UNIVERSITY OF BRITISH COLUMBIA. Department of Electrical and Computer Engineering. EECE 365: Applied Electronics and Electromechanics

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMOUS) Dundigal, Hyderabad

Code No: R Set No. 1

Reg. No. : BASIC ELECTRICAL TECHNOLOGY (ELE 101)

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMOUS)

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

Placement Paper For Electrical

GRAAD 12 NATIONAL SENIOR CERTIFICATE GRADE 12


1. SQUIRREL CAGE AC MOTOR. NO LOAD TEST

Conventional Paper-II-2011 Part-1A

3. What is hysteresis loss? Also mention a method to minimize the loss. (N-11, N-12)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

1. (a) Determine the value of Resistance R and current in each branch when the total current taken by the curcuit in figure 1a is 6 Amps.

Downloaded From All JNTU World

Hours / 100 Marks Seat No.

UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE

CARIBBEAN EXAMINATIONS COUNCIL

Type of loads Active load torque: - Passive load torque :-

Module 1. Introduction. Version 2 EE IIT, Kharagpur

Aligarh College of Engineering & Technology (College Code: 109) Affiliated to UPTU, Approved by AICTE Electrical Engg.

FINAL - ET 60 - Electrician Theory Examination Marking Schedule

Dhanalakshmi Srinivasan Institute of Technology, Samayapuram, Trichy. Cycle 2 EE6512 Electrical Machines II Lab Manual

Code No: R Set No. 1

Conventional Paper-II-2013

Paper number: Principles of electrical and electronics technology Paper series: December Practice

ELECTRICIAN S THEORY EXAMINATION 15 November 2014 QUESTION AND ANSWER BOOKLET

GRADE 12 SEPTEMBER 2012 ELECTRICAL TECHNOLOGY

Module 7. Transformer. Version 2 EE IIT, Kharagpur

ELECTRONIC CONTROL OF A.C. MOTORS

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT

ELECTRICIAN S THEORY EXAMINATION 19 November 2016 QUESTION AND ANSWER BOOKLET

PART A. 1. List the types of DC Motors. Give any difference between them. BTL 1 Remembering

Downloaded From JNTU World. B.Tech II Year II Semester (R09) Supplementary Examinations December/January 2014/2015 GENERATION OF ELECTRIC POWER

Question Paper Profile

CHAPTER 3 EQUIVALENT CIRCUIT AND TWO AXIS MODEL OF DOUBLE WINDING INDUCTION MOTOR

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

Code No. : 09(1) Roll No...

Electrical Machines (EE-343) For TE (ELECTRICAL)

Generator Advanced Concepts


Introduction : Design detailed: DC Machines Calculation of Armature main Dimensions and flux for pole. Design of Armature Winding & Core.

Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented controllers.

GATE SOLVED PAPER - EE

Experiment 2 IM drive with slip power recovery

Three-Phase Induction Motors. By Sintayehu Challa ECEg332:-Electrical Machine I

GRAAD 12 NATIONAL SENIOR CERTIFICATE GRADE 12

3.1.Introduction. Synchronous Machines

Electrical Workstation Nvis 7089B

1. Explain in detail the constructional details and working of DC motor.

ELG2336 Introduction to Electric Machines

LECTURE NOTES ON ELECTRICAL MACHINE-II. Subject Code-PCEL4302

UNIT II MEASUREMENT OF POWER & ENERGY

SYNCHRONOUS MACHINES

DE52/DC52 FUNDAMENTALS OF ELECTRICAL & ELECT ENGG DEC 2014

Frequently Asked Questions GE6252 BEEE UNIT I ELECTRICAL CIRCUITS AND MEASUREMENTS

Unit FE-5 Foundation Electricity: Electrical Machines

Sizing Generators for Leading Power Factor

EE 350: Electric Machinery Fundamentals

Calculate the maximum amount of energy this battery can deliver.

Spec Information. Reactances Per Unit Ohms

1 K Hinds 2012 TRANSFORMERS

Course outline: 231 AC Machines G006A UEENEEG006A - Solve problems in single and three phase low voltage machines

CEU Certification Test Drive Road Show: TRM040-DrivesRoadShow-CEU

COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ACADEMIC YEAR / EVEN SEMESTER QUESTION BANK

NATIONAL CERTIFICATE (VOCATIONAL) ELECTRICAL PRINCIPLES AND PRACTICE NQF LEVEL 4 NOVEMBER 2009

Electrical Workstation Nvis 7089A

TYPICAL QUESTIONS & ANSWERS

Type KLF Generator Field Protection-Loss of Field Relay

UEE11 Electrotechnology. Training Package

I p = V s = N s I s V p N p

Hours / 100 Marks Seat No.

GENERATOR DATA JANUARY 30, 2015

1. A battery has an emf of 12.9 volts and supplies a current of 3.5 A. What is the resistance of the circuit?

ELECTRICAL TECHNOLOGY

Level 3 Physics, 2016

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

C A R I B B E A N E X A M I N A T I O N S C O U N C I L REPORT ON CANDIDATES WORK IN THE CARIBBEAN SECONDARY EDUCATION CERTIFICATE EXAMINATION

Electric Power Systems 2: Generators, Three-phase Power, and Power Electronics

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

Hours / 100 Marks Seat No.

GRAAD 12 NATIONAL SENIOR CERTIFICATE GRADE 12

CHAPTER 5 SYNCHRONOUS GENERATORS

(a) (i) Is the transformer in the diagram being used as a step-up transformer or as a step-down transformer? ) in the box next to your answer. ...

Power. Power is the rate of using energy in joules per second 1 joule per second Is 1 Watt

Application Guidance Notes: Technical Information from Cummins Generator Technologies

(A) im (B) im (C)0.5 im (D) im.

Objective: Study of self-excitation characteristics of an induction machine.

R09. 1.a) State and explain Kirchoff s laws. b) In the circuit given below Figure 1 find the current through 5 Ω resistor. [7+8] FIRSTRANKER.

ECET 211 Electrical Machines and Controls

Transcription:

CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY ON BEHALF OF THE MARITIME AND COASTGUARD AGENCY STCW 78 as amended MANAGEMENT ENGINEER REG. III/2 (UNLIMITED) 040-33 - ELECTROTECHNOLOGY THURSDAY, 30 MARCH 2017 0915-1215 hrs Examination paper inserts: Notes for the guidance of candidates: 1. Non-programmable calculators may be used. 2. All formulae used must be stated and the method of working and ALL intermediate steps must be made clear in the answer. Materials to be supplied by examination centres: Candidate s examination workbook Graph paper

ELECTROTECHNOLOGY Attempt SIX questions only. All questions carry equal marks. Marks for each part question are shown in brackets. 1. A 525 m, two core distributor cable is fed at one end with 240 V.d.c and at the other end with 250 V.d.c. The following roads are applied at distances measured from the 240 V end: Load 1 10 A at 100 m Load 2 100 A at 250 m Load 3 70 A at 450 m Load 4 75 A at 500 m The cable resistance (go and return) is 0.16 Ω per 100 m. Calculate EACH of the meeting: (a) the current supplied at each end of the distributor; (b) the voltage of each load point; (c) the power delivered at each end of the distributor. (8) (2) 2. A relay coil has a resistance of 200 Ω and the current required to operate the relay is 150 ma. When the coil is connected to 50 V d.c. it takes 40 ms for the relay to operate. (a) Calculate EACH of the following: (i) the steady state relay current; (ii) the time constant for the coil; (iii) the inductance of the coil. (2) (b) To increase the operating time for the relay, a 50 Ω resistor is connected in series with the coil. Calculate the new operating time for the relay. [OVER

3. The p.d. between base and emitter for the transistor shown in Fig Q3 is 0.3 V and the steady state output voltage V c is 6 V. Determine EACH of the following, assuming that the base current is small enough to be ignored: (a) the voltage at the base with respect to earth; (b) the p.d. between emitter and collector; (c) the value of the load resistor R L; (d) the power dissipated in the 200 Ω resistor; (e) the power dissipated in the transistor. 12 kω R L 16 V 4 kω 200 Ω 6 V Fig Q3 4. (a) A 400 V/110 V transformer has 3468 turns on each primary phase winding. If the volt drop in the windings are negligible, calculate the number of turns of each secondary phase winding for EACH of the following connections: (i) Delta/delta; (ii) Delta / star. (b) Explain why the two transformers described in Q4(i) and Q4(ii) cannot be operated with their primaries and secondaries connected in parallel.

5. A balanced star connected three phase load has a coil of inductance 0.2 H and resistance 50 Ω in each phase. It is supplied at 415 V, 50 Hz. Calculate EACH of the following: (a) the line current; (b) the power factor; (c) the value of EACH of three identical delta connected capacitors to be connected across the same supply to raise the power factor to 0.9 lag; (d) the new value of the line current. 6. A 6 pole 3 phase squirrel cage induction motor runs on 380 V 60 Hz supply. It draws a line current of 80 A at a power factor of 0.8 lag. The shaft speed is 19 rev/sec. If the iron losses are 2 kw, the stator copper loss is 1 kw and the windage and friction loss is 1.5 kw, calculate EACH of the following: (a) the slip as a per unit value; (b) the rotor copper loss; (c) the shaft output power; (d) the efficiency. 7. (a) Sketch the reverse voltage/current characteristic for a low power Zener diode with a breakdown voltage of 10 V. (b) Sketch a simple voltage regulator circuit using a Zener diode. (c) State which factors determine the value of the series resistor used in the circuit described in Q7(b). (d) State which factors determine the power rating of the Zener diode in the circuit described in Q7(b). [OVER

8. (a) Explain the term power factor correction. (b) State TWO advantages of power factor correction. (c) Explain, with the aid of a circuit diagram, how power factor correction can be effected in a three-phase circuit using capacitors. (d) State ONE method, other than the use of capacitors, by which power factor correction can be effected in a 3 ph circuit. 9. (a) Explain how torque is produced in a 3 phase squirrel cage induction motor. (b) State why the starting current is several times higher than the full load current. (c) State why the power factor is very low on starting. (d) Describe ONE method of construction by means of which the starting power factor may be raised, the starting current lowered and the starting torque improved.

SCOTTISH QUALIFICATIONS AUTHORITY MARKERS REPORT FORM SUBJECT: 040-33 Electrotechnolgy DATE: 30 th March 2017 General Comments on Examination Paper I have no reservations about the standard of the paper, a number of scores in the nineties indicate that the standard was correct and the spread of questions appropriate. Comments of Specific Examination Questions Q.1. A straightforward distribution network which attracted a large number of correct solutions. Most of those who failed to score full marks made mathematical errors or confused the total power supplied to the network with the power wasted in the distribution cables. Q2. This question was also well answered. Most of those who failed to score full marks did so because they did not realise that the time constant had changed in the second part of the question because extra resistance had been added. Q.3. No problems here. One or two candidates added the base emitter volt drop rather than subtracting it and got an incorrect value for the emitter voltage. Q.4. Almost all candidates got the 10 easy marks by correctly calculating the secondary turns having due regard to the appropriate phase voltage in the secondary. Q.5. This caused a few problems for those who did not correctly resolve the line current into in phase and quadrature components before finding the reduced quadrature component and hence the phase current for each capacitor. Q6. A stock induction motor question, but a few candidates are still convinced that the power increases as you move through the motor from input to final shaft power! Q.7. There were some very droopy reverse characteristics! The sudden increase in reverse current at the Zener breakdown point is almost right angled.. The question asked for a simple voltage regulator circuit, a few candidates offered a full excitation circuit for an alternator. Very few students were able to pinpoint the factors determining the value of the series resistor or the appropriate rating of the Zener diode.

Q.8. At least half the candidates explained the term power factor not power factor correction. The question requires the candidate to mention lagging KVA and the need to add leading KVA to raise the power factor. Full marks will only be obtained for the last part of the question if the candidate states an over excited synchronous motor. Q.9. There were some very hazy explanations of the production of torque in the induction motor! A fair number of candidates had a pulsating magnetic field rather than a rotating one and a fair number also thought that the reluctance of the air gap was responsible for the high starting current and poor starting power factor. A method of construction to improve the starting p.f. and reduce the starting current does not include the star-delta starter or the auto transformer starter but does include the wound rotor as well as the Boucherot, trislot and sashbar types of rotor.