Optical Design of. Microscopes. George H. Seward. Tutorial Texts in Optical Engineering Volume TT88. SPIE PRESS Bellingham, Washington USA

Similar documents
Warren J. Smith Chief Scientist, Consultant Rockwell Collins Optronics Carlsbad, California

GEOMETRICAL OPTICS AND OPTICAL DESIGN

Introduction to Light Microscopy. (Image: T. Wittman, Scripps)

INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS

a) How big will that physical image of the cells be your camera sensor?

SPIE. Lens Design Fundamentals PRESS. Second Edition RUDOLF KINGSLAKE R. BARRY JOHNSON

OPTICAL IMAGING AND ABERRATIONS

Introduction to Optical Modeling. Friedrich-Schiller-University Jena Institute of Applied Physics. Lecturer: Prof. U.D. Zeitner

Properties of optical instruments. Visual optical systems part 2: focal visual instruments (microscope type)

Index. B Back focal length, 12 Beam expander, 35 Berek, Max, 244 Binary phase grating, 326 Buried surface, 131,

VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES

Introduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong

Microscopy Training & Overview

University of Rochester Department of Physics and Astronomy Physics123, Spring Homework 5 - Solutions

Optics and Lasers. Matt Young. Including Fibers and Optical Waveguides

Systems Biology. Optical Train, Köhler Illumination

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term

Lecture PowerPoint. Chapter 25 Physics: Principles with Applications, 6 th edition Giancoli

Very short introduction to light microscopy and digital imaging

INTRODUCTION THIN LENSES. Introduction. given by the paraxial refraction equation derived last lecture: Thin lenses (19.1) = 1. Double-lens systems

Education in Microscopy and Digital Imaging

Opti 415/515. Introduction to Optical Systems. Copyright 2009, William P. Kuhn

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Heisenberg) relation applied to space and transverse wavevector


Some of the important topics needed to be addressed in a successful lens design project (R.R. Shannon: The Art and Science of Optical Design)

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Chapter 25 Optical Instruments

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term

Optical Design with Zemax

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

Phy Ph s y 102 Lecture Lectur 21 Optical instruments 1

EE119 Introduction to Optical Engineering Spring 2002 Final Exam. Name:

Exam Preparation Guide Geometrical optics (TN3313)

CREATING ROUND AND SQUARE FLATTOP LASER SPOTS IN MICROPROCESSING SYSTEMS WITH SCANNING OPTICS Paper M305

SCANNING ELECTRON MICROSCOPY AND X-RAY MICROANALYSIS

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term

Average: Standard Deviation: Max: 99 Min: 40

Phys 102 Lecture 21 Optical instruments

CCAM Microscope Objectives

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

Microscopy. Lecture 2: Optical System of the Microscopy II Herbert Gross. Winter term

Master program "Optical Design"

Introduction to Imaging Spectrometers

Index. Cambridge University Press An Introduction to Practical Laboratory Optics J. F. James. Index.

Lecture 21. Physics 1202: Lecture 21 Today s Agenda

Rates of excitation, emission, ISC

Optical Design with Zemax for PhD

Applied Optics. , Physics Department (Room #36-401) , ,

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

Lens Design I Seminar 5

Microscope anatomy, image formation and resolution

CCAM s Selection of. Zeiss Microscope Objectives

BASICS IN LIGHT MICROSCOPY

Sequential Ray Tracing. Lecture 2

Overview of the Microscope Objective

Properties of optical instruments. Projection optical systems

Optical Design with Zemax

Tutorial Zemax 8: Correction II

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

The Compound Microscope. Brightfield: Köhler Illumination

Bio 407. Applied microscopy. Introduction into light microscopy. José María Mateos. Center for Microscopy and Image Analysis

Optical design of a high resolution vision lens

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad.

Optical Systems: Pinhole Camera Pinhole camera: simple hole in a box: Called Camera Obscura Aristotle discussed, Al-Hazen analyzed in Book of Optics

Geometrical Optics Optical systems

Phys 531 Lecture 9 30 September 2004 Ray Optics II. + 1 s i. = 1 f

Handbook of Optical Systems

Katarina Logg, Kristofer Bodvard, Mikael Käll. Dept. of Applied Physics. 12 September Optical Microscopy. Supervisor s signature:...

Applications of Optics

Big League Cryogenics and Vacuum The LHC at CERN

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember

Optical Lithography. Here Is Why. Burn J. Lin SPIE PRESS. Bellingham, Washington USA

ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008

Microscopy: Fundamental Principles and Practical Approaches

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Introduction to light microscopy

Ch 24. Geometric Optics

Ron Liu OPTI521-Introductory Optomechanical Engineering December 7, 2009

Light Microscopy. Upon completion of this lecture, the student should be able to:

BIOIMAGING AND OPTICS PLATFORM EPFL SV PTBIOP BASICS IN LIGHT MICROSCOPY

Overview: Integration of Optical Systems Survey on current optical system design Case demo of optical system design

OPTICAL PRINCIPLES OF MICROSCOPY. Interuniversity Course 28 December 2003 Aryeh M. Weiss Bar Ilan University

Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Digital Camera Technologies for Scientific Bio-Imaging. Part 2: Sampling and Signal

microscopy A great online resource Molecular Expressions, a Microscope Primer Partha Roy

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term

Chapter 25. Optical Instruments

Optics B. Science Olympiad North Regional Tournament at the University of Florida DO NOT WRITE ON THIS BOOKLET. THIS IS AN TEST SET.

Good Practice Guide No. 39. Dimensional Measurement using Vision Systems. Tim Coveney. Issue 2

There is a range of distances over which objects will be in focus; this is called the depth of field of the lens. Objects closer or farther are

Reflectors vs. Refractors

2/4/15. Brightfield Microscopy! It s all about Magnification..! or is it?!

Reflection! Reflection and Virtual Image!

Imaging Introduction. September 24, 2010

CHAPTER 18 REFRACTION & LENSES

Biomedical Imaging 生物醫學影像學

Transcription:

Optical Design of Microscopes George H. Seward Tutorial Texts in Optical Engineering Volume TT88 SPIE PRESS Bellingham, Washington USA

Preface xiii Chapter 1 Optical Design Concepts /1 1.1 A Value Proposition 1 1.2 Specimen Model 1 1.3 Detector Parameters 1 1.4 Numerical Aperture 1 1.5 Wave Propagation 2 1.6 Geometric Aberrations 3 1.7 Image Contrast 4 1.8 Manufacturing 5 1.9 Assembly 5 Chapter 2 Basic Microscope Concepts / 7 2.1 Magnification 7 2.2 Accommodation 7 2.3 Finite Tube Length 8 2.4 Infinity-Corrected Objective 9 2.5 Tube Lens 10 2.6 Ocular Lens 11 2.7 Refractive Objects 12 2.8 Diffractive Objects 14 2.9 Dark Field 14 Chapter 3 Basic Geometric Optics /17 3.1 Ray Tracing 17 3.2 Cardinal points 17 3.3 Stops 18 3.4 Gaussian Lens Formula 19 3.5 Image Types 21 3.6 Optical Power 21 3.7 Paraxial Optics 22 3.8 Relay Lens 23 3.9 Magnifier 24 vii

viii Chapter 4 Aberrations / 27 4.1 Seidel Aberrations 27 4.2 Chromatic Aberrations 29 4.3 Other Aberrations 29 4.4 Aspheric Surfaces 33 Chapter 5 Basic Physical Optics / 35 5.1 Importance of Physical Optics 35 5.2 Wave Equation 35 5.3 Refractive Index 36 5.4 Dispersion 40 5.5 Refraction and Reflection 41 5.6 Emission 43 5.7 Absorption 43 5.8 Evanescent Field 44 5.9 Space-Angle Product 45 5.10 Coherence 46 5.11 Airy Pattern 46 5.12 Gaussian Beam Propagation 48 5.13 Transfer Functions 49 5.14 Gaussian Estimate of Airy Pattern 50 5.15 Scatter 51 5.16 Interference Filters 51 Chapter 6 Fluorescence / 53 6.1 Absorption Parameters 53 6.2 Electron States 54 6.3 Energy Diagrams 55 6.4 Fluorophores 57 Chapter 7 Optical Design Metrics / 63 7.1 CAD Tools 63 7.2 Wavefront Error 63 7.3 Ray-Intercept Plot 64 7.4 Spot Diagram 66 7.5 Point-Spread Plot 66 7.6 Encircled-Energy Plot 68 7.7 Modulation Transfer Function 68 7.8 Edge Spread 69 7.9 Lens Report 69 7.10 Relative Illumination 70 7.11 Surface-Form Error 70 7.12 Manufacturing Standards 72

ix Chapter 8 Image Contrast / 73 8.1 Radiometry 73 8.2 Expression of Contrast 73 8.3 Shot Noise 75 8.4 Emittance Patterns 76 8.5 Angular Collection Efficiency 77 8.6 Spatial Collection Efficiency 78 8.7 Full-Pixel Contrast 79 8.8 Subpixel Contrast 80 8.9 Point-Source Contrast 81 8.10 Full-Pixel Airy Contrast 82 Chapter 9 Microlens Formats / 85 9.1 10XR Double Gauss 85 9.2 10XR Microlens 86 9.3 2XR Microlens 87 9.4 1X Microlens 88 9.5 2XR Telecentric Spectroscopy Lens 89 Chapter 10 Illumination Systems / 93 10.1 Condenser 93 10.2 Abbe Illumination 93 10.3 Nelson Illumination 94 10.4 Diffusers 95 10.5 Köhler Illumination 96 10.6 Matched Stops 98 10.7 Light-Emitting Diodes 98 10.8 Aspheric Plus Singlet Relay 100 10.9 Achromatic Aspheric Plus Doublet Relay 101 10.10 Abbe Condenser 101 10.11 Abbe Aspheric 101 10.12 Total Internal Reflection Fluorescence Illumination 103 Chapter 11 Cover Strata /105 11.1 Importance of Specimen Tolerance 105 11.2 Perfect 10X for Air 105 11.3 10X Objective with Cover Glass in Place of Air 106 11.4 10X Objective with Microscope Slide in Place of Air 107 11.5 40X Objective with Silica Cover in Place of Glass 108 11.6 40X Objective with Tilted Cover Glass 110 11.7 60X Objective with Silica Cover in Place of Glass 111 11.8 Strehl Ratio versus Optical Path Length 111

x Chapter 12 Objective Lenses /113 12.1 Formats 113 12.2 Aplanatic Surface 113 12.3 10X Plan Achromat 114 12.4 40X Fluor 115 12.5 60X Immersion TIRF 117 12.6 100XAplanat 121 12.7 1 OX Schwarzschild 122 12.8 20X Internal Parabola 123 Chapter 13 Tube Elements /127 13.1 Doublet Tube Lens 127 13.2 Doublet-Pair Tube Lens 127 13.3 Filter Types 129 13.4 Filter within a Finite Conjugate Distance 133 13.5 Warped Filter within an Infinity Correction 133 Chapter 14 Ocular Lenses /139 14.1 Eyepiece 139 14.2 Pupils 139 14.3 Kellner Ocular 140 14.4 Plössl Ocular 141 14.5 Erfle Ocular 142 Chapter 15 Sensors /147 15.1 CCD Sensors 147 15.2 Active Pixel Sensors 151 15.3 Photomultiplier Tubes 152 15.4 Film 154 Chapter 16 Human Vision /157 16.1 Physiology 157 16.2 Contrast Sensitivity Function 158 16.3 Point Spread of a Lens 159 16.4 Lateral Inhibition of the Retina 160 16.5 Temporal Feedback of Photoreceptors 162 16.6 Saccation Point Spread 163 16.7 Vision Research 165 16.8 Temporal Contrast Sensitivity Function 165

xi Chapter 17 Optical Materials /169 17.1 Glass Types 169 17.2 Glass Map 172 17.3 Fluorite 173 17.4 Short Flint 176 17.5 Anomalous Dispersion 176 17.6 Sellmeier Formula 177 17.7 Environmentally Safe Glass 179 17.8 Glass Code 180 17.9 Spectral Lines 180 17.10 Cost of Optics 180 17.11 Structural Materials 181 Chapter 18 Composition and Spectra of Materials /183 18.1 Glass Structure 183 18.2 Crown 183 18.3 Flint 184 18.4 Long Crown 186 18.5 Short Flint 186 18.6 Short-Flint Special 187 18.7 Environmentally Safe Short Flint 189 18.8 Dense Flint 191 Chapter 19 Advanced Concepts /195 19.1 Wave Equation 195 19.2 Refractive Index 196 19.3 Relative Partial Dispersion 198 19.4 Emission 199 19.5 Coherence 199 19.6 Gaussian Beam Power 201 19.7 Transfer Functions 202 19.8 Scatter 204 19.9 Interference Filters 205 19.10 Shot Noise 206 Appendix: Prescriptions / 209 Works Consulted / 229 Recommended Reading / 231 References / 233 Index / 237