VIENNA RECTIFIER FED BLDC MOTOR

Similar documents
Vienna Rectifier Fed BLDC Motor

BLDC Motor Speed Control and PFC Using Isolated Zeta Converter

An Adjustable-Speed PFC Bridgeless Single Switch SEPIC Converter-Fed BLDC Motor

Renewable Energy Based Interleaved Boost Converter

CHAPTER 6 THREE-LEVEL INVERTER WITH LC FILTER

Simulation of Solar Powered PMBLDC Motor Drive

Usha Nandhini.M #1, Kaliappan.S *2, Dr. R. Rajeswari #3 #1 PG Scholar, Department of EEE, Kumaraguru College of Technology, Coimbatore, India

An Investigation of Power Converters Fed BLDC Motor for Adjustable Speed

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR

Reduction of Harmonics and Torque Ripples of BLDC Motor by Cascaded H-Bridge Multi Level Inverter Using Current and Speed Control Techniques

Speed control of power factor corrected converter fed BLDC motor

Brushless DC Motor Drive using Modified Converter with Minimum Current Algorithm

Power Factor Correction for Chopper Fed BLDC Motor

Improved Power Quality Bridgeless Isolated Cuk Converter Fed BLDC Motor Drive

REDUCTION OF HARMONIC DISTORTION IN BLDC DRIVE USING BL-BUCK BOOST CONVERTER BLDC DRIVE

Speed control of sensorless BLDC motor with two side chopping PWM

A NEW C-DUMP CONVERTER WITH POWER FACTOR CORRECTION FEATURE FOR BLDC DRIVE

Cuk Converter Fed BLDC Motor with a Sensorless Control Method

AN EXPERIMENTAL INVESTIGATION OF PFC BLDC MOTOR DRIVE USING BRIDGELESS CUK DERIVED CONVERTER

HARDWARE IMPLEMENTATION OF PFC BUCK-BOOST CONVERTER DRIVEN PMBLDC MOTOR DRIVE FOR MINING APPLICATIONS

CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER

CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS

Simulation of Speed Control of Induction Motor with DTC Scheme Patel Divyaben Lalitbhai 1 Prof. C. A. Patel 2 Mr. B. R. Nanecha 3

TRACK VOLTAGE APPROACH USING CONVENTIONAL PI AND FUZZY LOGIC CONTROLLER FOR PERFORMANCE COMPARISON OF BLDC MOTOR DRIVE SYSTEM FED BY CUK CONVERTER

COMPARATIVE ANALYSIS OF INTERLEAVED BOOST CONVERTER AND CUK CONVERTER FOR SOLAR POWERED BLDC MOTOR

CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE

Comparative study on Bridge type Negative Luo converter fed BLDC motor drive.

Reduction Of Harmonics & Torque Ripples Of Bldc Motor By Cascaded H-Bridge Multi Level Inveter Using Current & Speed Control Techniques

Sensorless Control of BLDC Motor Drive Fed by Isolated DC-DC Converter

Design of A Closed Loop Speed Control For BLDC Motor

Study on DC-DC Converters for a Pfc BLDC Motor Drive

Design and Simulation of Three Phase Shunt Active Power Filter Using SRF Theory

A Power Factor Corrected Bridgeless Type III Cuk Derived Converter fed BLDC Motor Drive

Efficiency Optimized Brushless DC Motor Drive. based on Input Current Harmonic Elimination

SPEED CONTROL OF BRUSHLESS DC MOTOR USING FUZZY BASED CONTROLLERS

ABSTRACT I. INTRODUCTION

Analysis of an Economical BLDC Drive System

DESIGN OF A VOLTAGE-CONTROLLED PFC CUK CONVERTER-BASED PMBLDCM DRIVE for FAN

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL

A Comparative Study of Sinusoidal PWM and Space Vector PWM of a Vector Controlled BLDC Motor

A NOVEL SWITCHING PATTERN OF CASCADED MULTILEVEL INVERTERS FED BLDC DRIVE USING DIFFERENT MODULATION SCHEMES

Power quality improvement and ripple cancellation in zeta converters

International Journal of Advance Engineering and Research Development

Analysis of a Sensor Based BLDC Motor With Bridgeless SEPIC Converter For PFC And Speed Control

Implementation Of Bl-Luo Converter Using FPGA

ADVANCES in NATURAL and APPLIED SCIENCES

BLDC Motor Drive with Power Factor Correction Using PWM Rectifier

Simulation and Implementation of FPGA based three phase BLDC drive for Electric Vehicles

I. INTRODUCTION. 10

Simulation and Experimental Based Four Switch Three Phase Inverter Fed Induction Motor Drive

P. Sivakumar* 1 and V. Rajasekaran 2

Simulation Study of MOSFET Based Drive Circuit Design of Sensorless BLDC Motor for Space Vehicle

Simulation of Fuzzy Controller based Isolated Zeta Converter fed BLDC motor drive

International Journal of Scientific Research and Reviews

A Brushless DC Motor Speed Control By Fuzzy PID Controller

Modeling and Simulation of Matrix Converter Using Space Vector PWM Technique

A BRUSHLESS DC MOTOR DRIVE WITH POWER FACTOR CORRECTION USING ISOLATED ZETA CONVERTER

A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE

ANALYSIS OF POWER QUALITY IMPROVEMENT OF BLDC MOTOR DRIVE USING CUK CONVERTER OPERATING IN DISCONTINUOUS CONDUCTION MODE

Voltage Regulated Five Level Inverter Fed Wind Energy Conversion System using PMSG

Electrical Distribution System with High power quality Based on Power Electronic Transformer

Low Cost Power Converter with Improved Performance for Switched Reluctance Motor Drives

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS

Cuk Converter Fed BLDC Motor

SINGLE PHASE BRIDGELESS PFC FOR PI CONTROLLED THREE PHASE INDUCTION MOTOR DRIVE

High Power Factor Bridgeless SEPIC Rectifier for Drive Applications

A CSC Converter fed Sensorless BLDC Motor Drive

Application of Fuzzy Logic Controller in Shunt Active Power Filter

Simulation of Interleaved Buck Converter Fed PMBLDC Drive System with Input Disturbance

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System

Volume 1, Number 1, 2015 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online):

Zeta Converter Fed Brushless DC Motor Drive for Power Factor Correction in Low Power Applications

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE

Single Phase Bridgeless SEPIC Converter with High Power Factor

Modeling of Single Stage Grid-Connected Buck-Boost Inverter for Domestic Applications Maruthi Banakar 1 Mrs. Ramya N 2

Simulation and Dynamic Response of Closed Loop Speed Control of PMSM Drive Using Fuzzy Controller

A Novel Fuzzy Control Approach for Modified C- Dump Converter Based BLDC Machine Used In Flywheel Energy Storage System

Swinburne Research Bank

Speed Control of Brushless DC Motor Using Fuzzy Based Controllers

ISSN Vol.04,Issue.04 February-2015, Pages:

Enhanced Performance of Multilevel Inverter Fed Induction Motor Drive

POWER ISIPO 29 ISIPO 27

ISSN Vol.03,Issue.07, August-2015, Pages:

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 06, 2014 ISSN (online):

A Novel Five-level Inverter topology Applied to Four Pole Induction Motor Drive with Single DC Link

Modeling and Simulation Analysis of Eleven Phase Brushless DC Motor

Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications

CHAPTER 2 LITERATURE REVIEW

Power Factor Corrected Zeta Converter Based Switched Mode Power Supply

Reduction of Torque Ripple in Trapezoidal PMSM using Multilevel Inverter

Bidirectional AC/DC Converter Using Simplified PWM with Feed-Forward Control

Analysis of Asymmetrical Cascaded 7 Level and 9 Level Multilevel Inverter Design for Asynchronous Motor

A Three Phase Seven Level Inverter for Grid Connected Photovoltaic System by Employing PID Controller

Three Phase Induction Motor Drive Using Single Phase Inverter and Constant V/F method

Simulation and Dynamic Response of Closed Loop Speed Control of PMSM Drive Using Fuzzy Controller

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

Power factor improvement of SMPS using PFC Boost converter

POWER FACTOR IMPROVEMENT USING CURRENT SOURCE RECTIFIER WITH BATTERY CHARGING CAPABILITY IN REGENERATIVE MODE OF SRM

Transcription:

VIENNA RECTIFIER FED BLDC MOTOR Dr. P. Sweety Jose #1, R.Gowthamraj *2, #Assistant Professor, * PG Scholar, Dept. of EEE, PSG College of Technology, Coimbatore, India 1psj.eee@psgtech.ac.in, 2 gowtham0932@gmail.com Abstract:- This paper presents the power quality improvements for a BLDC drive using Vienna rectifier as front end converter. The major drawbacks in the BLDC motor drive and non linear load applications are the line pollution and depreciation of the power factor. The conventional power factor correction method is not economical and efficient. It requires bulky components as load changes and produce high THD and less Power factor. The front end converter of BLDC proposed in this paper is Vienna rectifier, which can contribute more significantly in improving the power factor and reduce the line pollution. Nine different types of topologies of Vienna Rectifier are studied and its Performance are analyzed and tabulated. The topology which gives the best Performance is chosen as the front end converter of the BLDC motor. The Vienna rectifier topology is controlled by the Hysteresis current control technique for wide range of load variation and it reduces the THD, improves the power factor and provides a steady DC link voltage to the bridge inverter to drive the BLDC motor. The design calculation and performance characteristics of BLDC motor and Vienna rectifier are verified by using Matlab/Simulink simulation. Keywords:- Vienna Rectifier, BLDC motor, Inverter, Unity Power Factor, THD, Drive applications I. INTRODUCTION Controlled rectifiers are classified as being either isolated or non-isolated. For three-phase rectifiers, the non-isolated topologies are derived from the isolated topologies with the magnetic coupling (and thus isolation) achieved by the use of split inductors. However, under most circumstances, large low frequency output voltage ripple is intolerable for direct use. A DC-DC converter is usually used as second stage to the AC-DC converter and isolation is achieved in the second stage. For this reason it is unnecessary to use an isolated AC-DC front-end converter. Currently research is done on three topologies of three-phase active rectifiers [1]. 1.1 BLDC MOTOR There are mainly two types of DC motors used in industry. The first one is the conventional dc motor where the flux is produced by the current through the field coil of the stationary pole structure. The second type is the brushless dc motor where the permanent magnet provides the necessary air gap flux instead of the wire-wound field poles. BLDC motor is conventionally defined as a Permanent Magnet Synchronous Motor with a trapezoidal Back EMF waveform shape. As the name implies, BLDC motors do not use brushes for commutation; instead, they are electronically commutated. Recently, high performance BLDC motor drives are widely used for variable speed drive systems of the industrial applications and electric vehicles [1]. In practice, the design of the BLDCM drive involves a complex process such as modeling, control scheme selection, simulation and parameters tuning etc. An expert knowledge of the system is required for tuning the controller parameters of servo system to get the optimal performance. Recently, various modern control solutions are proposed for the speed control design of BLDC motor [1]. 405

II. LITERATURE STUDY ON ACTIVE THREE-PHASE RECTIFIERS 2.1 INTRODUCTION The objective of this research is to develop an interface between a three-phase AC generator operating at variable speed and a constant voltage DC-bus. The interface is required to ensure high energy efficiency by reducing reactive power consumption, as well as maintain a constant DC-bus voltage [5]. Various active three-phase Vienna Rectifier topologies and control techniques are discussed in this Chapter. The various advantages and disadvantages of the different converter topologies and control techniques are compared, to identify the most suitable topology for converting a three-phase input, from AC generator type input (variable input voltage/variable frequency), to a constant DC voltage output. It is self evident that a boost topology must be used instead of a buck topology because of the nature of the three-phase input that will be low when the generator rotational speed is low. In addition, since voltage isolation can be achieved in DC-DC converters it implies that the three-phase rectifier front-end can be non-isolated. Since a generated input is converted to a DC output and not vice versa where a DC source drives a motor, only unidirectional converters are considered for implementation[3]. The aim of this literature study is to establish the current status of active three-phase rectifiers. The focus of the literature study will be to compare system performance versus complexity of the various topologies. Issues discussed include controller complexity, size of the filter components, output bus voltage ripple, input current distortion, switching frequency, output bus voltage and efficiency of the various topologies. A laboratory prototype of the most suitable rectifier, for converting a three-phase AC generator input to a constant DC-bus voltage, shall be designed, built and tested. The testing of the system includes various measurements to determine and verify the performance of the experimental system[5]. 2.2 CONTROL OF THE VIENNA RECTIFIER Table 2.1. Advantages and disadvantages of the different control methods[9]. Control Method Advantages Constant Frequency Easier EMI filtering because of single switching frequency Simple control implementation Hysteresis control EMI distributed over a wide Spectrum Inherent current protection Disadvantages Single control loop for controlling output voltage and input current Automatic balancing of output capacitor bank Input voltage state sensing required (when operated as a dual-boost rectifier). Thus higher sensing effort More stringent EMI filtering (EMI distributed over a wide spectrum, because of varying frequency) Input voltage sensing required Second control loop required for balancing output capacitor bank Control algorithm more Complex 406

407

Table 2.2. Quantitative Comparison of different converters[9] 408

409

III. VIENNA RECTIFIER AND BLDC MOTOR From the various converter/control topologies discussed in Chapter 2 the VIENNA rectifier with constant switching frequency dual-boost type controller was chosen as the suitable rectifier for converting a generator type input, due to following grounds The VIENNA rectifier offers the same or less input current harmonic distortion than the other topologies; The VIENNA rectifier, with its three-level output, allows any DC-DC converter to be used at the rectifier output (halfbridge, full-bridge or any other topology) and, with constant switching frequency control, no additional circuitry is required to balance the two output capacitors. The high boost voltage of 2.45 might be a disadvantage, but the three-level output allows the designer some flexibility in the design[9] The VIENNA rectifier has only three switches, which are significantly fewer than other active rectifiers with the same performance (in terms of harmonic distortion) The VIENNA rectifier requires less control effort (in terms of the number of isolated gate drives required) than other active rectifier topologies with comparable performance (in terms of harmonic distortion) With constant switching frequency dual-boost control sufficient sensing effort is provided to implement dual-boost control or unified one-cycle control if needed but not vice versa Implementation of the VIENNA rectifier is eased by the availability of single bridge leg modules Dual-boost constant frequency control is not dependant on a fixed line Frequency, making it ideal for variable frequency type inputs. 410

IV BRUSHLESS DC MOTOR There are mainly two types of dc motors used in industry. The first one is the conventional dc motor which has become obsolete where the flux is produced by the current through the field coil of the stationary pole structure. The second type is the brushless dc motor where the permanent magnet provides the necessary air gap flux instead of the wirewound field poles [2]. BLDC motor is conventionally defined as a Permanent Magnet Synchronous Motor with a trapezoidal Back EMF waveform shape. As the name implies, BLDC motors do not use brushes for commutation; instead, they are electronically commutated. Recently, high performance BLDC motor drives are widely used for variable speed drive systems of the industrial applications and electric vehicles [2]. In practice, the design of the BLDCM drive involves a complex process such as modeling, control scheme selection, simulation and parameters tuning etc. An expert knowledge of the system is required for tuning the controller parameters of servo system to get the optimal performance. Recently, various modern control solutions are proposed for the speed control design of BLDC motor. Table 1 gives the specifications of Vienna Rectifier and Table 2 gives the specifications of the BLDC Motor Table 1 SPECIFICATIONS OF VIENNA RECTIFIER Quantity Single phase AC input voltage Main Frequency Output DC power Rated value 120V 50 Hz 1KW Switching Frequency 20kHz to 100kHz Output DC voltage 350V Inductor 8µH Capacitor 8mF Ambient Temperature 40ºC Table 2 SPECIFICATIONS OF BLDC MOTOR 1HP, 24 V, 4 pole, 50Hz Rated current( ) 4.52 A Rated speed ) 4600 rpm Rated torque 2.2 Nm Winding inductance 3.285 mh Winding resistance 1.535 Ω Rotor inertia constant(j) 1.8e-4 Kg Frictional co-efficient(b) 0.001 Nm/rad/s Back EMF constant 51 V/Krpm/min Torque constant 0.49 Nm/A 411

V MODEL OF VIEENA RECTIFIER WITH CONTROL Fig 1 gives the Simulink model of Vienna Rectifier with Power Factor control. The simulation of Vienna Rectifier was done and a DC output voltage of 350V was obtained and then was given to an inverter which converts it into 24V AC which feeds the BLDC motor [9]. Fig 1 Simulation Model of Vienna Rectifier VI SIMULATION RESULTS AND DISCUSSION A constant DC output voltage at the output of Vienna Rectifier was obtained as shown in Fig 2. The Total Harmonic Distortion of the input current spectrum is shown in Fig 3 and Fig 4 and it could be found that THD is 0.82% which is well below the IEEE standards. Fig 4 shown the Input voltage and current waveforms and it could be observed that they are in phase with each other and the input power factor is Unity. It can also be seen that sinusoidal input current is achieved. The DC output voltage was fed to a three phase inverter which converts it into AC and supplies a BLDC Motor. Fig 5 shows the BLDC Motor simulation fed from Vienna Rectifier as the front end and Inverter. The Back emf and rotor speed are shown in fig 6 and Fig 7 respectively. DC OUTPUT VOLTAGE: Fig 2 Output Voltage of Vienna Rectifier 412

THD SPECTRUM INPUT VOLTAGE AND CURRENT WAVEFORMS Fig 3 THD Spectrum Fig 4 Input Voltage And Current Waveforms BLDC MOTOR SIMULATION Fig 5 BLDC Motor Simulation 413

BACK EMF WAVEFORM Fig 6 Back Emf waveform ROTOR SPEED WAVEFORM Fig 7 Rotor speed Waveform IV. CONCLUSION In this paper nine different topologies of AC-DC converters were discussed and analyzed. Among these topologies, the unity power factor at the input supply and Total Harmonic Distortion is 0.82% achieved by using Vienna Rectifier topology. Hence it is concluded that Vienna Rectifier is the best topology for AC-DC converters at the front end. By using Vienna Rectifier as the front end the following advantages like THD less than 5%, Unity Power factor and sinusoidal input currents are achieved. This Vienna Rectifier is used as a front end converter to feed an inverter fed BLDC Motor and was able to Control the speed of the BLDC Motor. REFERENCES [1] Rajan Kumar, Member, IEEE, and Bhim Singh, Fellow, IEEE. BLDC Motor Driven Solar PV Array Fed Water Pumping System Employing Zeta Converter [2] Mir Humainul Islam1 and M. Abdur Razzak Department of Electrical and Electronic Engineering, Independent University, Bangladesh.. Design of a Modified Vienna Rectifier for Power Factor Correction under Different Three Phase Loads. [3] Jeevan Adhikari, Student Member, IEEE, Prasanna IV, Student Member, IEEE, S K Panda, Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Email**:eleskp@nus.edu.sg Reduction of Input Current Harmonic Distortions and Balancing of Output Voltages of the Vienna Rectifier Under Supply Voltage Disturbances. 414

[4] M. H. Rashid, Power Electronics, New Delhi, India: Prentice-Hall of India Private Limited, 2007, pp. 147-265. [5] B. Singh, B.N. Singh, A. Chandra, K Al-Haddad, A. Pandey and D.P. Kothari, "A Review of Three-Phase Improved Power Quality AC-DC Converters", IEEE Transactions on Industrial Electronics, Vol. 51, No. 3, pp.641-660, June 2004. [6] Jacobus Hendrik Visser converter based on the VIENNA RECTIFIER topology interfacing a three-phase generator to a dc-bus Faculty of Engineering, the Built Environment and Information Technology, University of Pretoria, March 2007. [7] Mojgan Nikouei Design and Evaluation of the Vienna Rectifier Department of Energy and Environment, Division of Electric Power Engineering CHALMERS UNIVERSITY OF TECHNOLOGY, Gothenburg, Sweden 2013. [8] Selvaraj A., Paranjothi. S. R. and Jagadeesh B. Single phase neutral linked Vienna Rectifier Department of EEE, Rajalakshmi Engineering College, Chennai, India. [9] Peter Mantovanelli Barbosa Three-Phase Power Factor Correction Circuits for Low-Cost Distributed Power Systems Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering. 415