Reduction Of Harmonics & Torque Ripples Of Bldc Motor By Cascaded H-Bridge Multi Level Inveter Using Current & Speed Control Techniques

Similar documents
Reduction of Harmonics and Torque Ripples of BLDC Motor by Cascaded H-Bridge Multi Level Inverter Using Current and Speed Control Techniques

A SERIES-CONNECTED MULTILEVEL INVERTER TOPOLOGY FOR MEDIUM-VOLTAGE BLDC MOTOR DRIVE APPLICATIONS

A NOVEL SWITCHING PATTERN OF CASCADED MULTILEVEL INVERTERS FED BLDC DRIVE USING DIFFERENT MODULATION SCHEMES

CHAPTER 6 THREE-LEVEL INVERTER WITH LC FILTER

A Series-Connected Multilevel Inverter Topology for Squirrel-Cage Induction Motor Drive

Reduction of Torque Ripple in Trapezoidal PMSM using Multilevel Inverter

A NEW C-DUMP CONVERTER WITH POWER FACTOR CORRECTION FEATURE FOR BLDC DRIVE

SIMULATION AND IMPLEMENTATION OF CURRENT CONTROL OF BLDC MOTOR BASED ON A COMMON DC SIGNAL

Enhanced Performance of Multilevel Inverter Fed Induction Motor Drive

TRACK VOLTAGE APPROACH USING CONVENTIONAL PI AND FUZZY LOGIC CONTROLLER FOR PERFORMANCE COMPARISON OF BLDC MOTOR DRIVE SYSTEM FED BY CUK CONVERTER

Speed Control of Induction Motor using Multilevel Inverter

Efficiency Optimized Brushless DC Motor Drive. based on Input Current Harmonic Elimination

Australian Journal of Basic and Applied Sciences. Simulation and Analysis of Closed loop Control of Multilevel Inverter fed AC Drives

VIENNA RECTIFIER FED BLDC MOTOR

A Novel Multilevel Inverter Employing Additive and Subtractive Topology

Hybrid 5-level inverter fed induction motor drive

Low Order Harmonic Reduction of Three Phase Multilevel Inverter

Harmonic Reduction in Induction Motor: Multilevel Inverter

Improvement of Power Quality Using Hybrid Active Power Filter in Three- Phase Three- Wire System Applied to Induction Drive

CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER

Performance Analysis of Switched Capacitor Three Phase Symmetrical Inverter Topology with Induction Drive

Simulation of Solar Powered PMBLDC Motor Drive

Modeling and Simulation Analysis of Eleven Phase Brushless DC Motor

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System

BLDC Motor Drive with Power Factor Correction Using PWM Rectifier

Vienna Rectifier Fed BLDC Motor

A Novel Cascaded Multilevel Inverter Using A Single DC Source

Sensorless control of BLDC motor based on Hysteresis comparator with PI control for speed regulation

Vol. 1, Issue VI, July 2013 ISSN

Digital PWM Techniques and Commutation for Brushless DC Motor Control Applications: Review

A Hybrid Cascaded Multilevel Inverter for Interfacing with Renewable Energy Resources

Design of A Closed Loop Speed Control For BLDC Motor

Modelling and Simulation of New PV-Battery Based Hybrid Energy System for Z source Inverter using SVPWM fed Industrial Applications

Performance and Analysis of Hybrid Multilevel Inverter fed Induction Motor Drive

A Novel Five-level Inverter topology Applied to Four Pole Induction Motor Drive with Single DC Link

Volume 1, Number 1, 2015 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online):

Simulation of Speed Control of Induction Motor with DTC Scheme Patel Divyaben Lalitbhai 1 Prof. C. A. Patel 2 Mr. B. R. Nanecha 3

International Journal of Advance Engineering and Research Development

Renewable Energy Based Interleaved Boost Converter

Power Quality Enhancement of Diode Clamped Multilevel Inverter Using Different Modulation Schemes

Series Parallel Switched Multilevel DC Link Inverter Fed Induction Motor

A New Cascaded Multilevel Inverter Fed Permanent Magnet Synchronous Motor By Using Sinusoidal Pulse Width Modulation

New Multi Level Inverter with LSPWM Technique G. Sai Baba 1 G. Durga Prasad 2. P. Ram Prasad 3

Improved Power Quality Bridgeless Isolated Cuk Converter Fed BLDC Motor Drive

ADVANCED ROTOR POSITION DETECTION TECHNIQUE FOR SENSORLESS BLDC MOTOR CONTROL

A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE

Low Cost Power Converter with Improved Performance for Switched Reluctance Motor Drives

Performance Enhancement of Sensorless Control of Z-Source Inverter Fed BLDC Motor

POWER ISIPO 29 ISIPO 27

Analysis of an Economical BLDC Drive System

B.Tech Academic Projects EEE (Simulation)

Comparison between Conventional and Modified Cascaded H-Bridge Multilevel Inverter-Fed Drive

Voltage Regulated Five Level Inverter Fed Wind Energy Conversion System using PMSG

Analysis of Cascaded Multilevel Inverters with Series Connection of H- Bridge in PV Grid

A COMPARITIVE STUDY OF THREE LEVEL INVERTER USING VARIOUS TOPOLOGIES

ANALYSIS OF POWER QUALITY IMPROVEMENT OF BLDC MOTOR DRIVE USING CUK CONVERTER OPERATING IN DISCONTINUOUS CONDUCTION MODE

CHAPTER 6 CURRENT REGULATED PWM SCHEME BASED FOUR- SWITCH THREE-PHASE BRUSHLESS DC MOTOR DRIVE

A CSC Converter fed Sensorless BLDC Motor Drive

PSPWM Control Strategy and SRF Method of Cascaded H-Bridge MLI based DSTATCOM for Enhancement of Power Quality

Keywords Asymmetric MLI, Fixed frequency phase shift PWM (FFPSPWM), variable frequency phase shift PWM (VFPSPWM), Total Harmonic Distortion (THD).

CAPACITOR VOLTAGE BALANCING IN SINGLE PHASE SEVEN-LEVEL PWM INVERTER

Usha Nandhini.M #1, Kaliappan.S *2, Dr. R. Rajeswari #3 #1 PG Scholar, Department of EEE, Kumaraguru College of Technology, Coimbatore, India

SINGLE PHASE BRIDGELESS PFC FOR PI CONTROLLED THREE PHASE INDUCTION MOTOR DRIVE

Bhanutej Jawabu Naveez Assistant Professor, Vignana Bharathi Institute of Technology, Aushapur, Ghatkesar, Hyderabad.

Analysis of Asymmetrical Cascaded 7 Level and 9 Level Multilevel Inverter Design for Asynchronous Motor

COMPARISON STUDY OF THREE PHASE CASCADED H-BRIDGE MULTI LEVEL INVERTER BY USING DTC INDUCTION MOTOR DRIVES

Study of Unsymmetrical Cascade H-bridge Multilevel Inverter Design for Induction Motor

Reduction of Power Electronic Devices with a New Basic Unit for a Cascaded Multilevel Inverter fed Induction Motor

CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL

REDUCTION OF HARMONIC DISTORTION IN BLDC DRIVE USING BL-BUCK BOOST CONVERTER BLDC DRIVE

Minimization Of Total Harmonic Distortion Using Pulse Width Modulation Technique

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL

MODELLING AND SIMULATION OF DIODE CLAMP MULTILEVEL INVERTER FED THREE PHASE INDUCTION MOTOR FOR CMV ANALYSIS USING FILTER

SPECIFIC HARMONIC ELIMINATION SCHEME FOR NINELEVEL CASCADED H- BRIDGE INVERTER FED THREE PHASE INDUCTION MOTOR DRIVE

A Comparative Study of Sinusoidal PWM and Space Vector PWM of a Vector Controlled BLDC Motor

Simulation of Sensorless Digital Control of BLDC Motor Based on Zero Cross Detection

An Adjustable-Speed PFC Bridgeless Single Switch SEPIC Converter-Fed BLDC Motor

THREE PHASE SEVENTEEN LEVEL SINGLE SWITCH CASCADED MULTILEVEL INVERTER FED INDUCTION MOTOR

SPEED CONTROL OF BRUSHLES DC MOTOR

Hardware Implementation of SPWM Based Diode Clamped Multilevel Invertr

I. INTRODUCTION. 10

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

BLDC Motor Speed Control and PFC Using Isolated Zeta Converter

NPTEL

Power Quality Improvement Using Cascaded Multilevel Statcom with Dc Voltage Control

ON-LINE NONLINEARITY COMPENSATION TECHNIQUE FOR PWM INVERTER DRIVES

Simulation and Implementation of FPGA based three phase BLDC drive for Electric Vehicles

CASCADED H-BRIDGE MULTILEVEL INVERTER FOR INDUCTION MOTOR DRIVES

Modular Grid Connected Photovoltaic System with New Multilevel Inverter

Modeling and Simulation of Cascaded Multilevel Inverter fed PMSM Drive with PV Stand-Alone Water Pumping System

THD Minimization of a Cascaded Nine Level Inverter Using Sinusoidal PWM and Space Vector Modulation

PFC CUK CONVERTER FOR BLDC MOTOR DRIVES

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 06, 2014 ISSN (online):

Simulation and Dynamic Response of Closed Loop Speed Control of PMSM Drive Using Fuzzy Controller

SPEED CONTROL OF BRUSHLESS DC MOTOR USING FUZZY BASED CONTROLLERS

A NEW TOPOLOGY OF CASCADED MULTILEVEL INVERTER WITH SINGLE DC SOURCE

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

UG Student, Department of Electrical Engineering, Gurunanak Institute of Engineering & Technology, Nagpur

Cuk Converter Fed BLDC Motor with a Sensorless Control Method

Transcription:

Reduction Of Harmonics & Torque Ripples Of Bldc Motor By Cascaded H-Bridge Multi Level Inveter Using Current & Speed Control Techniques Anugu Sneha, Dr. R. Somanatham Abstract Considering the drive advantages of BLDC drive compared to other drive applications BLDC with phase switching inverter performance is improved with multilevel inverter(mli)topologies employing current and speed control s which decrease the torque ripples and harmonic distortion in general three phase three level inverter which commutates the BLDCM and address the problems of harmonics and torque ripples for that by using a multilevel inverter topology of five level inverter with current and speed controller at lower switching levels which can improves the BLDC drive performance. This paper proposes a series connected five level inverter with phase shift modulation with current and speed control s to reduce the harmonic distortion and torque ripples. The simulation results are discussed with a comparisional study in different operating strategies of BLDC drive. The simulation results based on Matlab/Simulink are discussed in detail in this paper. Index Terms Multilevel inverter, current and speed controller, harmonics and torque ripples I. INTRODUCTION Power electronic inverters are widely used in various industrial drive applications. To overcome the problems of the limited voltage and current ratings of power semiconductors devices, some kinds of series and/or parallel connections are necessary. Recently, the multilevel inverters have received more attention in literature due to their ability to synthesize waveforms with a better harmonic spectrum and to attain higher voltages. They are applied in many industrial applications such as ac power supplies, static Var compensators, and drive System, etc. Brushless DC motors (BLDC) with trapezoidal Back-EMF [3] have several inherent advantages. Most prominent among them are high efficiency and high power density due to the absence of field winding, in addition the absence of brushes leads to high reliability, low maintenance and high Capability. However in a practical BLDC drive, significant torque pulsations [5] may arise due to the back emf waveform Departing from the ideal. as well as commutation torque ripple, pulse width modulation (PWM)switching. Multilevel inverters have very important development for high power medium voltage AC drives. Nowadays researchers are trying to reduce the torque ripple and harmonic component in the BLDC motor. An active topology to reduce the torque ripple is synchronous motor presented in [1]. This paper discusses the hysteresis voltage Quite a lot of topologies have found industrial approval; Neutral Point Clamped, flying capacitor, H-bridge, cascaded with separated DC source, several control and modulation strategies have been developed Pulse Width Modulation (PWM) [6], Sinusoidal PWM, Space Vector PWM and Selective harmonic eliminations etc. One of the significant advantages of multilevel configuration is the harmonics reduction in the output waveform without increasing switching frequency or decreasing the inverter power output [2]. These multilevel inverters, in case of m-level, can increase the capacity by (m-1) times than that of two-level inverter through the series connection of power semiconductor devices without additional circuit to have uniform voltage sharing. Comparing with two level inverter system having the same capacity, multilevel inverters have the advantages that the harmonic components of line-to-line voltages fed to load, switching frequency of the devices and EMI problem could be decreased [1]. The output voltage waveform of a multilevel inverter is composed of a number of levels of voltages starting form three levels and reaching infinity depending upon the number of the dc sources. The main function of a multilevel inverter is to produce a desired ac voltage waveform from several levels of dc voltage sources. These dc voltages may or may not be equal to one another. These dc sources can be obtained from batteries, fuel cells, or solar cells. Conventionally, each phase of a cascaded multilevel converter requires n dc sources for 2n + 1 levels in applications that involve real power transfer. II. POWER-CONVERTER TOPOLOGY 2.1 Current control The proposed general configuration of three phase supply to the BLDC by current control as shown in Fig. 1. Manuscript received April 24, 2015. Anugu Sneha, M-tech Student ScholarDepartment of Electrical & Electronics Engineering,Anurag group of institutions (Autonomous); Dr.R.Somanatham, HOD, Dept. Of Electrical & Electronics Engineering, Anurag group of institutions (Autonomous). Fig. 1. Block diagram of Five-level inverter connected to BLDCM in current control.. Iref, and from this comparison, and error signal Ierr is obtained. This error is then passed through a PI control to The BLDC Motor requires [4] a power electronic drive circuit and 479 www.erpublication.org

Reduction Of Harmonics & Torque Ripples Of Bldc Motor By Cascaded H-Bridge Multi Level Inveter Using Current & Speed Control Techniques a commutation system for its operation. The Fig.1 describes the functional units present in the drive circuit and the associated commutation controller for the BLDC Motor. A 4 pole BLDC motor is driven by the inverter for 120 degree commutation. The rotor position can be sensed by a hall-effect sensor, providing three square wave signals with phase shift of 120degrees. These signals are decoded by a combinational logic to provide the firing signals for 120 degrees conduction on each of the three phases. The operation of the system is as follows: as the motor is of the brushless dc type, the waveforms of the armature currents are quasi square. These currents are sensed through current sensors, and converted to voltage signals. These signals are then rectified, and a dc component, with the value of the ceiling of the currents, Imax, This dc signal is compared with a desired reference generate the PWM.for all the switches of the multi-level inverter which are sequentially activated by the shaft position sensor. 2.2 Speed control The proposed general configuration of three phase supply to the BLDC by current control technology as shown in Fig. 2.The speed control loop uses a proportional-integral controller to produce the quadrature-axis current reference iq* which controls the motor torque. The motor flux is controlled by the direct-axis current reference id*. Block DQ-ABC is used to convert id* and iq* into current references ia*, ib*, and ic* for the current regulator. In speed control we give PWM gate signal by giving speed feedback to PI controller. We compare actual rotor speed with its reference speed with PI controller and give current command signal,this signal is compared with Id and Iq currents with the help of PI controller, the PI controller signal is compared with carrier signal to produce PWM signal to the gate drive of cascaded H-Bridge five level inverter for which each H-bridge has its own isolated dc source. Three output voltages are possible, ±Vs, and zero. Figure 3: Proposed Five Level Cascade H Bridge Inverter Fed BLDC Motor Drive The cascaded H-bridge multilevel inverter is based on multiple two level inverter outputs (each H-bridge), with the output of each phase shifted. Despite four diodes and switches, it achieves the greatest number of output voltage levels for the fewest switches. Its main limitation lies in its need for isolated power sources for each level and for each phase, although for VA compensation, capacitors replace the dc supplies, and the necessary capacitor energy is only to replace losses due to inverter losses. Its modular structure of identical H-bridges is a positive feature. Figure 4: Single-Phase Structure of a Multilevel Cascaded H-Bridge Inverter Fig. 2. Block diagram of Five-level inverter connected to BLDCM in speed control... III. DESIGN OF INVERTER MODULES Figure 3 shows the proposed five level cascade H bridge inverter fed BLDC motor drive. Figure 4 shows single phase structure of a multilevel cascade H bridge inverter. The N-level cascaded H-bridge, multilevel inverter comprises ½(N-1) series connected single phase H-bridges per phase, IV. THE BLDC MOTOR The BLDC motor is an AC synchronous motor with permanent magnets on the rotor (moving part) and windings on the stator (fix part). Permanent magnets create the rotor flux. The energized stator windings create electromagnet poles. The rotor (equivalent to a bar magnet) is attracted by the energized stator phase, generating a rotation. By using the appropriate sequence to supply the stator phases, a rotating field on the stator is created and maintained. This action of the 480 www.erpublication.org

rotor - chasing after the electromagnet poles on the stator - is the fundamental action used in synchronous permanent magnet motors. The lead between the rotor and the rotating field must be controlled to produce torque. This synchronization implies knowledge of the rotor position. Fig.7: Current control block in simulink Fig8 Shows the speed control for BLDC motor. Fig.5: A 3-Phase Synchronous Motor [BLDC] with a Single Permanent Magnet Pair Pole Rotor On the stator side, three phase motors are the most common. These offer a good compromise between precise control and the number of power electronic devices required to control the stator currents. For the rotor, a greater number of poles usually create a greater torque for the same level of current. On the other hand, by adding more magnets, a point is reached where, because of the space needed between magnets, the torque no longer increases. The manufacturing cost also increases with the number of poles. As a consequence, the number of poles is a compromise between cost, torque and volume. Fig.8: Speed control block in simulink Fig.9 shows the Output Voltage of proposed series connected multilevel inverter fed BLDC drive. V. MATLAB SIMULATION RESULTS Implementation of current and speed control s to BLDC Machine Drive. Fig. 6 Shows the Matlab/Simulink Model for speed and current control with cascasded H-bridge 5-level Inverter Topology Applied to BLDC Machine Drive Fig. 9 Five Level Inverter output voltages. Fig.10 shows the waveforms represent the output voltage of the BLDCM. Fig. 6 Closed loop simulation diagram of BLDC Motor with Current and speed Control s using cascaded H-bridge MLI Fig7 shows the current control block for BLDC motor. Fig :10 stator individual phase back emf 481 www.erpublication.org

Reduction Of Harmonics & Torque Ripples Of Bldc Motor By Cascaded H-Bridge Multi Level Inveter Using Current & Speed Control Techniques Fig.11 shows the waveforms represent the output Current of the BLDCM Fig: 15 Speed waveform at full load in Speed control Fig15 shows the speed waveform at full load in Seed control Fig:11 stator individual phase currents Fig.12 shows the Position sensor waveforms of the Back EMF of BLDCM Fig: 12 Hall effect signals Fig13 shows the speed waveform at full load in current control. Fig: 16 Electromagnetic torque at full load in Speed control Fig16 shows the electromagnetic waveform in speed control Fig: 17 and Fig:18 show the total harmonic distortion of the input voltage to the BLDCM in two operating conditions such as applying the current controller and speed controller s and analyze the total harmonic distortion. Fig: 13 Speed waveform at full load in current control Fig14 shows the electromagnetic waveform in current control Fig: 17 THD of the inverter output voltage in current controller. Fig 14 Electromagnetic torque at full load in current control Figure 11 shows the THD of the phase to phase voltage after applying the current control method to BLDCM 482 www.erpublication.org

the THD also reduces and there by performance of the machine is improved. Fig: 18 THD of the inverter output voltage in Speed controller. Fig: 19 and Fig:20 show the total harmonic distortion of the phase currents of the BLDCM in two operating conditions such as current controller and speed controller s and analyze the total harmonic distortion. Fig: 19 THD for Phase current of BLDC motor in current controller. Table no.1total observation From above results we observe that the BLDC Motor can give a better performance in speed control than current control. REFERENCES [1] Chen S, Lipo TA. Bearing currents and shaft voltages of an induction motor under hardand soft-switching inverter excitation. IEEE Trans. Ind. Appl. 1998; 34(5): 1042 1048. [2] Tolbert LM, Peng FZ, Habetler TG. Multilevel converters for large electric drives. IEEE Trans. Ind. Appl. 1999; 35(1): 36 44. [4] M. Vilathgamuwa, A. A. D. Ranjith Pcrcra and S. S. Choi, Performance improvcmcnt of the dynamic voltage restorer with closed- loop load voltage and current-mode control,ieee Transactions on Power Electronics, vol. 17, no. 5, Sept. 2002, pp. 824-834. [3]A. Albert Rajan, Dr. S. Vasantharathna. Harmonics and Torque Ripple Minimization using L-C Filter for Brushless DC Motors.International Journal of Recent Trends in Engineering, Vol 2, No. 5, November 2009. [4] J.Karthikeyan, Dr.R.Dhanasekaran. SIMULATION AND IMPLEMENTATION OF CURRENT CONTROL OF BLDC MOTOR BASED ON A COMMON DC SIGNAL.International Journal of Engineering Science and TechnologyVol. 2(6), 2010, 1632-163. [5] WaelA.Salah, DahamanIshak, Khaleel and J. Hammadi PWM SWITCHING STRATEGY FOR TORQUERIPPLE MINIMIZATION IN BLDC MOTOR Journal of ELECTRICAL ENGINEERING, VOL. 62, NO. 3, 2011, 141 146. [6] G. Cararra, S. Gardella, M. Marchesoni, R. Salutari, and G. Sciutto, A new multilevel PWMmethod: A theoretical analysis, IEEE Trans. Power Electron., vol. 7, no. 3, pp. 497 505, Jul. 1992. [7] K.N.V Prasad, G.Ranjith Kumar, T. Vamsee Kiran, G.Satyanarayana., "Comparison of different topologies of cascaded H-Bridge multilevel inverter," Computer Communication and Informatics (ICCCI), 2013 International Conference on, vol., no., pp.1,6, 4-6 Jan. 2013. [8] K. D. Hurst, T. G. Habetler, G. Griva, and F. Profumo, Zero-speed tacholess IMtorque control: Simply amatter of stator voltage integration, IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 790 795, Jul./Aug. 1998 [9] G. Satyanarayana, K.Lakshmi Ganesh, CH. Narendra Kumar, N. Srinivasa Rao Realization of Hybrid Active Power Filter Applied to BLDC Motor Drive Using Dual Instantaneous Power Theory, International Journal of Engineering Associates, Vol-1, Issue 3, p.p. 32-37, Feb, 2013. Fig: 20 THD for Phase current of BLDC motor in Speed controller. VI. CONCLUSION This paper presents the concept of Cascade H-Bridge multi 5-level inverter connected to three phase stator winding of BLDCM with current control and speed control s to improve the performance of BLDCM and reduce the torque ripples and harmonics, calculate the total harmonic distortion. The design of the inverter topology and phase shift pulse width modulating are carried out for five level cascade H bridge inverter fed BLDC motor drive and the simulation results are presented for the performance of the motor. It is also understood that when torque ripple reduces Author: Anugu Sneha, received her B.Tech degree from Tirumala Engineering College in the year 2012 and she pursuing her masters in power electronics & Electrical drives from Anurag group of institutions(autonomous), Hyderabad,Her areas of Interests include power electronics, electrical machines& industrial drives. Dr. R. Somanatham obtained his BE, ME and PhD degrees from University College of Engineering, Osmania University, Hyderabad. He worked as Vice-Principal at University College of Engineering, Osmania University, Hyderabad, India. He has 30 years teaching and Research experience. He is currently heading the Dept. Of EEE in Anurag group of institutions,hyderabad India. His research areas are Power Electronics, Drives and Machines 483 www.erpublication.org