RT9041F. 500mA, Low Voltage, LDO Regulator with External Bias Supply. General Description. Features. Applications. Ordering Information

Similar documents
RT9041E. 500mA, Low Voltage, LDO Regulator with External Bias Supply. General Description. Features. Applications. Ordering Information RT9041E-

RT9041A/B. 500mA, Low Voltage, LDO Regulator with External Bias Supply. General Description. Features. Applications. Ordering Information

RT9059A. 3A, Ultra-Low Dropout Voltage Regulator. General Description. Features. Applications. Ordering Information. Marking Information

RT A, Ultra-Low Dropout Voltage Regulator. General Description. Features. Applications. Pin Configurations. Ordering Information RT9059(- )

RT2515A. 2A, Low Input Voltage, Ultra-Low Dropout Linear Regulator with Enable. General Description. Features. Applications

RT A, Ultra-Low Dropout Voltage Regulator. General Description. Features. Applications. Pin Configurations. Ordering Information

RT2517B. 1A, 6V, Ultra-Low Dropout Linear Regulator. General Description. Features. Applications. Ordering Information. Marking Information

RT A, Low Input Voltage, Ultra-Low Dropout LDO Regulator with Enable. Features. General Description. Applications. Ordering Information

RT mA, Low Input Voltage, Low Dropout, Low Noise Ultra- Fast Without Bypass Capacitor CMOS LDO Regulator. General Description.

RT2517B. 1A, 6V, Ultra-Low Dropout Linear Regulator. Features. General Description. Applications. Ordering Information. Marking Information

RT9187C. 600mA, Ultra-Low Dropout, CMOS Regulator. General Description. Features. Applications. Ordering Information. Pin Configurations (TOP VIEW)

RT mA Dual LDO Regulator. General Description. Features. Applications. Ordering Information. Pin Configurations (TOP VIEW) Marking Information

RT V, 2μA, I Q, 100mA Low Dropout Voltage Linear Regulator. General Description. Features. Ordering Information RT2558- Applications

RT9187B. 600mA, Ultra-Low Dropout, Ultra-Fast CMOS LDO Regulator. General Description. Features. Applications. Ordering Information RT9187B

RT A, Ultra Low Dropout LDO. General Description. Features. Applications. Pin Configurations. Ordering Information RT9025-

RT9018A/B. Maximum 3A, Ultra Low Dropout Regulator. General Description. Features. Applications. Marking Information. Ordering Information

RTQ2516-QT. 2A, Low Input Voltage, Ultra-Low Dropout LDO Regulator with Enable. General Description. Features. Applications. Ordering Information

RT9053A. Low Dropout, 400mA Adjustable Linear Regulator. Features. General Description. Applications. Ordering Information RT9053A. Pin Configurations

RT2517A. 1A, 6V, Ultra Low Dropout Linear Regulator. General Description. Features. Applications. Ordering Information. Marking Information

RT μA I Q, 250mA Low-Dropout Linear Regulator. General Description. Features

RT9073A. 1μA I Q, 250mA Low-Dropout Linear Regulator. General Description. Features. Ordering Information RT9073A- Applications. Marking Information

RT9198/A. 300mA, Low Noise, Ultra-Fast CMOS LDO Regulator. General Description. Ordering Information RT9198/A- Features. Marking Information

RT mA, Low Input Voltage, Low Dropout, Low Noise Ultra- Fast Without Bypass Capacitor CMOS LDO Regulator. General Description.

RT9067. Ultra Low Power, 14V, 200mA LDO Regulator

RT mA, Low Dropout, Low Noise Ultra-Fast With Soft Start CMOS LDO Regulator. General Description. Features. Applications

RT9064. Ultra Low Power, 14V, 200mA Low-Dropout Linear Regulator. General Description. Features. Pin Configurations. Applications

RTQ2569-QA. 200mA, 36V, 2 A IQ, Low Dropout Voltage Linear Regulator. Features. General Description. Applications

RT9022. High Voltage, Low Quiescent, 60mA LDO Regulator. General Description. Features. Applications. Pin Configurations. Ordering Information

RT9066. Source/Sink DDR Termination Regulator. General Description. Features. Applications. Marking Information. Simplified Application Circuit

RT mA, Low Dropout, Low Noise Ultra-Fast Without Bypass Capacitor CMOS LDO Regulator. Features. General Description.

RT μA I Q, 300mA Low-Dropout Linear Regulator. General Description. Features. Pin Configuration. Applications

RT9043- High PSRR, Low Dropout, 400mA Adjustable LDO Regulator. Features. General Description. Applications. Ordering Information. Pin Configurations

RT mA, 0.5% Accuracy Low Dropout, Ultra Low Noise Voltage Regulator. Features. General Description. Applications. Ordering Information

RT mA, Ultra-Low Noise, Ultra-Fast CMOS LDO Regulator. General Description. Features. Applications. Ordering Information. Marking Information

RT9554A. Battery Output Current Sense Protection IC. General Description. Features. Applications. Pin Configurations. Ordering Information RT9554A

RT9089A. DDR Termination Regulator. Features. General Description. Applications. Ordering Information. Marking Information.

RT9728A. 120mΩ, 1.3A Power Switch with Programmable Current Limit. General Description. Features. Applications. Pin Configurations

RT mA, Ultra-Low Noise, Ultra-Fast CMOS LDO Regulator. General Description. Features. Applications. Ordering Information. Marking Information

RT9740A. Dual Channel, Ultra-Low Resistance Load Switch. General Description. Features. Ordering Information. Applications. Marking Information

RT A, Low Noise, Ultra High PSRR, Low-Dropout Linear Regulator. Features. General Description. Applications. Ordering Information

RT9728C. 120mΩ, 1.3A Power Switch with Programmable Current Limit. General Description. Features. Applications. Pin Configurations

RT2568. DDR Termination Regulator. Features. General Description. Applications. Marking Information. Simplified Application Circuit

RT9728A. 120mΩ, 1.3A Power Switch with Programmable Current Limit. General Description. Features. Applications. Pin Configuration

RT mA, Low Dropout, Low Noise Ultra-Fast With Soft Start CMOS LDO Regulator. General Description. Features. Applications. Ordering Information

RT V DC-DC Boost Converter. Features. General Description. Applications. Ordering Information. Marking Information

RT9085A. 1A, 5.5V, Ultra Low Dropout Linear Regulator. Features. General Description. Pin Configuration. Applications. Marking Information

RT9008 SS. Low Dropout Linear Regulator Controller with Soft-Start. General Description. Features. Ordering Information.

RT4503/A. Asynchronous Boost Converter for 10 WLEDs. Features. General Description. Ordering Information. Applications. Simplified Application Circuit

RT9070B. 70V, Low Dropout Voltage Linear Regulator. Features. General Description. Marking Information. Applications. Simplified Application Circuit

RTQ9148-QT. 20V, 350mA, Rail-to-Rail Operational Amplifier. General Description. Features. Applications. Ordering Information.

RT9148/9. 20V, 350mA, Rail-to-Rail Operational Amplifier. General Description. Features. Applications. Ordering Information. Marking Information

RT8457A. Isolated Secondary-Side LED Lighting Dimmable Current Controller. Features. General Description. Applications. Marking Information

RT9399-XX. Dual Channel Charge Pump Controller. General Description. Features. Ordering Information. Applications.

RT9824C. Smart Multi-Voltage Detector. General Description. Features. Applications. Ordering Information RT9824C. Pin Configurations

RT2526Q. DDR Termination Regulator. Features. General Description. Ordering Information RT2526Q. Applications. Pin Configurations. Marking Information

80V, Low Dropout Voltage Linear Regulator

RT CH LED Current Source Controller. General Description. Features. Ordering Information. Applications. Pin Configuration. Marking Information

RT9807. Micro-Power Voltage Detector with Manual Reset. General Description. Features. Applications. Pin Configurations. Ordering Information RT9807-

RT A, 2MHz, High Efficiency Synchronous Step-Down Converter. General Description. Features. Applications. Ordering Information

RT CH Power Management IC. General Description. Features. Applications. Pin Configurations

RT8477. High Voltage High Current LED Driver. Features. General Description. Applications. Ordering Information RT8477. Pin Configurations (TOP VIEW)

RT9167/A. Low-Noise, Fixed Output Voltage,300mA/500mA LDO Regulator. Features. General Description. Applications. Ordering Information

RT A, 2MHz, High Efficiency Synchronous Step-Down Converter. General Description. Features. Applications. Ordering Information

RT8511B 43V Asynchronous Boost WLED Driver General Description Features Wide Input Voltage Range : 2.7V to 24V High Output Voltage : up to 43V

RT8474. High Voltage Multiple-Topology LED Driver with Dimming Control. Features. General Description. Applications. Ordering Information

RT9276. Synchronous Boost Converter with Voltage Detector. General Description. Features. Applications. Ordering Information. Pin Configurations

RT9045. Cost-Effective, 1.8A Sink/Source Bus Termination Regulator. General Description. Features. Ordering Information.

RT A, 2MHz, Synchronous Step-Down Converter. General Description. Features. Applications. Ordering Information. Pin Configurations

RT9553B. High Accuracy Current/Voltage Sensing and Protection IC. Features. General Description. Applications. Ordering Information.

RT A, Hysteretic, High Brightness LED Driver with Internal Switch. General Description. Features. Applications. Ordering Information RT8472

RT9296. Synchronous Boost Converter with LDO Controller. General Description. Features. Applications. Ordering Information RT9296(- )

RT A, 2MHz, Synchronous Step-Down Converter. Features. General Description. Applications. Ordering Information. Marking Information

RT8509A. 4.5A Step-Up DC/DC Converter. General Description. Features. Applications. Ordering Information. Marking Information

RT8474A. High Voltage Multiple-Topology LED Driver with Open Detection. General Description. Features. Ordering Information.

RT5710C. 1A, 1.5MHz, 6V CMCOT Synchronous Step-Down Converter. General Description. Features. Ordering Information RT5710C.

RTQ2522A/B. 2A Ultra-Low Dropout Voltage LDO Regulators with Soft-Start. General Description. Features. Ordering Information.

RT9610C High Voltage Synchronous Rectified Buck MOSFET Driver for Notebook Computer General Description Features Drives Two N-MOSFETs

RT6208. High Efficiency, 36V 100mA Synchronous Step-Down Converter. General Description. Features. Applications. Ordering Information

RT8463. High Voltage Multi-Topology LED Driver. General Description. Features. Applications. Ordering Information. Marking Information RT8463GCP

RT mA 3-Channel Pulse Dimming Current Source LED Driver. General Description. Features. Applications. Ordering Information. Pin Configurations

RT8086B. 3.5A, 1.2MHz, Synchronous Step-Down Converter. General Description. Features. Ordering Information RT8086B. Applications. Marking Information

RT9199. Cost-Effective, 2A Peak Sink/Source Bus Termination Regulator. General Description. Features. Applications. Ordering Information RT9199

RT6150A/B. Current Mode Buck-Boost Converter. General Description. Features. Ordering Information RT6150A/B- Applications

5V Capable Low-Voltage DPDT Analog Switch

RT6208. High Efficiency, 36V 100mA Synchronous Step-Down Converter. Features. General Description. Applications. Ordering Information

RT Channel Charge Pump White LED Driver with Low Dropout Current Source. Preliminary. Features. General Description. Ordering Information

RT8723. Single-Phase Full-Wave Fan Motor Driver. Features. General Description. Ordering Information RT8723. Applications. Marking Information

RT9052. Single Channel LED Current Source Controller. Features. General Description. Applications. Ordering Information. Pin Configurations

RT9610A/B. High Voltage Synchronous Rectified Buck MOSFET Driver for Notebook Computer. General Description. Features.

1A, 1.5MHz, 6V CMCOT Synchronous Step-Down Converter

RT A, Hysteretic, High Brightness LED Driver with Internal Switch. Features. General Description. Applications. Ordering Information

RT8409. Green Mode Buck Converter. General Description. Features

RT8477A. High Voltage High Multiple-Topology Current LED Driver. General Description. Features. Applications. Ordering Information

RT9610B High Voltage Synchronous Rectified Buck MOSFET Driver for Notebook Computer General Description Features Drives Two N-MOSFETs

RT9363A. 3 Channels 90mA x1/x2 Charge Pump White LED Driver. General Description. Features. Applications

RT8010C. 1.5MHz, 1A, High Efficiency PWM Step-Down DC/DC Converter. General Description. Features. Applications. Ordering Information

High Voltage Synchronous Rectified Dual-Channel Buck MOSFET Driver for Notebook Computer. Features BOOT1 PHASE1 Q LG1 UGATE2 C15 BOOT2 PHASE2 Q LG2

RT8288A. 4A, 21V 500kHz Synchronous Step-Down Converter. General Description. Features. Applications. Ordering Information. Pin Configurations

RT6206A. 5.5A, 18V, 650kHz, ACOT TM Synchronous Step-Down Converter. General Description. Features. Applications. Ordering Information

RT8068A. 3A, 1MHz, Synchronous Step-Down Converter. General Description. Features. Applications. Ordering Information.

Transcription:

500mA, Low Voltage, LDO Regulator with External Bias Supply General Description The is a low voltage, low dropout linear regulator with an external bias supply input. The bias supply drives the gate of the internal N-MOSFET pass transistor, making these devices ideal for applications that require low voltage outputs from low voltage inputs. The provides fixed output voltage from 1V to 2V with 0.1V increments. Adjustable output voltage is available for the by using external resistors. Other features include current limit and thermal shutdown to protect regulator from fault conditions. The is available in a WDFN-8L 2x2 package. Ordering Information - Note : Any fixed output voltage version can be used as Adj output voltage version. Richtek products are : Package Type QW : WDFN-8L 2x2 Lead Plating System G : Green (Halogen Free and Pb Free) Output Voltage 10 : 1.0V/Adj 11 : 1.1V/Adj : 19 : 1.9V/Adj 20 : 2.0V/Adj RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020. Suitable for use in SnPb or Pb-free soldering processes. Features ±2% Output Voltage Accuracy No Minimum Load Current Required 1V to 5.5V Input Supply Voltage V to 5.5V Input Bias Supply Voltage PGOOD Open-Drain Output Supports Fixed/Adjustable Output Voltage Low Supply Current 5μA (max) Shutdown Supply Current RoHS Compliant and Halogen Free Applications Set Top Box Notebook Computers VID Power Supplies PDAs Cell Phones Low Dropout Regulators with External Bias Supply Pin Configurations ADJ PGOOD GND (TOP VIEW) 1 2 4 GND 9 8 7 6 5 WDFN-8L 2x2 VIN NC VDD EN Marking Information For marking information, contact our sales representative directly or through a Richtek distributor located in your area. DS9041F-0 November 2014 1

Typical Application Circuit V IN 1V to 5.5V C IN 10µF 8 VIN ADJ 1 2 R1 C OUT 10µF V OUT V DD V to 5.5V C VDD 0.1µF Chip Enable 6 5 VDD EN R2 PGOOD GND 4, 9 (Exposed pad) R 100k Function Pin Description Pin No. Pin Name Pin Function 1 Output Voltage. 2 ADJ Output Voltage Adjust Pin. Set the output voltage by the internal feedback resistors when ADJ is ground. If external feedback resistors is used, V OUT = V REF x (R1 + R2)/R2. PGOOD Power Good Open Drain Output. Ground. The exposed pad must be soldered to a large PCB and connected to 4, 9 (Exposed pad) GND GND for maximum power dissipation. 5 EN Chip Enable (Active-High). 6 VDD Supply Voltage of Control Circuitry. 7 NC No Internal Connection. 8 VIN Power Input. Function Block Diagram VIN OCP Driver OTP + - V IN Error Amplifier EN VDD UVLO 0.8V 0.7V - + Mode ADJ PGOOD GND 2 DS9041F-0 November 2014

Absolute Maximum Ratings (Note 1) Bias Supply Input Voltage, VDD --------------------------------------------------------------------------------------- 6V Supply Input Voltage, VIN ----------------------------------------------------------------------------------------------- 6V Other Input/Output Pins ------------------------------------------------------------------------------------------------- 6V Power Dissipation, P D @ T A = 25 C WDFN-8L 2x2 -------------------------------------------------------------------------------------------------------------- 0.8VW Package Thermal Resistance (Note 2) WDFN-8L 2x2, θ JA --------------------------------------------------------------------------------------------------------- 120 C/W WDFN-8L 2x2, θ JC --------------------------------------------------------------------------------------------------------- 8.2 C/W Lead Temperature (Soldering, 10 sec.) ------------------------------------------------------------------------------- 260 C Junction Temperature ----------------------------------------------------------------------------------------------------- 150 C Storage Temperature Range -------------------------------------------------------------------------------------------- 65 C to 150 C ESD Susceptibility (Note ) HBM (Human Body Model) ---------------------------------------------------------------------------------------------- 2kV Recommended Operating Conditions (Note 4) Bias Supply Input Voltage, VDD --------------------------------------------------------------------------------------- V to 5.5V Supply Input Voltage, VIN ----------------------------------------------------------------------------------------------- 1V to 5.5V Junction Temperature Range -------------------------------------------------------------------------------------------- 40 C to 125 C Ambient Temperature Range -------------------------------------------------------------------------------------------- 40 C to 85 C Electrical Characteristics (V IN Input = 1.8V, ILOAD = 1mA, COUT = 10μF, TA = 25 C unless otherwise specified) Parameter Symbol Test Conditions Min Typ Max Unit Adjustable Output Voltage Range V OUT 0.8 -- 2.5 V Bias Input Under Voltage Lockout V UVLO -- 2.7 -- V VIN Shutdown Current I SHDN 1V < V IN < 5.5V, V IN = V OUT + 0.6V -- 1 5 A Quiescent Current I Q V < V DD < 5.5V -- 160 250 A VDD Shutdown Current I SHDN V < V DD < 5.5V -- 1 5 A Regulator Characteristics Line Regulation Load Regulation V OUT / V I OUT = 10mA, 1.5V < V IN < 5.5V, IN V IN = V OUT + 0.6V V V OUT / I IN = V OUT + 0.6V, IN I LOAD = 1mA to 00mA 0.15 -- 0.15 %/V -- 0.2 1 % Fixed Output Voltage Accuracy V OUT Short ADJ to GND, I OUT = 10mA 2 -- 2 % Reference Voltage V REF I OUT = 10mA 0.784 0.8 0.816 V Dropout Voltage V DROP I OUT = 00mA, V DD V OUT 2.1V -- 200 00 I OUT = 500mA, V DD V OUT 2.1V -- 00 500 Current Limit I LIM R LOAD = 0 610 700 1400 ma Thermal-Shutdown T SD V < V DD < 5.5V -- 160 -- C Thermal-Shutdown Hysteresis T SD -- 20 -- C mv DS9041F-0 November 2014

Parameter Symbol Test Conditions Min Typ Max Unit ADJ ADJ Pin Threshold -- 0.2 -- V PGOOD Comparator Comparator Threshold % of regulated output voltage -- 88 -- % Comparator Hysteresis VHYST (Note 5) -- 10 -- mv Logic and I/O EN Input Voltage Logic-High VIH 1.6 -- -- V Logic-Low VIL -- -- 0.8 EN Input Current IEN VEN = 5V -- 12 -- A PGOOD Output Low Voltage PGOOD sinking 1mA -- -- 0.1 V PGOOD Output High Leakage Current Dynamics PGOOD Propagation Delay tpgood 0 < VPGOOD < VIN 1 -- 1 A Rising edge within 5% of regulation level 1 -- 5 ms Note 1. Stresses beyond those listed Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Note 2. θ JA is measured at T A = 25 C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θjc is measured at the exposed pad of the package. Note. Devices are ESD sensitive. Handling precaution is recommended. Note 4. The device is not guaranteed to function outside its operating conditions. Note 5. Guaranteed by Design. 4 DS9041F-0 November 2014

Typical Operating Characteristics Output Voltage vs. Temperature Reference Voltage vs. Temperature 2.20 0.84 2.15 0.8 Output Voltage (V) 2.10 2.05 2.00 1.95 1.90 Reference Voltage (V) 0.82 0.81 0.80 0.79 0.78 1.85 0.77 1.80 VDD = 5V, VIN =.V, = 2V, IOUT = 0mA 0.76 VDD = 5V, VIN =.V, VADJ = 0.8V, IOUT = 0mA 210 Quiescent Current vs. Temperature 0.90 Current Limit vs. Temperature Quiescent Current (μa)1 200 190 180 170 160 150 140 10 VDD = 5V, VIN =.V, = 2V, IOUT = 0mA Current Limit (A) 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 VDD = 5V, VIN =.V, = 2V, IOUT = 0mA Dropout Voltage vs. Output Current EN Threshold Voltage vs. Temperature 600 1.6 500 1.5 Dropout Voltage (mv) 400 00 200 100 0 125 C 25 C 40 C VDD = 5V Threshold Voltage (V) 1.4 1. 1.2 1.1 1.0 0.9 0.8 Rising Falling VDD = 5V, = 1V 0 100 200 00 400 500 Output Current (ma) DS9041F-0 November 2014 5

.0 VDD UVLO vs. Temperature 1.0 VIN UVLO vs. Temperature 2.8 0.9 UVLO (V) 2.6 2.4 Rising Falling UVLO (V) 0.8 0.7 0.6 Rising Falling 2.2 0.5 2.0 VDD = 5V, = 1V 0.4 VDD = 5V, = 1V 5 PGOOD Timing vs. Temperature Rising PGOOD Response PGOOD Timing (ms) 4 2 1 0 VDD = 5V, VIN =.V, = 1V V EN (5V/Div) V OUT (1V/Div) PGOOD (1V/Div) VDD = 5V, VIN = 4V, IOUT = 40mA Time (2.5ms/Div) Load Transient Response Line Transient Response VDD = 5V, VIN =.V, = 2V IOUT = 10mA to 0.5A V IN (V) 4 I OUT (500mA/Div) V OUT (50mV/Div) (5mV/Div) VDD = 5V, VIN = V to 4V, = 1V, IOUT = 10mA Time (100μs/Div) Time (500μs/Div) 6 DS9041F-0 November 2014

Line Transient Response EN Response V IN (V) 4 V EN (5V/Div) VDD = 5V, VIN =.V, = 1V, IOUT = 0.5A V OUT (5mV/Div) VDD = 5V, VIN = V to 4V, = 1V, IOUT = 100mA (500mV/Div) Time (500μs/Div) Time (500μs/Div) 0-20 PSRR VDD = 5V, VIN =.V to.4v, CIN = 1μF, COUT = 10μF Noise VDD = VIN = 4.5V (By Battery), = 1V, IOUT = 1mA PSRR (db) -40-60 IOUT = 10mA IOUT = 100mA (200μV/Div) -80-100 10 100 1000 1k 10000 10k 100000 100k 1000000 1M Frequency (Hz) Time (10ms/Div) Noise VDD = VIN = 4.5V (By Battery), = 1V, IOUT = 10mA V OUT (200μV/Div) Time (10ms/Div) DS9041F-0 November 2014 7

Application Information The is a low voltage, low dropout linear regulator with an external bias supply input, capable of supporting an input voltage range from 1V to 5.5V with a fixed output voltage from 1V to 2V in 0.1V increments. Supply Voltage Setting The bias supply voltage (V DD ) operates from V to 5.5V. For better efficiency, it is suggested to operate V DD at 5V when the output voltage is higher than 1V. Figure 1 shows the curves of the recommended V DD V OUT range vs. the dropout voltage (V IN V OUT ) values. Dropout Voltage vs. V DD - V OUT Dropout Voltage (mv) 500 450 400 50 00 IO = 500mA 250 200 150 IO = 00mA 100 50 0 2.0 2.2 2.4 2.6 2.8.0.2.4.6.8 4.0 V DD - V OUT (V) Figure 1. Dropout Voltage vs.v DD V OUT Output Voltage Setting The output voltage is also adjustable from 0.8V to 2.5V via the external resistive voltage divider. The voltage divider resistors can have values up to 800kΩ because of the very high impedance and low bias current of the sense comparator. The output voltage is set according to the following equation : V R1 OUT = V REF x 1 + R2 where V REF is the reference voltage with a typical value of 0.8V. Chip Enable Operation The goes into sleep mode when the EN pin is in a logic low condition. In this condition, the pass transistor, error amplifier, and band gap are all turned off, reducing the supply current to 1μA (typ.). The EN pin can be directly tied to VIN to keep the part on. Current Limit The contains an independent current limit circuitry, which monitors and controls the pass transistor s gate voltage, limiting the output current to 0.7A (typ.). C IN and C OUT Selection Like any low dropout regulator, the external capacitors of the must be carefully selected for regulator stability and performance. Using a capacitor of at least 10μF is suitable. The input capacitor must be located at a distance of not more than 0.5 inch from the input pin of the IC. Any good quality ceramic capacitor can be used. However, a capacitor with larger value and lower ESR (Equivalent Series Resistance) is recommended since it will provide better PSRR and line transient response. The is designed specifically to work with low ESR ceramic output capacitor for space saving and performance consideration. Using a ceramic capacitor with value at least 10μF and ESR larger than 1mΩ on the output ensures stability. Nevertheless, the can still work well with other types of output capacitors due to its wide range of stable ESR. Figure 2 shows the allowable ESR range as a function of load current for various output capacitance. Output capacitors with larger capacitance can reduce noise and improve load transient response, stability, and PSRR. The output capacitor should be located at a distance of not more than 0.5 inch from the output pin of the. 8 DS9041F-0 November 2014

Region of Stable COUT ESR ( Ω ) 100.0 100 Region of Stable C OUT ESR vs. Load Current Unstable Range 10.0 1.01 Stable Range 0.1 0.01 VDD = 5V, VIN = 2.5V, = 1V, CVDD = 0.1μF, CIN = COUT = 10μF/X7R 0.001 0.0 0 100 200 00 400 500 Load Current (ma) Figure 2. Region of Stable C OUT ESR vs. the Load Current Thermal Considerations For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula : The maximum power dissipation depends on the operating ambient temperature for fixed T J(MAX) and thermal resistance, θ JA. The derating curve in Figure allows the designer to see the effect of rising ambient temperature on the maximum power dissipation. Maximum Power Dissipation (W)1 0.9 0.8 0.7 0.6 0.5 0.4 0. 0.2 0.1 0.0 Four-Layer PCB 0 25 50 75 100 125 Ambient Figure. Derating Curve of Maximum Power Dissipation P D(MAX) = (T J(MAX) T A ) / θ JA where T J(MAX) is the maximum junction temperature, T A is the ambient temperature, and θ JA is the junction to ambient thermal resistance. For recommended operating condition specifications, the maximum junction temperature is 125 C. The junction to ambient thermal resistance, θ JA, is layout dependent. For WDFN-8L 2x2 packages, the thermal resistance, θ JA, is 120 C/W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at T A = 25 C can be calculated by the following formula : P D(MAX) = (125 C 25 C) / (120 C/W) = 0.8W for WDFN-8L 2x2 package DS9041F-0 November 2014 9

Outline Dimension D D2 L E E2 1 SEE DETAIL A e b 2 1 2 1 A A1 A DETAIL A Pin #1 ID and Tie Bar Mark Options Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated. Symbol Dimensions In Millimeters Dimensions In Inches Min Max Min Max A 0.700 0.800 0.028 0.01 A1 0.000 0.050 0.000 0.002 A 0.175 0.250 0.007 0.010 b 0.200 0.00 0.008 0.012 D 1.950 2.050 0.077 0.081 D2 1.000 1.250 0.09 0.049 E 1.950 2.050 0.077 0.081 E2 0.400 0.650 0.016 0.026 e 0.500 0.020 L 0.00 0.400 0.012 0.016 W-Type 8L DFN 2x2 Package Richtek Technology Corporation 14F, No. 8, Tai Yuen 1 st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (886)5526789 Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries. 10 DS9041F-0 November 2014