Research Article A High-Isolation Dual-Polarization Substrate-Integrated Fabry-Pérot Cavity Antenna

Similar documents
Research Article A Design of Wide Band and Wide Beam Cavity-Backed Slot Antenna Array with Slant Polarization

Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems

Research Article Modified Dual-Band Stacked Circularly Polarized Microstrip Antenna

Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications

Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure

Research Article CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

Research Article A Miniaturized Triple Band Monopole Antenna for WLAN and WiMAX Applications

Research Article Miniaturized Circularly Polarized Microstrip RFID Antenna Using Fractal Metamaterial

Research Article Ka-Band Slot-Microstrip-Covered and Waveguide-Cavity-Backed Monopulse Antenna Array

Research Article Harmonic-Rejection Compact Bandpass Filter Using Defected Ground Structure for GPS Application

Research Article Novel Design of Microstrip Antenna with Improved Bandwidth

Research Article A Miniaturized Meandered Dipole UHF RFID Tag Antenna for Flexible Application

Research Article Cross-Slot Antenna with U-Shaped Tuning Stub for Ultra-Wideband Applications

Research Article Small-Size Meandered Loop Antenna for WLAN Dongle Devices

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler

Research Article Compact Multiantenna

Research Article Theoretical and Experimental Results of Substrate Effects on Microstrip Power Divider Designs

Research Article Bandwidth Extension of a Printed Square Monopole Antenna Loaded with Periodic Parallel-Plate Lines

Research Article Wideband Microstrip 90 Hybrid Coupler Using High Pass Network

Research Article Integrated Filtering Microstrip Duplex Antenna Array with High Isolation

Research Article A Compact CPW-Fed UWB Antenna with Dual Band-Notched Characteristics

Research Article A Broadband Single-Feed Circularly Polarized Patch Antenna with Wide Beamwidth

Research Article Circularly Polarized Microstrip Yagi Array Antenna with Wide Beamwidth and High Front-to-Back Ratio

Research Article CPW-Fed Slot Antenna for Wideband Applications

Research Article Very Compact and Broadband Active Antenna for VHF Band Applications

Research Article A Multibeam Antenna Array Based on Printed Rotman Lens

Research Article High Efficiency and Broadband Microstrip Leaky-Wave Antenna

Research Article Embedded Spiral Microstrip Implantable Antenna

Research Article Design of a Novel UWB Omnidirectional Antenna Using Particle Swarm Optimization

Research Article Compact Antenna with Frequency Reconfigurability for GPS/LTE/WWAN Mobile Handset Applications

Dual-slot feeding technique for broadband Fabry- Perot cavity antennas Konstantinidis, Konstantinos; Feresidis, Alexandros; Hall, Peter

Design of Substrate-Integrated Waveguide Slot Antenna with AZIM Coating

Jae-Hyun Kim Boo-Gyoun Kim * Abstract

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS

Research Article A High Gain Omnidirectional Antenna Using Negative Permeability Metamaterial

COMPACT WIDE-SLOT TRI-BAND ANTENNA FOR WLAN/WIMAX APPLICATIONS

Research Article Millimeter Wave Fabry-Perot Resonator Antenna Fed by CPW with High Gain and Broadband

Low-Profile Fabry-Pérot Cavity Antenna with Metamaterial SRR Cells for Fifth Generation Systems

Research Article Yagi Array of Microstrip Quarter-Wave Patch Antennas with Microstrip Lines Coupling

Broadband Circular Polarized Antenna Loaded with AMC Structure

Research Article BCB-Si Based Wide Band Millimeter Wave Antenna Fed by Substrate Integrated Waveguide

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots

Research Article A Broadband Circularly Polarized Stacked Probe-Fed Patch Antenna for UHF RFID Applications

Research Article SAR Reduction Using Integration of PIFA and AMC Structure for Pentaband Mobile Terminals

Design of a Short/Open-Ended Slot Antenna with Capacitive Coupling Feed Strips for Hepta-Band Mobile Application

DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR

A Wideband Dual-polarized Modified Bowtie Antenna for 2G/3G/LTE Base-station Applications

Research Article Low-Profile Repeater Antenna with Parasitic Elements for On-On-Off WBAN Applications

Application Article Improved Low-Profile Helical Antenna Design for INMARSAT Applications

A Pair Dipole Antenna with Double Tapered Microstrip Balun for Wireless Communications

New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications

Design and Analysis of High Gain Wideband Antennas Using Square and Circular Array of Square Parasitic Patches

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

Research Article A Novel CP Horn Antenna with Switchable Polarization by Single Port Feeding

Research Article A Novel SIW H-Plane Horn Antenna Based on Parabolic Reflector

THE DESIGN OF A DUAL-POLARIZED SMALL BASE STATION ANTENNA WITH HIGH ISOLATION HAVING DIELECTRIC FEEDING STRUCTURE

High Gain and Wideband Stacked Patch Antenna for S-Band Applications

A Broadband Omnidirectional Antenna Array for Base Station

A Compact Dual-Polarized Antenna for Base Station Application

Research Article Quad Band Handset Antenna for LTE MIMO and WLAN Application

A Broadband Reflectarray Using Phoenix Unit Cell

Research Article Triband Omnidirectional Circularly Polarized Dielectric Resonator Antenna with Top-Loaded Alford Loop

Design of center-fed printed planar slot arrays

Design of Low-Index Metamaterial Lens Used for Wideband Circular Polarization Antenna

Broadband and Gain Enhanced Bowtie Antenna with AMC Ground

High gain W-shaped microstrip patch antenna

Dual-band MIMO antenna using double-t structure for WLAN applications

Research Article A MIMO Reversed Antenna Array Design for gsm1800/td-scdma/lte/wi-max/wilan/wifi

COMPACT TRIPLE-BAND MONOPOLE ANTENNA WITH C-SHAPED AND S-SHAPED MEANDER STRIPS FOR WLAN/WIMAX APPLICATIONS

A Simple Dual-Wideband Magneto-Electric Dipole Directional Antenna

A Compact Wideband Slot Antenna for Universal UHF RFID Reader

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China

Research Article A UWB Band-Pass Antenna with Triple-Notched Band Using Common Direction Rectangular Complementary Split-Ring Resonators

Low-Profile Wideband Circularly Polarized Patch Antenna Using Asymmetric Feeding

Wideband Double-Layered Dielectric-Loaded Dual-Polarized Magneto-Electric Dipole Antenna

A Dual-Polarized MIMO Antenna with EBG for 5.8 GHz WLAN Application

COMPACT SLOT ANTENNA WITH EBG FEEDING LINE FOR WLAN APPLICATIONS

Compact and Low Profile MIMO Antenna for Dual-WLAN-Band Access Points

A CPW-Fed Dual-Band Slot Antenna with Circular Polarization

Broadband low cross-polarization patch antenna

Design of a Wideband Planar Microstrip-Fed Quasi-Yagi Antenna

A Beam Switching Planar Yagi-patch Array for Automotive Applications

Research Article Design of Compact 4 4 UWB-MIMO Antenna with WLAN Band Rejection

Research Article Compact and Wideband Parallel-Strip 180 Hybrid Coupler with Arbitrary Power Division Ratios

Chapter 7 Design of the UWB Fractal Antenna

Research Article Effect of Parasitic Element on 408 MHz Antenna for Radio Astronomy Application

DESIGN OF TRI-BAND PRINTED MONOPOLE ANTENNA FOR WLAN AND WIMAX APPLICATIONS

Printed MSA fed High Gain Wide band Antenna using Fabry Perot Cavity Resonator

Wide Slot Antenna with Y Shape Tuning Element for Wireless Applications

Broadband and High Efficiency Single-Layer Reflectarray Using Circular Ring Attached Two Sets of Phase-Delay Lines

Research Article Study on Millimeter-Wave Vivaldi Rectenna and Arrays with High Conversion Efficiency

Research Article Novel Notched UWB Filter Using Stepped Impedance Stub Loaded Microstrip Resonator and Spurlines

Research Article Design and Analysis of Printed Yagi-Uda Antenna and Two-Element Array for WLAN Applications

Research Article Wideband Dual-Element Antenna Array for MIMO Mobile Phone Applications

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION

Research Article Suppression of Cross-Polarization of the Microstrip Integrated Balun-Fed Printed Dipole Antenna

Research Article Realization of Negative Group Delay Network Using Defected Microstrip Structure

Transcription:

Antennas and Propagation Volume 215, Article ID 265962, 6 pages http://dx.doi.org/1.1155/215/265962 Research Article A High-Isolation Dual-Polarization Substrate-Integrated Fabry-Pérot Cavity Antenna Chang Chen, Bo-Liang Liu, Ling Ji, and Wei-Dong Chen Key Laboratory of Electromagnetic Space Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 2327, China Correspondence should be addressed to Chang Chen; chench@ustc.edu.cn Received 27 June 214; Revised 23 October 214; Accepted 14 November 214 Academic Editor: Giuseppe Mazzarella Copyright 215 Chang Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A dual-polarization substrate-integrated Fabry-Pérot cavity (SI-FPC) antenna is presented in this paper. The patch embedded in SI-FPC is excited with a near-field coupled feeding structure for V-polarization and with a slot-coupled feeding structure for H- polarization.thefeedingstructuresareseparatedbyagroundplanetoimprovetheisolationbetweentheports.asadesignexample, an antenna operating at 1. GHz is fabricated and measured. A high degree of port isolation (< 4dB)over the whole operating bandwidth (9.5 1.2 GHz) and good cross-polarization level (>25 db) can be achieved. 1. Introduction Dual-polarized antennas have been widely used in wireless communication systems to suppress multipath propagation effects and reduce installation costs [1, 2]. Such antennas are usuallydesignedasarrayswithhigh-gainpropertytoexecute long distance transmission with a lower power. In [2],a 2 4 electromagnetically coupled patch array is well designed, but thecircuitlossesandmutualcouplingbringtheeffectivearray gain from 16.2 dbi to 12.7 dbi. It is desirable to seek singleaperturestructurewithhighgaintoeliminatethefeedloss and complexity. Fabry-Pérot cavity (FPC) antenna is used to satisfy high gain requirement in a limited aperture [3]. Former studies have designed dual-band air-filled FPC antennas with two orthogonal linear polarizations [4, 5]. However, the stiffness of air-filled cavity structure cannot be guaranteed. What is more, the minimum height of air-filled FPC is λ /2 due to the resonant condition. Fully substrate-integrated FPC (SI-FPC) [6, 7] is presented to realize a high-gain antenna with lower profile and better mechanical robustness. In [8], subwavelength SI-FPC applies the AMC sheet as a partially reflective surface. The profile of the antenna is kept at only λ /9 and the realized gain canstillachieve12dbi.tothebestofourknowledge,there is no dual-polarization antenna based on SI-FPC technology reported in the literature. In this paper, we present an SI-FPC antenna for realization of a high-gain dual-polarization antenna with high isolation due to the separation of the feeding structures. The primary radiation patch embedded in the cavity is fed by a smaller patch with a two-branch feeding strip for vertical polarization and by a microstrip line under a metallic ground plane through a crossed slot for horizontal polarization. The prototype operating at 1. GHz is designed with fullwave simulation and validated experimentally. The proposed antenna is compared to previous works [4, 5] to evaluate its performance. Asaresult,theproposedantennasuccessfullyachieves high isolation, high gain, and broader bandwidth with a simple structure. 2. Antenna Design To design a proper FPC for the proposed antenna, the configurations of PRS and cavity are designed first. Using a ray optics model for infinite PRS [9], the directivity is attained by multiplying wave reflections inside the cavity. For the FP

2 Antennas and Propagation PRS array H p w Patch Upper feed Slot Gnd Lower feed H 1 H 2 H 3 W d W d Figure 1: The prototype of the SI-FPC antenna. cavity fully filled with air between the PRS and ground, the resonance condition is π + φ prs 4πh λ =2Nπ, N=,±1,±2, (1) where φ prs and π are the reflection phase of PRS and ground plane, respectively, and h indicates the thickness of the FPC. IfPRSismadeofasinglelayerofmetallicpatches,withthe reflection phase close to π, the lowest cavity height is about λ /2. Figure 1 shows the proposed antenna comprised of a partial reflective surface (PRS) and a dual-polarization patch embedded at the center of Fabry-Pérot cavity (FPC) with detailed dimensions in Table 1. The cavity is fully integrated by multilayered dielectric boards (Rogers RT588, ε r = 2.2, tan δ =.9) for low antenna profile and easy fabrication compared to air-filled FPC. The overall dimension of the antenna is 63.4 63.4 12.1 mm (or 2.1 2.1.4λ ). The height of the FPC antenna is about 2% lower than the airfilled FPC design. The PRS is mounted on the top substrate and is actually formed by a 7 7 metallic square patch array as shown in Figure 1. The reflective phase of PRS is determined by the unit cell period p and the size of square patch w.onthetop of the second board a 9 9mm 2 patch radiator operating at 1 GHz is embedded. The dual-polarized feeding structure of the patch radiator is built on the two bottom substrates and excites two orthogonal modes of TE1 and TE1 in the patch. To achieve a high isolation in the whole operating band, the electric fields of dual polarizations are excited symmetrically to keep them strictly orthogonal and the strong coupling between two input lines in the cavity is eliminated. Therefore, the radiation patch is fed by two symmetrical feeding structures printed on different layers and separated by a metallic ground plane with a crossed slot as shown in Figure 2. Compared to the former dual-polarization antennas [1], this design can eliminate the use of an air bridge for bridging two input lines on the same layer. Hence, the isolation is improved and the structure is easier to fabricate. For the upper layer, it consists of a smaller patch whose length is X 2 and a two-branch feeding strip at the edge of the patch. Table 1: Antenna parameters (unit: millimeter). Parameter Value Parameter Value Parameter Value H 1.5 X 1 9 L S 7 H 1.58 X 2 8 L 1 1.2 H 2.58 W 1.6 L 2 9 H 3.58 W 2 1.2 L 3 1.4 p 9 W 3 7 L 4 5.5 w 8.4 W 4 1.5 L 5 25 W d 63.4 W S.5 The smaller patch excites the radiating patch through nearfield coupling and the two-branch feeding strip structure is introduced for higher polarized isolation. For the lower layer, a fork-like feedline under the ground plane excites the radiation patch through a centered crossed slot and a high degree of geometrical and electrical symmetry isachieved.byexcitingthepatchsymmetrically,theelectric fields induced through the slot are with the same direction and with similar amplitude. As a consequence, the linear polarization of H-polarization port is more prominent along y-direction. The purity of the linear polarization can be verified by the distribution of surface currents on the patch which is shown in Figure 3. It is shown that the two linear polarizations are strictly orthogonal and the current at Port1 excited by Port2 is extremely small and vice versa. A high isolation (< 4 db) between two ports over the entire operating band is achieved. 3. Results and Discussions The antenna was fabricated, as shown in Figure 4.Thecavity is substrate-integrated by a multilayered dielectric board (Rogers RT588, ε r = 2.2, tanδ =.9) withtheoverall dimension of 63.4 mm 63.4 mm 12.1 mm (2.1 2.1.4λ ). A 7 7 square patch array is etched on the top surfaces of a 3.125 mm thick Rogers RT588 substrate. A total of seven Rogers RT588 substrates are assembled together to form the proposed antenna. Since a thick substrate with the height of about 1.5 mm is difficult to manufacture and costly, the gap of FPC between radiator patch and PRS is filled with

Antennas and Propagation 3 X1 X2 W1 Wd W3 Port2 W4 W2 (a) (b) Ws L1 Slot L2 L4 Ls L5 L3 Port1 Gnd (c) (d) Figure 2: The feeding structure of the SI-FPC antenna: (a) patch radiator, (b) upper feed, (c) slot ground plane, and (d) lower feed. A/m (log) 26 139 93.6 62.9 42.2 28.2 18.8 12.4 8.13 5.23 3.27 1.95 1.5 y.452 z A/m (log) 26 139 93.6 62.9 42.2 28.2 18.8 12.4 8.13 5.23 3.27 1.95 1.5 y.452 z (a) x (b) Figure 3: Surface current distributions on the patch radiator: (a) vertical polarization and (b) horizontal polarization. x

4 Antennas and Propagation Table 2: Comparison among the proposed antenna and former results. Frequency/GHz Size/λ Isolation/dB Cross-polarization/dB BW/% Gain/dBi This work 1. 2.1 2.1.4 < 4 25 7.1 15.8 [4] 1.25 5.4 5.4.5 < 22 3/ 27 4.9 18. [5] 5.2 3. 3..4 N/A 3/ 21 5.1 14.5 Reflection coefficient (db) 1 2 3 4 2 4 6 Isolation (db) 5 9.4 9.6 9.8 1. 1.2 1.4 V port simulated H port simulated V port measured Frequency (GHz) H port measured Isolation simulated Isolation measured 8 Figure 4: The photograph of the fabrication SI-FPC antenna. Figure 5: Measured and simulated return loss and isolation of the prototype SI-FPC antenna. four separate substrates, three of which are 3.125 mm and oneis1.13mmhigh.allofthesubstratesaretightenedwith eachotherbygluesandbolts.thestiffnessoftheantennais experimentally validated. In Figure 5, the measured impedance bandwidth is shown larger than 8.3% (9.44 1.26 GHz) for both ports. The resonant frequency shift of 2% between measured and simulated resultsisduetothefabricationtolerance.moreover,the simulated and measured isolation between two ports is more than 4 db throughout the operating bandwidth. The difference between measured and simulated isolation after 9.9 GHz is due to the very low measured signal level at this region, for which the VNA might not be accurate enough to measure signals at such a level (< 5 db). Figure 6 presents the measured gain of both polarizations. The maximum gain is 15.5 dbi at 1. GHz for V-polarization (fed by Port1) and 14.9 dbi at 9.8 GHz for H-polarization (fed by Port2). Compared to simulated results, the gain loss of 1dBiscausedbytheair-gapanddisplacementofdielectric sheets during the prototype assembling. The measured 3 db gain bandwidth of realized gain is about 7.1% (9.5 1.2 GHz). Therefore, the common bandwidth is about 7.1% based on measured results. Figure 7 presentsthemeasurede-planeandh-planeradiation patterns, V-polarization and H-polarization at 9.8 GHz, which are the frequencies of the maximum gain. The crosspolarization level is better than 25 db within measured 3 db beamwidth of 24.1 for E-plane and 21.4 for H-plane. The side Realized gain (dbi) 18 16 14 12 1 8 6 9.4 9.6 9.8 1. 1.2 1.4 1.6 Frequency (GHz) V port simulated H port simulated V port measured H port measured Figure 6: Measured and simulated realized gain of the prototype SI-FPC antenna. lobe level is about 1dBbecauseofundesiredsurfacewaveat the edges of the cavity. The front-to-back ratio of the antenna is about 15 db. To evaluate the performance, Table 2 shows the comparison between the proposed antenna and previous works [4, 5]. The proposed antenna is substrate-integrated and operates at a single frequency for both polarizations, while the exhibiting antenna designs are air-filled and operate

Antennas and Propagation 5 33 3 33 3 1 3 6 1 3 6 2 2 3 27 9 3 27 9 2 2 1 24 12 1 24 12 21 18 15 21 18 15 (a) (b) 33 3 33 3 1 3 6 1 3 6 2 2 3 27 9 3 27 9 2 2 1 24 12 1 24 12 21 18 15 21 18 15 Copolar, E-plane Cross-polar, E-plane (c) Copolar, H-plane Cross-polar, H-plane (d) Figure 7: Measured radiation patterns at 9.8 GHz: (a) Port1 E-plane, (b) Port1 H-plane, (c) Port2 E-plane, and (d) Port2 H-plane. in dual frequency bands. The measured cross-polarization, isolation, and operating bandwidth of two ports of these antennas are compared in Table 2. The result shows that the proposed antenna not only achieves low cross-polarization and high isolation but also widens the bandwidth, which is the major bottleneck of FPC antenna technology for wideband application. 4. Conclusion A dual-polarization substrate-integrated Fabry-Pérot cavity antenna with near-field-coupled and slot-coupled feeding structures for different ports was presented in this paper. The symmetrical feeding structure of the proposed antenna contributes to purely linear polarization and high isolation (>4 db). The antenna prototype is fabricated for verification and the measured results agree with the simulated results. The measured impedance bandwidth is larger than 8.3% (9.44 1.26 GHz) for both ports and the maximum gain is 15.5 dbi for V-polarization and 14.9 dbi for H-polarization. The proposed antenna has a great potential for high gain and dual-polarization applications due to its mechanical robustness and simple structure. Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper.

6 Antennas and Propagation Acknowledgment This work is supported by the Youth Innovation Foundation of Ministry of Education of China (no. WK21618). References [1] B. Lindmark and M. Nilsson, On the available diversity gain from different dual-polarized antennas, IEEE Journal on Selected Areas in Communications, vol.19,no.2,pp.287 294, 21. [2] C.T.P.Song,A.Mak,B.Wong,D.George,andR.D.Murch, Compact low cost dual polarized adaptive planar phased array for WLAN, IEEE Transactions on Antennas and Propagation, vol. 53, no. 8, pp. 246 2416, 25. [3] G. von Trentini, Partially reflecting sheet arrays, IEEE Transactions on Antennas and Propagation,vol.4,no.4,pp.666 671, 1956. [4] H. Moghadas, M. Daneshmand, and P. Mousavi, A dual-band high-gain resonant cavity antenna with orthogonal polarizations, IEEE Antennas and Wireless Propagation Letters,vol.1, pp. 122 1223, 211. [5] Z.-B. Weng, Y. Song, Y.-C. Jiao, and F.-S. Zhang, A directive dual-band and dual-polarized antenna with zero index metamaterial, Microwave and Optical Technology Letters,vol.5,no. 11, pp. 292 294, 28. [6]B.Zhu,Z.N.Chen,andY.Feng, Fullysubstrate-integrated high-gain thin Fabry-Perot cavity antennas, in Proceedings of the Asia-Pacific Microwave Conference, pp. 62 65, Melbourne, Australia, December 211. [7]L.Ji,J.Wang,W.Chen,andC.Chen, Substrate-integrated Fabry-Pérot cavity antenna fed by slot-coupled patch array for directivity enhancement, in Proceedings of the 3rd Asia- Pacific Microwave Conference (APMC 13),pp.167 169,Seoul, Republic of Korea, November 213. [8]Y.Sun,Z.N.Chen,Y.Zhang,H.Chen,andT.S.P.See, Subwavelength substrate-integrated Fabry-Pérot cavity antennas using artificial magnetic conductor, IEEE Transactions on Antennas and Propagation,vol.6,no.1,pp.3 35,212. [9] A. P. Feresidis, G. Goussetis, S. Wang, and J. C. Vardaxoglou, Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas, IEEE Transactions on Antennas and Propagation,vol.53,no.1,pp.29 215,25. [1] M. Barba, A high-isolation, wideband and dual-linear polarization patch antenna, IEEE Transactions on Antennas and Propagation,vol.56,no.5,pp.1472 1476,28.

Rotating Machinery Engineering Volume 214 The Scientific World Journal Volume 214 Distributed Sensor Networks Sensors Volume 214 Volume 214 Volume 214 Control Science and Engineering Advances in Civil Engineering Volume 214 Volume 214 Submit your manuscripts at Electrical and Computer Engineering Robotics Volume 214 Volume 214 VLSI Design Advances in OptoElectronics Navigation and Observation Volume 214 Chemical Engineering Volume 214 Volume 214 Active and Passive Electronic Components Antennas and Propagation Aerospace Engineering Volume 214 Volume 214 Volume 214 Modelling & Simulation in Engineering Volume 214 Volume 214 Shock and Vibration Volume 214 Advances in Acoustics and Vibration Volume 214