AMMC KHz 40 GHz Traveling Wave Amplifier

Similar documents
Data Sheet. AMMC GHz Amplifier. Description. Features. Applications

Features. Applications. Symbol Parameters/Conditions Units Min. Max.

Features. Applications

AMMC GHz Output x2 Active Frequency Multiplier

Data Sheet AMMC GHz Output 2 Active Frequency Multiplier. Description. Features. Applications

Data Sheet AMMC GHz Driver Amplifier. Features. Description. Applications

Data Sheet. AMMC GHz 0.2 W Driver Amplifier. Features. Description. Applications

Data Sheet AMMC KHz 80 GHz TWA. Description. Features. Typical Performance (Vd=5V, Idsq=0.1A) Component Image.

20 40 GHz Amplifier. Technical Data HMMC-5040

MMA C 30KHz-50GHz Traveling Wave Amplifier Data Sheet

MMA D 30KHz-50GHz Traveling Wave Amplifier With Output Power Detector Preliminary Data Sheet

2 3 ACG1 ACG2 RFIN. Parameter Min Typ Max Units Frequency Range

Keysight TC GHz High Power Output Amplifier

2 3 ACG1 ACG2 RFIN. Parameter Min Typ Max Units Frequency Range

CMD GHz Low Noise Amplifier. Features. Functional Block Diagram. Description

HMMC-1002 DC 50 GHz Variable Attenuator. Data Sheet

DC to 30GHz Broadband MMIC Low-Noise Amplifier

DC to 30GHz Broadband MMIC Low-Power Amplifier

CMD GHz Low Noise Amplifier. Functional Block Diagram. Features. Description

DC to 30GHz Broadband MMIC Low-Power Amplifier

20-43 GHz Double-Balanced Mixer and LO-Amplifier

CMD217. Let Performance Drive GHz GaN Power Amplifier

CMD GHz Distributed Driver Amplifier. Features. Functional Block Diagram. Description

3 4 ACG1 ACG2. Vgg2 2 RFIN. Parameter Min Typ Max Units Frequency Range

CMD GHz Distributed Low Noise Amplifier RFIN

MAAP Power Amplifier, 15 W GHz Rev. V1. Features. Functional Schematic. Description. Pin Configuration 2. Ordering Information

CMD GHz Driver Amplifier. Features. Functional Block Diagram. Description

CMD GHz Low Noise Amplifier. Functional Block Diagram. Features. Description

Parameter Min Typ Max Units Frequency Range

CMD GHz Low Noise Amplifier

DC to 45 GHz MMIC Amplifier

Data Sheet. VMMK GHz Positive Gain Slope Low Noise Amplifier in SMT Package. Features. Description

DC to 30GHz Broadband MMIC Low-Noise Amplifier

ENGDA Wideband Distributed Amplifier, DIE, 0.8 to 20 GHz ENGDA Features. Typical Applications. Description. Functional Block Diagram

CMD GHz GaN Low Noise Amplifier. Features. Functional Block Diagram. Description

3 4 ACG1 ACG2. 2 Vgg2 RFIN. Parameter Min Typ Max Units. Frequency Range DC - 24 GHz. Gain 18 db. Noise Figure 2.5 db. Output P1dB 25 dbm

MGA GHz 3 V, 17 dbm Amplifier. Data Sheet. Features. Description. Applications. Surface Mount Package. Simplified Schematic

CMD282. DC-40 GHz 2-bit Digital Attenuator. Features. Functional Block Diagram. Description

2 GHz to 30 GHz, GaAs, phemt, MMIC, Low Noise Amplifier HMC8402

Parameter Min Typ Max Units Frequency Range

Data Sheet. MGA GHz 3 V, 14 dbm Amplifier. Description. Features. Applications. Simplified Schematic

CMD GHz GaN Low Noise Amplifier. Features. Functional Block Diagram. Description

HMC-AUH232 MICROWAVE & OPTICAL DRIVER AMPLIFIERS - CHIP. GaAs HEMT MMIC MODULATOR DRIVER AMPLIFIER, DC - 43 GHz. Typical Applications.

MGA Low Noise Amplifier. Data Sheet. 42x. Features. Description. Applications. Surface Mount Package SOT-343 /4-lead SC70. Simplified Schematic

MGA Low Noise Amplifier. Data Sheet. Features. Description. Applications. Surface Mount Package SOT-343 /4-lead SC70. Simplified Schematic

1W High Linearity and High Efficiency GaAs Power FETs

Features. Noise Figure db Supply Current (Idd) ma Supply Voltage (Vdd) V

Application Note 5012

Application Note 5011

Data Sheet. VMMK GHz Variable Gain Amplifier in SMT Package. Features. Description. Specifications (6 GHz, Vdd = 5 V, Zin = Zout = 50 Ω)

DC to 28 GHz, GaAs phemt MMIC Low Noise Amplifier HMC8401

PRELIMINARY DATASHEET

Keysight Technologies HMMC GHz High-Gain Amplifier

CMD GHz Active Frequency Doubler. Features. Functional Block Diagram. Description

Data Sheet. AMMC GHz 1W Power Amplifier. Features. Description. Applications

87x. MGA GHz 3 V Low Current GaAs MMIC LNA. Data Sheet

8 11 GHz 1 Watt Power Amplifier

DC-20 GHz SP4T Non-reflective Switch

MGA GHz 3 V, 17 dbm Amplifier. Data Sheet

81 GHz to 86 GHz, E-Band Power Amplifier With Power Detector HMC8142

DC-20 GHz Distributed Power Amplifier

Data Sheet. HMMC-5200 DC 20 GHz HBT Series Shunt Amplifier. Features. Description

Features. = +25 C, Vdd 1, 2, 3 = +3V

Features. = +25 C, Vdd1, Vdd2 = +5V

Features. = +25 C, Vdd = 5V, Idd = 85mA*

GaAs, phemt, MMIC, Power Amplifier, HMC1126. Data Sheet FEATURES FUNCTIONAL BLOCK DIAGRAM APPLICATIONS GENERAL DESCRIPTION

Data Sheet. ALM MHz 870 MHz Low Noise, High Linearity Amplifier Module with Fail-Safe Bypass Feature. Features.

Features OBSOLETE. Output Third Order Intercept (IP3) [2] dbm Total Supply Current ma

Features. DC - 2 GHz GHz Supply Current (Idd) 400 ma

Application Note 1360

Features. = +25 C, Vdd 1, 2, 3 = +3V

8-18 GHz Wideband Low Noise Amplifier

Features. = +25 C, Vdd = Vdd1 = Vdd2 = Vdd3 = Vdd4 = Vdd5 = +7V, Idd = 1200mA [1]

Features. = +25 C, Vdd = 5V, Idd = 200 ma*

RF1. Parameter Min Typ Max Units Frequency Range

FEATURES DESCRIPTION ABSOLUTE MAXIMUM RATINGS. T AMB = +25 C ( Unless otherwise specified )

HMC994A AMPLIFIERS - LINEAR & POWER - CHIP. GaAs phemt MMIC 0.5 WATT POWER AMPLIFIER, DC - 30 GHz. Features. Typical Applications

Features. = +25 C, Vdd = 5V

HMC998. Amplifiers - Linear & Power - Chip. GaAs phemt MMIC 2 WATT POWER AMPLIFIER, GHz. Electrical Specifications, T A.

5-20GHz MMIC Amplifier with Integrated Bias

9-10 GHz LOW NOISE AMPLIFIER

Data Sheet. AMMP GHz High Gain Amplifier in SMT Package. Description. Features. Applications. Package Diagram. Functional Block Diagram

1-22 GHz Wideband Amplifier

MA4AGSW2. AlGaAs SP2T PIN Diode Switch. MA4AGSW2 Layout. Features. Description. Absolute Maximum Ratings TA = +25 C (Unless otherwise specified)

Features. = +25 C, With 0/-5V Control, 50 Ohm System

GaAs phemt MMIC Low Noise Amplifier, 0.3 GHz to 20 GHz HMC1049

Parameter Frequency Typ Min (GHz)

Features. = +25 C, With 0/-5V Control, 50 Ohm System

MMA R4 30KHz-50GHz Traveling Wave Amplifier Data Sheet October 2012

Data Sheet. AMMP to 32 GHz GaAs Low Noise Amplifier. Description. Features. Specifications (Vd=3.0V, Idd=65mA) Applications.

Features. = +25 C, Vdd= 5V, Idd= 60 ma*

Features. = +25 C, Vdd 1, 2, 3, 4 = +3V

Features. = +25 C, Vdd 1, 2, 3 = +3V

HMC906A. Amplifiers - Linear & Power - CHIP. Electrical Specifications, T A. Typical Applications. Features. General Description. Functional Diagram

Features OUT E S T CODE. = +25 C, Vdd= 8V, Idd= 60 ma*

Features. = +25 C, Vdd = +6V, Idd = 375mA [1]

5 6 GHz 10 Watt Power Amplifier

50 GHz to 95 GHz, GaAs, phemt, MMIC, Wideband Power Amplifier ADPA7001CHIPS

TGA4801. DC 35 GHz MPA with AGC. Key Features and Performance. Primary Applications: Description

Features. Specifications. Applications

Transcription:

AMMC- 3 KHz GHz Traveling Wave Amplifier Data Sheet Chip Size: Chip Size Tolerance: Chip Thickness: Pad Dimensions: 3 x µm (9. x 1.3 mils) ± µm (±. mils) ± µm ( ±. mils) 8 x 8 µm (.9 ±. mils) Description Avago Technologies' AMMC- is a broadband PHEMT GaAs MMIC TWA designed for medium output power and high gain over the full 3 KHz to GHz frequency range. The design employs a 9-stage,cascade-connected FET structure to ensure flat gain and power as well as uniform group delay. E-beam lithography is used to produce uniform gate lengths of. mm and MBE technology assures precise semiconductor layer control. For improved reliability and moisture protection, the die is passivated at the active areas. Features Wide frequency range: 3 KHz GHz High gain: 1 db Gain flatness: ±.7 db Return loss: Input: 13 db, Output: 13 db Medium power: P-1dB =. dbm at GHz Low noise figure:. db at GHz Applications Communication systems Microwave instrumentation Optical systems Broadband applications requiring flat gain and group delay with excellent input and output port matches over the 3 KHz and GHz frequency range Absolute Maximum Ratings [1] Symbol Parameters/Conditions Units Min. Max. V dd Positive Drain Voltage V I dd Total Drain Current ma 3 V g1 First Gate Voltage V -9. I g1 First Gate Current ma -38 +1 V g Second Gate Voltage V -3. + I g Second Gate Current ma - P in CW Input Power dbm 17 T ch Operating Channel Temperature C + T b Operating Backside Temperature C - T stg Storage Temperature C - + T max Max. Assembly Temp ( sec max) C +3 Notes: 1. Absolute maximum ratings for continuous operation unless otherwise noted.

AMMC- DC Specifications/Physical Properties [1] Symbol Parameters and Test Conditions Units Min. Typ. Max. I dss Saturated Drain Current (V dd =7 V, V g1 = V, V g =open circuit) ma 3 38 V p First Gate Pinch-off Voltage (V dd =7 V, I dd =3 ma, V g =open circuit) V -8. V g Second Gate Self-bias Voltage (V dd =7 V, I dd = ma, V g =open circuit) V.7 I dsmin First Gate Minimum Drain Current ma 7 (V g1 ) (V dd =7 V, V g1 =-7 V, V g =open circuit) I dsmin Second Gate Minimum Drain Current ma (V g ) (V dd =7 V, V g1 = V, V g = -3. V) θ ch-b Thermal Resistance [] (Backside temperature, T b = C) C/W 1. RF Specifications for High Power Applications [, 3] (V dd =7 V, I dd (Q)= ma, Z in = Z o =Ω Symbol Parameters and Test Conditions Units Min. Typ. Max. S 1 Small-signal Gain db 1 1 18 S 1 Small-signal Gain Flatness db ±.7 ± RL in Input Return Loss db 1 1.9 RL out Output Return Loss db 1.8 S 1 Isolation db 8 P -1dB Output Power @ 1 db Gain Compression f = GHz dbm 1. P sat Saturated Output Power f = GHz dbm 3. OIP3 Output 3 rd Order Intercept Point, dbm 7 3 Rf in1 = Rf in = dbm, f = GHz, f = MHz NF Noise Figure (V ds = 3V, I ds = 1 ma) f = GHz db.. f = GHz db 7. 9 RF Specifications for High Gain and Low Power Applications [, 3] (V dd = V, I dd (Q)= 1 ma, Z in = Z o =Ω) Symbol Parameters and Test Conditions Units Min. Typ. Max. S 1 Small-signal Gain db 17. S 1 Small-signal Gain Flatness db ±1. RL in Minimum Input Return Loss db 13 RL out Minimum Output Return Loss db 13 S 1 Isolation db 3 P -1dB Output Power @ 1 db Gain Compression f = GHz dbm 17.3 P sat Saturated Output Power f = GHz dbm. OIP3 Output 3 rd Order Intercept Point, dbm. Rf in1 = Rf in = dbm, f = GHz, f = MHz NF Noise Figure f = GHz db 3.7 f = GHz db. Notes: 1. Backside temperature T b = C unless otherwise noted.. Channel to board Thermal Resistance is measured using QFI method. 3. % on-wafer RF test is done at frequency =,,, 3 and GHz, except as noted.

AMMC- Typical Performance (T chuck = C, V dd = 7 V, I dd = ma, V g = Open, Z = Ω) S1 (db) 18 1 1 1 8-8 3 S1(dB) S1(dB) Figure 1. Gain and Reverse Isolation. - - - S1 (db) RETURN LOSS (db) - - - - - -3 3 S11(dB) S(dB) Figure. Return Loss (Input and Output). P-1, P-3 (dbm) 3 3 Figure 3. Output Power (P-1 and P-3). P-1 P-3.1 td (ns).1.1.8... NOISE FIGURE (db) 8 OIP3 (dbm) 3 3 Figure. Group Delay. 3 Figure. Noise Figure. 3 Figure. Output IP3. 3

AMMC- Typical Scattering Parameters [1] (T chuck = C, V DD = 7V, I DD = ma, Z in = Z out = Ω) Freq. S 11 S 1 S 1 S GHz db Mag Phase db Mag Phase db Mag Phase db Mag Phase. -..7-17.37 1..73 179.39 -.13. -.1-9..33 7.7 1 -.91.7 -. 1.37.88. -1.8.1-9.7-9.93.3 1.79-1.88.8-1.3 1.77.1 133.1 -.3. -13.7 -.919. 18.718 3-19.1.7-19.7 1.17.3 1.8-1.8.3-3.97 -.3..3-17.7.13-7.97 1.1.31 88.71-8.. -17.7 -.391..9-1.97.1-18..88.1.1 -.3.. -.8.3-7. -1.9.1-179..731.117.78 -.. 1. -3.77. -1.8 7-17.71.13 17...8 3.11 -.719.7 13.3 -.9.71-18. 8-19.. 13.17.3.1. -1.197.9.1-1.19.83-8.987 9 -.7.73 13.19.79.81-19.8-39.9. 8.19 -..97-7.19 -.79.1 -.3.733.119 -. -38.81.11 8.11-19.71.3-73. 11-1.13.83-13.3.7.99 -.83-37.91.13 3.3 -.13.99-9.9 1-17.3.13-13..8.997-87.9-37.13.1.83-1..83-7.83 13-1.8.18-17.8.381.87-9. -3.3. -.8 -.8.77 137.33 1-13.13.18-13.3.37.8-13.8-3.89.17 -.1 -..97 7.1-1.8.3-179.7.31.8 -. -3.9.18 -.793-18.9. 9.91 1-1.989. 13..9.9-17. -33.79. -7. -1.31.1-7.71 17-1.171.19 17..3.7 13. -3.937.3-9. -.737.13 -.79 18-1.78.17 13..81.17 139.7-3.8. -113.9 -.813.1-7.7 19 -.1.93 13.7.87.1 1. -31.9. -137.8-1.78. -. -3.78..7.83.11 91.77-31.8.8-11.7-18.8.1-1.9 1-1..8 177..83.18 7.9-3.781.9 17. -1.397.8 19. -19.193.1 173.7.8..8-3.31.31 1. -3.1.. 3-18.88.1.9.9.3.39-9.783.3 1. -1.1.88 3.7-19..11 138. 1..3 -.7-9.33.3.9-18.8. -13. -1.83.81 11. 1.1.399-9.1-8.991.3 7.1 -.17.1 -.7-7.7. 7.1 1.137. -.1-8.77.3 7.9-1.8.19-9.39 7-8.7.39 -.7 1.7.31-8.11-8..37.89-13.7. -131. 8 -.8.99-9..89. -8. -8.73.3 -. -13.717. -171.1 9-1.78. -11.77.7.78-133.78-8.88.3-33.7-1.3.19. 3 -.1.17 -.8.7.3-8.99-8.83.3-9.3 -..178 97.89 31-1.889.18-18.3.1.8 17.18-8.79.3-8.8 -.1.17.38 3-1.789. 173.1.788.8 17.73-8.91.37-1.9-1.8.18 -.8 33-18.93.113 1.7.8.173 118.78-8.3.37-1.37-13.88.9 -.98 3-19.98. 177.88.1.3 89. -8.7.37-177.89-1.883.7-111.3 3-19.13.111 179.8.9.8. -8.99.3 1.19-1.719.31 -. 3-18..13 1... 3. -9.1.3. -13.81.3 1.7 37-18.7.119 13. 1.9.7 3.37-9.3.3 9.933 -.387.17 1.3 38 -.391.7 91.97 1.89.39-7. -9.87.3.9-19.17.1 8.8 39 -.387. 3.8 1.3.393-9. -9.189.3 7.37-3.73.9.1 -.9.7-37.8 1.17.113-9.38-9.13.33 -.8 -.. -1. 1 -.39.9-7.31 13.81.77-1.8-9.89.3-39.9-17.19.13. -.73.9-8.7 1.9.39-7.3-3.31.3-73.88-1.13. 133. 3 -..9-91.3 1.3.13 19. -3.88.9-7.7-1.9. 99. -18.778.1-9. 11. 3.79 13. -31.3. -1.9-18..117 7. -19.7.111-8.3.78 3.7 3.13-3.. -17.8 -.3.9 93. -18..1-73.8.9 3.18 9.9-33.98..3-1.717.8 13.19 7-1.71.18 -.78 9.79.978 3.7-33..1 119. -.939.1 1.9 8-11..8 -.771 8.83.77-3.117-33.99. 83.9-13..13 11.17 9-9..3-7.88 8.7.1 -. -33.99. 9.39-1.8.3 89.1 -.37. -89.73.9.1-83.97-3.91.18. -11.3.7 78.71 Note: 1. Data obtained from on-wafer measurements.

AMMC- Typical Performance (T chuck = C, V dd = V, I dd = 1 ma, V g = Open, Z = Ω) 3 S1 (db) S1(dB) S1(dB) -8 Figure 7. Gain and Reverse Isolation. - - - S1 (db) RETURN LOSS (db) - - - - - -3 3 S11(dB) S(dB) Figure 8. Return Loss (Input and Output). P-1, P-3 (dbm) 3 P-1 P-3 Figure 9. Output Power (P-1 and P-3)..1 3 td (ns).1.1.8... NOISE FIGURE (db) 8 OIP3 (dbm) 3 Figure. Group Delay. 3 Figure 11. Noise Figure. 3 Figure 1. Output IP3.

AMMC- Typical Scattering Parameters [1] (T chuck = C, V DD = V, I DD = 1 ma, Z in = Z out = Ω) Freq. S 11 S 1 S 1 S GHz db Mag Phase db Mag Phase db Mag Phase db Mag Phase. -.. -17.1 1.98 7. 179. -9.33.1-1.9-3.9. 1.73 1 -.998. -1.9 1.78.97.79 -.9.1-8.9-3.7..9 -.39. -1.9 1.77.8 13.3-9.13.1-18.9-31.19.7 17.9 3 -.8.79-17.7 1.7.8 113. -.398. -8.9-3.113.31 1.9 -.3. -.3 1.38.713 9. -.371. -178.3-9..33.37-18.871.11-1. 1.19.1 7.8-9.1.3 11. -8.7.37 9.8-18.3. -17.9 1.3.3 9.938-7.. 11.19 -.7. 8.17 7-18.77.11 179.7 1..7 9.39 -.9. 119.8 -..9 -.7 8-19.93.1 17. 1.7.7 8.799-3.8. 97.98 -.8.7-17.1 9 -..7 1. 1.87. -1.33 -.8.8 7.97-1.31.89-1.7-7.78. -179. 1.38.9-33.3-1.1.9 3.71 -.99.9-7.8 11 -.37. -1.8 1..1 -.3 -.1. 31.9 -.81.91-11.77 1-19.79.3 -.8 1.33.9-77.3-39.39.11.9-1.8.81-11.8 13-1.. -131.3 1.9. -98.81-38.37.1-9.819 -.131.78 138.9 1-1.11.199-1.8 1.8. -119. -37.33.1-9.73 -.818.91 8. -1.9. -1. 1.. -1.3-3.7. -.1-19.13. 3.9 1-1.93. 17.98 1.3.7-11. -3.7.17-7.7-18.1. -.979 17-13.89.7 9.73 1.3.77 17.8-3.7.19-9. -18.8.1-3.38 18 -.7.17 13.9 1.717.83. -33.19.1-118. -18.7.11-7.3 19-19.8.111 18. 1.8.9 131. -3.7.3-11.7 -..98-9.79 -.33. 133.8 1.9 7. 8. -31.889. -1. -3.13.7-18.7 1 -..8 -.97 1.9 7.1 8.1-31.8.7 19.73-7.9. -173.3 -.9.9 -. 17. 7.1.8-3.8.9. -33.3.1 98. 3-18.39.11-17.9 17.17 7. 39.3-3..3 11. -.8..9-17..13 18.8 17.3 7.3 1.78-9.39.3 9.9-1.89.81-9.3-18.33.11.73 17.3 7.8-8.8-8.88.3 7.97-18.8.11 -. -.831.91 1.9 17.78 7.8-3.99-8.37.38.7-1.89.13 -.8 7 -.8.3 7.3 17.813 7.77-8.7-7.893. 17. -.93.1-13. 8-1.19.89-3.397 17.78 7.7-8.38-7.7.1 -.9 -..177-17.9 9 -.8.11-8.8 17.7 7.1-1.3-7.1. -38.17 -.7.177 1. 3-13.9.1-1.9 17.7 7. -13. -7.8.3 -. -..177 1.7 31-11.817.7-1.73 17.7 7.8-9. -7.13. -9. -1.911.18.891 3-1.88.3-171. 17.99 7.9 17. -.78. -119. -1.7.18.3 33-1.9.18 13.39 18.3 8.8 18. -.18.9-18.97-13.. -.887 3-1.9.88 11.17 18.88 8. 118.3 -.73. 179. -1.91.3-9.8 3 -.39.97-11.8 18. 8.38 88.9 -.9.3.9-1.18. -138. 3-1.7.183-8. 18.1 8.13 9.9 -.33. 113.8-13.. -178.19 37-1.38.3 17.3 18. 8. 3.93 -.7. 8.8-1.378.191 13. 38-13.339. 13.8 18.17 8.98 1.7 -.79..99-1.97.1 11. 39 -.11.178 78. 18.7 8. -9.3 -..3.3-1.811.81 111. -1..7.891 18.189 8.118 -.79 -.. -13.39 -.8.91 13.3 1-1.77.183-1. 17.917 7.88-9.7 -.. -7.7-1.3.8 118. -.383.17-8.17 17.78 7.78-18.89 -.7.3-83. -..17 8. 3-1.71.8-11. 17.9 7.87 -.9 -.77. -1. -1.9.7.3-18.18.13-7.78 17. 7.9 1.79 -.87.1-1.8-19.77.3-7.3-1.9.3 -..7.13 1. -7.3.. -1.33.19-173.9-13.9.17-3.3 13.9.978 7. -9.7.3 11. -11.3. 139.9 7 -.8.97 1.9 1.983.8. -3.99.8 73.38 -.1.37. 8-1.9.199 -.3 11.793 3.887 -.71-33.9. 7. -1.1.37 7.9 9-9..39-1.9 7.9. -.8-39.913. -.3-17.7.1 7.9 -.83. -8.3.9 1.78-9.8 -.19. 11.99-1.3.39 98.1 Note: 1. Data obtained from on-wafer measurements.

AMMC- Typical Performance (Over Temperature and Voltage) 3 GAIN (db) 7V/mA V/187mA V/17mA V/1mA 3V/17mA 3 Figure 13. Gain and Voltage. P-1 (dbm) 7V/mA V/187mA V/17mA V/1mA 3V/17mA 3 Figure 1. P-1 and Voltage. S1, S11, and S (db) - - -3 - S11/8 C S/- C S1/ C S/8 C S/- C 3 S11/ C S1/8 C S/- C S/ C Figure. Gain and Return Loss with Temperature. P-1 (dbm) 3 P-1/8 C P-1/ C P-1/- C P-1 (dbm) 7 3 1 NF/- C NF/ C NF/8 C NOISE FIGURE (db) 8 7V/ ma V/187 ma V/17 ma V/1 ma 3V/17 ma 3 Figure 1. P-1 and Temperature, V dd =7V, I dd = ma. 3 Figure 17. Noise Figure and Temperature at V dd =V, I dd =1 ma. 3 Figure 18. Noise Figure and Voltage. 7

Biasing and Operation AMMC- is biased with a single positive drain supply (V dd ) a negative gate supply (V g1 ). For best overall performance the recommended bias is V dd =7V and I dd = ma. To achieve this drain current level, V g1 is typically between. to 3.V. Typically, DC current flow for V g1 is ma. The AMMC- has a second gate bias (Vg) that may be used for gain control. When not being utilized, Vg should be left open-circuited. This feature further enhances the versatility of applications where variable gain over a broad bandwidth is necessary. This second gate bias (Vg) is connected to the gates of the upper FETs in each cascode stage through a small de-queing resistor. The other end of the gate line is terminated in an on-chip resistive/diode divider network, which allows the second gate to self-bias. Thus, with Vg left open-circuited, the drain current is set by the (Vg1) gate bias voltage applied to the lower FET in each stage. The nominal open circuit voltage for Vg is approximately volts. Under this operating condition, maximum gain and power are achieved from the TWA. By applying an external voltage to the second gate bias (Vg) less than the open-circuit potential, the drain voltage on the lower FET can be decreased to a point where the lower FET enters the linear operating region. This reduces the current drawn by each stage. Decreasing Vg further will reduce the drain voltage on the lower FET towards zero while pinching off the upper FET in each stage. At larger negative values of Vg (between and -. volts) the gain of the TWA will decrease significantly. Using the simplest form of assembly (Figure ), the device is capable of delivering flat gain over a GHz range with a minimum of gain slope and ripple. However, this device is designed with DC coupled RF I/O ports, and operation may be extended to lower frequencies (< GHz) through the use of off-chip low-frequency extension circuitry and proper external biasing components. With low frequency bias extension it may be used in a variety of time-domain applications (through Gb/s). Figure 1 shows a typical assembly configuration. When bypass capacitors are connected to the AUX pads, the low frequency limit is extended down to the corner frequency determined by the bypass capacitor and the combination of the on-chip ohm load and small dequeing resistor. At this frequency the small signal gain will increase in magnitude and stay at this elevated level down to the point where the C aux bypass capacitor acts as an open circuit, effectively rolling off the gain completely. The low frequency limit can be approximated from the following equation: f Caux = where: 1 πc aux (Ro + R DEQ ) R o is the Ω gate or drain line termination resistor. R DEQ is the small series de-queing resistor and Ω. C aux is the capacitance of the bypass capacitor connected to the AUX Drain pad in farads. With the external bypass capacitors connected to the AUX gate and AUX drain pads, gain will show a slight increase between 1. and 1. GHz. This is due to a series combination of C aux and the on chip resistance but is exaggerated by the parasitic inductance (L c ) of the bypass capacitor and the inductance of the bond wire (L d ). Therefore the bond wire from the Aux pads to the bypass capacitors should be made as short as possible. Input and output RF ports are DC coupled; therefore, DC decoupling capacitors are required if there are DC paths. (Do not attempt to apply bias to these pads.) RF bond connections should be kept as short as possible to reduce RF lead inductance which will degrade performance above GHz. An optional output power detector network is also provided. A >. µf capacitor is required for the Det_Out pad to expand power detection performance below MHz. Ground connections are made with plated through-holes to the backside of the device; therefore, ground wires are not needed. 8

Assembly Techniques The backside of the MMIC chip is RF ground. For microstrip applications the chip should be attached directly to the ground plane (e.g. circuit carrier or heatsink) using electrically conductive epoxy [1,]. For best performance, the topside of the MMIC should be brought up to the same height as the circuit surrounding it. This can be accomplished by mounting a gold plated metal shim (same length as the MMIC) under the chip which is of correct thickness to make the chip and adjacent circuit the same height. The amount of epoxy used for the chip or shim attachment should be just enough to provide a thin fillet around the bottom perimeter of the chip. The ground plane should be free of any residue that may jeopardize electrical or mechanical attachment. RF connections should be kept as short as reasonable to minimize performance degradation due to undesirable series inductance. A single bond wire is normally sufficient for single connections, however double bonding with.7mil gold wire will reduce series inductance. Gold thermo-sonic wedge bonding is the preferred method for wire attachment to the bond pads. The recommended wire bond stage temperature is c ± c. Caution should be taken to not exceed the Absolute Maximum Rating for assembly temperature and time. The chip is um thick and should be handled with care. This MMIC has exposed air bridges on the top surface and should be handled by the edges or with a custom collet (do not pick up the die with a vacuum on die center). Bonding pads and chip backside metallization are gold. This MMIC is also static sensitive and ESD precautions should be taken. Eutectic attach is not recommended and may jeopardize reliability of the device. For more detailed information see Avago Technologies Application Note #39 GaAs MMIC assembly and handling guidelines. Notes: 1. Ablebond 8-1 LMl silver epoxy is recommended. Eutectic attach is not recommended and may jeopardize reliability of the device GND DET_OUT Drain Bias (Vdd) Vdd AUX Nine Identical RF_Output DET_BIAS Second Gate First Gate Bias (Vg1) RF_Input DET_REF Figure 19. AMMC- Schematic. 9

DET_Reference Vdd_AUX Vdd DET_Bias DET_Output 83 17 GND 9 Vg 8 RF INPUT 3 Figure. AMMC- Bonding Pad Locations. (dimensions in micrometers) V g1 9 8 3 RF Output 733 9 GND Drain bias must be decoupled from RF to lowest operating frequency pf Capacitor nh Inductor for operation to GHz bond wire V DD IN V G1 OUT Gate is decoupled from RF. (Bond wire length is not important) Figure 1. AMMC- Assembly Diagram. Ordering Information AMMC--W = devices per tray AMMC--W = devices per tray For product information and a complete list of distributors, please go to our web site: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright -8 Avago Technologies. All rights reserved. Obsoletes 989-3931EN AV-3EN - September 8, 8

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: Broadcom Limited: AMMC--W