Amplified High Speed Photodetectors

Similar documents
Amplified Photodetectors

Non-amplified High Speed Photodetectors

Non-amplified Photodetectors

1.5µm PbSe Power Detector

NON-AMPLIFIED HIGH SPEED PHOTODETECTOR USER S GUIDE

NON-AMPLIFIED PHOTODETECTOR USER S GUIDE

HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE

Makros Series. User Guide nm High Power Faraday Rotators & Optical Isolators

Balanced Photoreceivers Models 1607-AC & 1617-AC

Eurys Series. User Guide. Broadband Faraday Rotators & Optical Isolators Large Aperture (>5mm)

DC to 3.5-GHz Amplified Photoreceivers Models 1591 & 1592

80-MHz Balanced Photoreceivers Model 18X7

DC to 12-GHz Amplified Photoreceivers Models 1544-B, 1554-B, & 1580-B

80-MHz Balanced Photoreceivers Model 18X7

10-MHz Adjustable Photoreceivers Models 2051 & 2053

15-GHz & 25-GHz Photodetectors Models 1480-S & 1481-S

125-MHz Photoreceivers Models 1801 and 1811

INGAAS FAST PIN (RF) AMPLIFIED PHOTODETECTORS

Pavos Series. User Guide nm High Power Faraday Rotators & Optical Isolators Large Aperture (>5mm)

TIA-3000 Optical/Electrical Converter. Operating Instructions

TIA-952 Optical/Electrical Converter. Operating Instructions

TIA-1200 Optical/Electrical Converter. Operating Instructions

TIA-527 Balanced Optical/Electrical Converter. Operating Instructions

TIA-2000 Optical/Electrical Converter. Operating Instructions

EOT nm FARADAY ROTATOR/ISOLATOR USER S GUIDE TABLE OF CONTENTS

TIA-500 Optical/Electrical Converter Operating Instructions

TIA-4000 Optical/Electrical Converter. Operating Instructions

HFD Fiber Optic LAN Components 1.25Gbps PIN Plus Preamplifier with RSSI

TIA-3000 Optical / Electrical Converter Operating Instructions

TIA-1200 Optical / Electrical Converter Operating Instructions

AMP-13 OPERATOR S MANUAL

User s Guide. MultiView Series Digital MultiMeters Models: MV110 MV120 MV130

PSI MIN MODULATOR BIAS CONTROLLER BOARD

Optical Power Meter Basics

Instruction Manual MX-480 Bi-directional Multi-Protocol Data

COOLED InGaAS DETECTOR HEAD MODEL 71887

Figure Responsivity (A/W) Figure E E-09.

PSW-002. Fiber Optic Polarization Switch. User Guide

34134A AC/DC DMM Current Probe. User s Guide. Publication number April 2009

Models 1421 and 1422 User s Manual. Broadband Amplifiers

Pen Multimeter. Model

Measure the roll-off frequency of an acousto-optic modulator

Instruction Manual MX-485-S Bi-directional RS485 Data Transceiver

Figure Figure E E-09. Dark Current (A) 1.

User s Guide. 400A AC/DC Clamp Meter. Model MA220

TIA-525 Optical/Electrical Converter Operating Instructions

HP 86290B RF PLUG-IN GHz HEWLETT PACKARD

INSTRUCTION MANUAL. Model Autoranging DMM ProbeMeter TM. Measures voltage, resistance, frequency, capacitance, temperature, and duty cycle.

ECEN 4606, UNDERGRADUATE OPTICS LAB

200Amp AC Clamp Meter + NCV Model MA250

Instruction Manual CT-6 High Frequency AC Current Probe

Instruction Manual MT-945SL Four Channel Video Transmitter With Two Bi-Directional Data Channels

8472B Crystal Detector. Operating and Service Manual

PARALLEL MULTI-AMP KIT for 7200 Series AMPLIFIERS INSTRUCTION SHEET

EXAMINATION FOR THE DEGREE OF B.E. and M.E. Semester

User s Guide. Digital AC/DC Clamp Meter Model 38394

Visible & IR Femtowatt Photoreceivers Models 2151 & 2153

User s Manual. MiniTec TM Series. Model MN26 (Model MN26T includes temperature probe) Mini Autoranging MultiMeter

SSR-150xxx-40VL-12P-xC-xxxCS

SSR VL-12P-xC-NCS

PULSE DISTRIBUTION AMPLIFIER OPERATING MANUAL

Edmund Optics SN Photodiode Amplifier Operating Instructions Terahertz Technologies Inc.

User Guide. Digital AC/DC Clamp Meter Model 38394

HOD /BBA HOD /BBA

PCO-7114 Laser Diode Driver Module Operation Manual

AMP-12 OPERATOR S MANUAL

Model 5100F. Advanced Test Equipment Rentals ATEC (2832) OWNER S MANUAL RF POWER AMPLIFIER

Optical Communications

P5100A & P5150 High Voltage Probes Performance Verification and Adjustments

2.5 GHz 1310 nm Laser Model 1732

BPD-003. Instruction Note

SIGNAL RECOVERY: Sensors, Signals, Noise and Information Recovery

Effects of Incident Optical Power on the Effective Reverse Bias Voltage of Photodiodes This Lab Fact demonstrates how the effective reverse bias

SDI SPECTRADYNAMICS, INC. HIGH PERFORMANCE DISTRIBUTION AMPLIFIER OPERATING MANUAL

Model 113 Scintillation Preamplifier Operating and Service Manual

Model 301DIV SIGNAL CONDITIONING AMPLIFIER

TRANSDUCER IN-LINE AMPLIFIER

Model 8140VT VERSATAP INSTALLATION AND OPERATION MANUAL

P.O. BOX 1521 POLSON, MT SSR V-12C

Pre-wired Photomicrosensor with Amplifier and Cable EE-SPW321/421 Compact, Thin-profile Photomicrosensor with special amplifier.

af i Instruction Manual MR-944C Four Channel Video Receiver With One Bi-Directional Multi-Protocol Data Channel american fibertek 11/30/2012 JPK

P5100A & P5150 High Voltage Probes Performance Verification and Adjustments

LOW NOISE AMPLIFIER LN4000 OPERATING MANUAL THIS AMPLIFIER IS FOR RECEIVER ONLY. DO NOT USE WITH TRANSMITTER!

Wilcom MODEL T136BSBZW CIRCUIT TEST SET. Operating Instructions

Model 935A. Dual Tone Sender INSTRUCTION MANUAL

10-Gbit/s 850-nm VCSEL Model 1780

PLL Synchronizer User s Manual / Version 1.0.6

DET36A Operating Manual High Speed Silicon Detector Description:

Wilcom MODEL T136BGMZW CIRCUIT TEST SET. Operating Instructions

Model Series 400X User s Manual. DC-100 MHz Electro-Optic Phase Modulators

Sensing method Appearance Sensing distance Operation mode Model Convergent-reflective (narrow vision field) 30 to 100 mm (variable)

LI190SB QUANTUM SENSOR

K-Factor Scaler F5140 and Programming Kit F5141 Installation & Operating Instructions

Agilent 83440B/C/D High-Speed Lightwave Converters

Document Version 1.2

Preliminary Data Sheet!

Model 9305 Fast Preamplifier Operating and Service Manual

HELLROARING TECHNOLOGIES, INC. P.O. BOX 1521 POLSON, MT

SSR V-12C. Industrial Switching Applications: Hellroaring Technologies, inc. P.O. Box 1521, Polson, Montana 59860

Component List L2, L3 2 Q1, Q2 2 J1, J3, J4 3

Transcription:

Amplified High Speed Photodetectors User Guide 3340 Parkland Ct. Traverse City, MI 49686 USA Page 1 of 6

Thank you for purchasing your Amplified High Speed Photodetector from EOT. This user guide will help answer any questions you may have regarding the safe use and optimal operation of your Photodetector. TABLE OF CONTENTS I. Amplified High Speed Photodetector Overview... 2 II. Operation of your EOT Amplified High Speed Photodetector... 3 III. Troubleshooting... 3 IV. Schematics: Amplified Photodetectors... 4 V. Warranty Statement and Repair... 4 VI. Glossary of Terms... 5 I. Amplified High Speed Photodetector Overview EOT s Amplified Photodetectors contain PIN photodiodes that utilize the photovoltaic effect to convert optical power into an electrical current and a fixed gain transimpedance amplifier allowing measurement of <1 mw input powers. Figure 1 below identifies the main elements of your Amplified High Speed Photodetector. Figure 1: EOT Amplified High Speed Photodetector Power Switch Power Jack DC Monitor Output (SMA) Sensor Aperture Signal Output (SMA) When terminated into 50 Ω into an oscilloscope, the pulsewidth of a laser can be measured. When terminated into a spectrum analyzer, the frequency response of a laser can be measured. 3340 Parkland Ct. Traverse City, MI 49686 USA Page 2 of 6

II. Operation of your EOT Amplified High Speed Photodetector A. Caution: Eye safety precautions must be followed when utilizing any equipment used in the vicinity of laser beams. Laser beams may reflect from the surface of the detector or the optical mount and caution must be exercised. B. Mount the detector to an optical stand by the mounting holes on the bottom of the detector housing. C. Adjust the voltage of the oscilloscope to 20 mv/division before connecting the detector. D. Connect the detector to the oscilloscope using a coaxial cable designed for 10 GHz operation. The DC Monitor cable can be a general purpose cable. E. Use the 50 Ω termination input of the oscilloscope. F. Connect the DC Monitor to a high impedance device such as a multimeter. Set the device to millivolts or volts. The output of the DC Monitor converts the average photodiode current to a voltage output of 1 mv/ua. The DC Monitor output has an offset voltage of less than 70 mv. G. Note that the external power supply is a 5 VDC regulated supply with a positive center pin. Using a supply other than 5 VDC could damage the detector. H. After being certain that the damage threshold of the detector is not exceeded, place the detector in the center of the laser beam. I. Align the detector for the desired output using either the signal output or the DC Monitor (Note: the signal output is AC coupled). If a CW laser is used for beam alignment, the DC Monitor output should be used. III. Troubleshooting A. No signal is seen the first time the detector is used. 1. Is the power switch on? Is the external power supply connected? 2. Is your signal a CW signal? If so, there will not be a signal output present because the detector is AC coupled. There would be an output from the DC Monitor. 3. Be certain that the signal is not high off scale on the oscilloscope. 4. Is the wavelength of the laser within the spectral range of the detector? 5. Has a 50 Ω termination input been used? 3340 Parkland Ct. Traverse City, MI 49686 USA Page 3 of 6

6. Try moving the detector within the laser beam. 7. Is there enough light incident on the detector to generate a signal? The detector s small active area makes alignment somewhat difficult. B. A signal has been previously obtained, but not currently. 1. Try steps listed under A. 2. Inspect the active area of the photodiode for any signs of damage. 3. Recheck if the voltage is preset at the external power supply plug. C. Increasing the power incident on the detector does not result in a higher voltage signal on the oscilloscope. 1. The detector is probably saturated. You should lower the power incident on the detector to a level below the saturation point. IV. Schematics: Amplified Photodetectors SMA Connector V. Warranty Statement and Repair EOT warrants its products to be free from defects in material and workmanship and complies with all specifications. EOT will at its option, repair or replace any product or component found to be defective during the warranty period. This warranty applies only to the original purchaser and is not transferrable for a period of one year after date of original shipment. The foregoing warranties shall not apply, and EOT reserves the right to refuse warranty service, should malfunction or failure result from: a. Damage caused by improper installation, handling or use. b. Unauthorized product modification or repair. c. Operation outside the environmental or damage specifications of the product. d. Contamination not reported to EOT within 30 days of the original ship date. 3340 Parkland Ct. Traverse City, MI 49686 USA Page 4 of 6

e. EOT s output isolators contain a spacer at the end of the isolator. Under certain conditions, an off-axis back-reflection from the workpiece could focus down onto the output displacer or polarizer inside the isolator. The purpose of the spacer is to eliminate the conditions under which this could happen. Should EOT s output isolators be purchased without the spacer, or should the spacer be removed, damage to the output displacer or polarizer will not be covered under warranty and the customer will be responsible for all costs associated with such an occurrence. This warranty is exclusive in lieu of all other warranties whether written, oral, or implied. EOT specifically disclaims the implied warranties of merchantability and fitness for a particular purpose. In no event shall EOT be liable for an indirect, incidental, or consequential damages in connection with its products. If the customer believes there is a problem with the photodetector, they should immediately contact EOT s Sales/Customer department at 231-935-4044 or customerservice@eotech.com. EOT s Customer Service department will either issue an RMA for the device, or provide the customer with a procedure and authorize the customer to modify the device. All returns should reference the RMA number on the outside of the shipping container and should be sent to: Attn: Sales/Customer Service 3340 Parkland Ct. Traverse City, MI 46986 USA EOT reserves the right to inspect photodetectors returned under warranty to assess if the problem was caused by a manufacturer defect. If EOT determines the problem is not due to a manufacturer defect, repairs will be done at the customer s expense. EOT will always provide a written quote for repair prior to performing repairs at the customer s expense. VI. Glossary of Terms Amplifier: Provides a transimpedance gain throughout the photodiode s bandwidth. The photodiode current is converted to an output voltage. Bandwidth: Unlike non-amplified photodetector bandwidth, which is defined as the range of frequencies from 0 Hz (DC) to the frequency at which the amplitude decreases by 3dB, the amplified photodetectors have a low frequency cutoff of -3 db, which is greater than 0Hz due to the DC Block Capacitor. Bandwidth and rise time can be approximately related by the equation: Bandwidth 0.35/rise time for a Gaussian pulse input. Bias Voltage: The photodiode s junction capacitance can be modified by applying a reverse voltage. The bias voltage reduces the junction capacitance, which causes the photodiode to have a faster response. 3340 Parkland Ct. Traverse City, MI 49686 USA Page 5 of 6

Conversion Gain: The relative level of the optical input power that is amplified and converted into a voltage output. DC Block Capacitor: Prevents the DC voltage that is supplied through the amplifier output from exiting the detector which would cause a large DC offset voltage. Therefore, the amplified detector is an AC coupled device and will have a low cut-off frequency as well as a high cut-off frequency. Decoupling Capacitor: Maintains bias voltage when fast pulses cause the battery voltage to reduce (this would slow the response time of the photodiode); the capacitor allows the battery to recover to its initial voltage. It also acts as a low-pass filter for external power supplies. Noise Equivalent Power (NEP): A function of responsivity and dark current and is the minimum optical power needed for an output signal to noise ratio of 1. Dark current is the current that flows through a reverse biased photodiode even when light is not present, and is typically on the order of na. Shot noise (Ishot) is a source of noise generated in part by dark current; in the case of reversed biased diodes it is the dominant contributor. Photodiode: Converts photons into a photocurrent. Resistor: Part of the low-pass filter at the photodiode cathode. Responsivity: In amps per watt (A/W), responsivity is the current output of the photodiode for a given input power, and is determined by the diode structure. Responsivity varies with wavelength and diode material. Rise Time/Fall Time: Rise Time is the time taken by a signal to change from a specified low value to a specified high value. Fall Time is the time taken for the amplitude of a pulse to decrease from a specified value to another specified value. A larger junction capacitance will slow the detector s response time. SMA Connector: Used to connect the customer s coaxial cable for high frequencies. 3340 Parkland Ct. Traverse City, MI 49686 USA Page 6 of 6