AK5383 Enhanced Dual Bit Σ 96kHz 24-Bit ADC

Similar documents
GSM/GPRS. By Mendy Ouzillou Silicon Laboratories Inc. Austin, TX GSM 3GPP (GSM) burst current) GSM900 DCS V

High frequency ratio antenna for RFID tags

HETERO JUNCTION FIELD EFFECT TRANSISTOR NE4210M01

FDTD Modeling of Noise in Computer Packages

V GG -V TO. rout = Saturation Region I OUT. Vout V SAT V GS V OUT. Sheet 1 of 10. Cascode Current Mirror

Internal Compact Dual-Band Printed Loop Antenna for Mobile Phone Application

Technology. F. Tabatabai, Member, IEEE, H.S. Al-Raweshidy, Senior Member, IEEE. filter, normally do not possess high quality factor at the

ULTRAWIDEBAND (UWB) communications have attracted

Topic 7: Harmonic Balance. ADS 2001 Fundamentals - Sept, 2001 Slide 7-1

R. Dehdasht-Heydari, H. R. Hassani, and A. R. Mallahzadeh

A SMALL PASSIVE UHF RFID TAG FOR METALLIC ITEM IDENTIFICATION. Mun Leng Ng, Kin Seong Leong, and Peter H. Cole

DESIGN, SIMULATION, FABRICATION AND TESTING OF IMPROVED HYBRID WIDEBAND MICROSTRIP BALUN CIRCUITS AT 2.4 GHz

BROADBAND INTEGRATED DTV ANTENNA FOR USB DONGLE APPLICATION

Sheet 1 of 10. Vout. Cgd1. Vin. gm g. gm1. Cascode CMOS Circuit

AUTOMATIC Gain Control (AGC) circuits are employed

SPUR REDUCTION TECHNIQUES IN DIRECT DIGITAL SYNTHESIZERS

ACTIVE and passive imaging at millimeter wavelengths

INTERNATIONAL STANDARD

A Horizontally Polarized Omnidirectional Printed Antenna for WLAN Applications

Advanced Design System. Release 2005A New Features

A BROADBAND MICROSTRIP ANTENNA ARRAY FOR LMDS APPLICATIONS

ADS for your RF Board Design Flow

Appendix 6-3: HFSS 3D Excitations

Signal Integrity and PCB layout considerations for DDR2-800 Mb/s and DDR3 Memories

THE majority of current global positioning satellite (GPS)

Ansoft HFSS Antenna Design Kit Design Parameters

A Technique for an Array to Generate Circular Polarization with Linearly Polarized Elements

CBT/CBT32 Bluetooth Testers

Balanced antipodal Vivaldi antenna for wide bandwidth phased arrays

Planar Printed Strip Monopole With a Closely-Coupled Parasitic Shorted Strip for Eight-Band LTE/GSM/UMTS Mobile Phone

Traveling-Wave Slot Antennas *

DEFECTED ground structures (DGSs) yield low-pass performance

Design and Optimization of CMOS RF Power Amplifiers

IN THE PAST, various designs have been proposed in the

Estimating Directivity and Gain of Antennas

BALUNS ARE A key component of double-balanced

New circuit configurations for designing digital phase shifters

THERE IS a demand for millimeter-wave and

D ular in Japan. Several types of subscriber antennas for

IP2 and IP3 Nonlinearity Specifications for 3G/WCDMA Receivers Chris W. Liu, Morten Damgaard, Broadcom Corporation

Design and Technology of Microwave and Millimeterwave LTCC Circuits and Systems

4/17/01. Design Seminar. Agilent EEsof Customer Education and Applications. MESFET Power Amplifier Design: Small Signal Approach

Chipless RFID Tag Using Hybrid Coding Technique Arnaud Vena, Etienne Perret, Member, IEEE, and Smail Tedjini, Senior Member, IEEE

IN THE last several years, various types of periodic structures

Design of a 1.6-mW LC-tuned VCO for 2.4GHz in 0.18-um RF CMOS technology

AK5358A. 96kHz 24-Bit ΔΣ ADC

AK4552 3V 96kHz 24Bit Σ CODEC

AK5386. Single-ended 24-Bit 192kHz Σ ADC

AK5385B 24Bit 192kHz Σ ADC

9 Static Induction Devices

AK Bit 96kHz Σ ADC

ON Power Switching Switcher Solution For consumer electronics. Andy Buk Asia Product Marketing Manager April 2004

The art of UHF RFID antenna design: impedance matching and size-reduction techniques

Colpitts Oscillator Tutorial

AK5358B. 96kHz 24-Bit ΔΣ ADC

AK4554 Low Power & Small Package 16bit Σ CODEC

AK dB 96kHz 24-Bit 2ch ΔΣ DAC

Big Data and High Performance Computing

Electrical Engineering

Passive intermodulation interference in communication systems

AK4393. Advanced Multi-Bit 96kHz 24-Bit Σ DAC

MESFET Distributed Amplifier Design Guidelines

Output Coupling Capacitor-less Video Amp with LPF

AK4204. Stereo Cap-less LINE-Amp and Video-Amp

AK dB 24-bit 192kHz 4-Channel ADC

AK dB 96kHz 24-Bit Stereo 3.3V ΔΣ DAC

AK4388A. 192kHz 24-Bit 2ch ΔΣ DAC

Slicing of Aspect-Oriented Programs Based on Reduced Dynamic Dependence Graph *

LM117/LM217/LM V to 37V Adjustable voltage regulators. Feature summary. Description. Order code

Advanced Multi-Bit 96kHz 24-Bit '6 DAC

AK4201. Stereo Cap-less HP-Amp

Decimation Filter. Decimation Filter TDMIN MSN DIF TDM0 RIN2+ RIN2- Decimation Filter. Decimation Filter TDM1 HPF MONO VCOM1 VCOM2

GAMI Newsletter. Foreword. News. News Industry Projects Training Events Contact. News Industry Projects Training Events Contact

WiFi 雷达 无所不在的感知 清华大学软件学院

117 db, 48 khz Audio A/D Converter

8 English P.20 한국의 P.21 中 文 P.22

为了满足客户不同的焊接需求需要, 莱丹研发了最新的 HEMTEK ST 焊接导向件, 可应用于厚达 4mm/0.16 英寸材料的焊接

The Design of Small Slot Arrays

24 bit, 96 khz Stereo A/D Converter. Description

Stars Snub Twilight Premiere 明星怠慢 暮光之城 首映式

SVPWM 三相电压源型逆变器的死区时间效应可能会导致电压损失, 电流波形畸变和转矩脉动. 为了改善电流波形, 减少转矩脉动, 详细分析了死区时间对输出电压的影响, 并提出了 SVPWM A

Brief Introduction to Degree Program in Control. Science and Engineering (0811)

WiMAX 技术培训系列 ( 一 ) OFDM 物理层技术初探 MCG 赵昕 2006 年 2 月. All rights reserved 2006, Alcatel Shanghai Bell

105 db, 192 khz, Multi-Bit Audio A/D Converter

101 db, 192 khz, Multi-Bit Audio A/D Converter

中华人民共和国国家计量技术规范 定量包装商品净含量计量检验规则

National Standard of the People's Republic of China 中华人民共和国国家标准

AK dB 192kHz 24-Bit 2ch ΔΣ DAC

A Self-Adaptive Low-Voltage Current Mode ASK Demodulator for RFID Tags

24-Bit, Stereo D/A Converter for Digital Audio

AK2711. High Speed DAC w/16-bit Resolution at 1.2 MSPS. Block Diagram. Features. Description

Features. Support for external one-path, internal three-path D/A converter reference voltages

AK dB 192kHz 24-Bit 2ch ΔΣ DAC

关于台词的备注 : 请注意这不是广播节目的逐字稿件 本文稿可能没有体现录制 编辑过程中对节目做出的改变

第 21 届中国国际工业博览会. China International Industry Fair 2019

CS db, 192 khz, Multi-Bit Audio A/D Converter

How to Write a Quality Technical Paper and Where to Publish within IEEE 如何撰写高质量科技论文以及在 IEEE 进行论文发表

RACL Activity Class AC Drawing Watercolor Teacher: Liu, Katie WeChat ID: l_katie22

电池柜 B32 Battery Cabinet B32. 安装说明 Installation Instruction

1 st 5G Algorithm Competition SCMA

Transcription:

AK5383 Enhanced Dual Bit Σ 96kHz 24Bit ADC GENERAL DESCRIPTION The AK5383 is a 24bit, 128x oversampling 2ch A/D Converter for professional digital audio systems. The modulator in the AK5383 uses the new developed Enhanced Dual Bit architecture. This new architecture achieves the wide dynamic range, while keeping much the same superior distortion characteristics as conventional Single Bit way. The AK5383 performs 110dB dynamic range, so the device is suitable for professional studio equipment such as digital mixer, digital VTR etc. FEATURES p Enhanced Dual Bit ADC p Sampling Rate: 1kHz~108kHz p Full Differential Inputs p S/(N+D): 103dB p DR: 110dB p S/N: 110dB p High Performance Linear Phase Digital AntiAlias filter Passband: 0~21.768kHz(@fs=48kHz) Ripple: 0.001dB Stopband: 110dB p Digital HPF & Offset Calibration for Offset Cancel p Power Supply: 5V±5%(Analog), 3~5.25V(Digital) p Power Dissipation: 210mW p Package: 28pin SOP, VSOP p AK5393 Pin compatible SMODE1 SMODE2 SCLK LRCK FSYNC 12 11 14 13 16 VREFL GNDL VCOML 1 2 3 Voltage Reference Serial Output Interface 15 SDATA AINL+ 4 AINL 5 ZCAL 6 AINR+ 25 24 AINR 26 VCOMR 28 VREFR GNDR 27 DeltaSigma Modulator DeltaSigma Modulator Voltage Reference Decimation Filter Decimation Filter Controller HPF HPF Calibration SRAM 19 17 18 HPFE MCLK DFS 23 22 21 9 10 7 VA AGND BGND CAL RST VD 8 DGND 1

n Ordering Guide n Pin Layout AK5383VS 10 ~ +70 C 28pin SOP AK5383VF 40 ~ +85 C 28pin VSOP AKD5383 AK5383 Evaluation Board VREFL 1 28 VREFR GNDL 2 27 GNDR VCOML 3 26 VCOMR AINL+ 4 25 AINR+ 5 24 AINL AINR ZCAL 6 VD 7 Top View 23 22 VA AGND DGND 8 21 BGND CAL 9 20 TEST RST 10 19 HPFE SMODE2 11 18 DFS SMODE1 12 17 MCLK LRCK 13 16 FSYNC SCLK 14 15 SDATA n Compatibility with AK5393 AK5393 AK5383 S/(N+D) 105dB 103dB DR, S/N 117dB 110dB 2

PIN/FUNCTION No. Pin Name I/O Function 1 VREFL O Lch Reference Voltage Pin, 3.75V Normally connected to GNDL with a 10µF electrolytic capacitor and a 0.1µF ceramic capacitor. 2 GNDL Lch Reference Ground Pin, 0V 3 VCOML O Lch Common Voltage Pin, 2.75V 4 AINL+ I Lch Analog positive input Pin 5 AINL I Lch Analog negative input Pin 6 ZCAL I Zero Calibration Control Pin This pin controls the calibration reference signal. "L": VCOML and VCOMR "H": Analog Input Pi (AINL±, AINR±) 7 VD Digital Power Supply Pin, 3.3V 8 DGND Digital Ground Pin, 0V 9 CAL O Calibration Active Signal Pin "H" mea the offset calibration cycle is in progress. Offset calibration starts when RST goes "H". CAL goes "L" after 8704 LRCK cycles for DFS="L", 17408 LRCK cycles for DFS ="H". 10 RST I Reset Pin When "L", Digital section is powereddown. Upon returning "H", an offset calibration cycle is started. An offset calibration cycle should always be initiated after powerup. 11 12 SMODE2 SMODE1 I I Serial Interface Mode Select Pin MSB first, 2's compliment. SMODE2 SMODE1 MODE LRCK L L Slave mode : MSB justified : H/L L H Master mode : Similar to I 2 S : H/L H L Slave mode : I 2 S : L/H H H Master mode : I 2 S : L/H 13 LRCK I/O Left/Right Channel Select Clock Pin LRCK goes "H" at SMODE2="L" and "L" at SMODE2="H" during reset when SMODE1 "H". 3

14 SCLK I/O Serial Data Clock Pin Data is clocked out on the falling edge of SCLK. Slave mode: SCLK requires more than 48fs clock. Master mode: SCLK outputs a 128fs(DFS="L") or 64fs(DFS="H") clock. SCLK stays "L" during reset. 15 SDATA O Serial Data Output Pin MSB first, 2's complement. SDATA stays "L" during reset. 16 FSYNC I/O Frame Synchronization Signal Pin Slave mode: When "H", the data bits are clocked out on SDATA. In I 2 S mode, FSYNC is Don t care. Master mode: FSYNC outputs 2fs clock. FSYNC stays "L" during reset. 17 MCLK I Master Clock Input Pin 256fs at DFS="L", 128fs at DFS="H". 18 DFS I Double Speed Sampling Mode Pin "L": Normal Speed "H": Double Speed 19 HPFE I High Pass Filter Enable Pin "L": Disable "H": Enable 20 TEST I Test Pin ( pulldown pin) Should be connected to GND. 21 BGND Substrate Ground Pin, 0V 22 AGND Analog Ground Pin, 0V 23 VA Analog Supply Pin, 5V 24 AINR I Rch Analog negative input Pin 25 AINR+ I Rch Analog positive input Pin 26 VCOMR O Rch Common Voltage Pin, 2.75V 27 GNDR Rch Reference Ground Pin, 0V 28 VREFR O Rch Reference Voltage Pin, 3.75V Normally connected to GNDR with a 10µF electrolytic capacitor and a 0.1µF ceramic capacitor Note: All digital inputs should not be left floating. 4

ABSOLUTE MAXIMUM RATINGS (AGND,BGND,DGND=0V; Note 1) Parameter Symbol min max Units Power Supplies: Analog Digital BGNDDGND (Note 2) VA VD GND Input Current, Any Pin Except Supplies IIN ±10 ma Analog Input Voltage VINA 0.3 VA+0.3 V Digital Input Voltage VIND 0.3 VD+0.3 V Ambient Temperature (power applied) AK5383VS AK5383VF Storage Temperature Tstg 65 150 C Ta Ta 0.3 0.3 Notes: 1. All voltages with respect to ground. 2. AGND, BGND and DGND must be connected to the same analog ground plane. WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. 10 40 6.0 6.0 0.3 70 85 V V V C C RECOMMENDED OPERATING CONDITIONS (AGND,BGND,DGND=0V; Note 1) Parameter Symbol min typ max Units Power Supplies: Analog VA (Note 3) Digital VD Notes:1. All voltages with respect to ground. 3. The power up sequence between VA and VD is not critical. * AKM assumes no respoibility for the usage beyond the conditio in this data sheet. 4.75 3.0 5.0 3.3 5.25 5.25 V V 5

ANALOG CHARACTERISTICS (Ta=25 C; VA=5.0V; VD=3.3V; AGND,BGND,DGND=0V; fs=48khz; Signal Frequency=1kHz; 24bit Output; Measurement frequency=10hz~20khz; unless otherwise specified) Parameter min typ max Units Resolution 24 Bits Analog Input Characteristics: S/(N+D) fs=48khz fs=96khz BW=40kHz 1dBFS 20dBFS 60dBFS 1dBFS 20dBFS 60dBFS Dynamic Range (60dBFS with AWeighted ) 105 110 db S/N ( AWeighted ) 105 110 db Interchannel Isolation 110 120 db Interchannel Gain Mismatch 0.1 0.5 db Gain Drift 150 ppm/ C Offset Error after calibration, HPF=OFF after calibration, HPF=ON 96 93 103 87 47 100 81 41 ±200 ±1 db db db db db db ±1000 LSB 24 LSB 24 Offset Drift (HPF=OFF) ±10 LSB 24 / C Offset Calibration Range (HPF=OFF) ±50 mv Input Voltage (AIN+)(AIN) ±2.3 ±2.45 ±2.6 V Input Impedance 8 14 kω Power Supplies Power Supply Current VA VD (fs=48khz; DFS=L) (fs=96khz; DFS=H) Power Dissipation 210 300 mw Power Supply Rejection (Note 4) 70 db Note: 4. PSRR is applied to VA, VD with 1kHz, 20mVpp. 38 6 9 54 9 14 ma ma ma 6

FILTER CHARACTERISTICS(fs=48kHz) (Ta=25 C; VA=5.0V±5%; VD=3.0~5.25V; fs=48khz, DFS=L) Parameter Symbol min typ max Units ADC Digital Filter(Decimation LPF): Passband (Note 5) PB 0 21.768 khz Stopband (Note 5) SB 26.232 khz Passband Ripple PR ±0.001 db Stopband Attenuation (Note 6) SA 110 db Group Delay Distortion GD 0 us Group Delay (Note 7) GD 38.7 1/fs ADC Digital Filter(HPF): Frequency respoe (Note 5) 3dB 0.1dB FR 1.0 6.5 Hz Hz FILTER CHARACTERISTICS(fs=96kHz) (Ta=25 C; VA=5.0V±5%; VD=3.0~5.25V; fs=96khz, DFS=H) Parameter Symbol min typ max Units ADC Digital Filter(Decimation LPF): Passband (Note 5) PB 0 43.536 khz Stopband (Note 5) SB 52.464 khz Passband Ripple PR ±0.003 db Stopband Attenuation (Note 8) SA 110 db Group Delay Distortion GD 0 us Group Delay (Note 7) GD 38.8 1/fs ADC Digital Filter(HPF): Frequency respoe (Note 5) 3dB 0.1dB FR 2.0 13.0 Notes: 5. The passband and stopband frequencies scale with fs. 6. The analog modulator samples the input at 6.144MHz for an output word rate of 48kHz. There is no rejection of input signals which are multiples of the sampling frequency (that is: there is no rejection for n x 6.144MHz ± 21.768kHz, where n=1,2,3 ). 7. The calculating delay time which occurred by digital filtering. This time is from the input of analog signal to setting the 24bit data of both channels to the output register. 40.7/fs(DFS = "L"),40.8/fs(DFS = "H")typ. at HPF:ON. 8. The analog modulator samples the input at 6.144MHz for an output word rate of 96kHz. There is no rejection of input signals which are multiples of the sampling frequency (that is: there is no rejection for n x 6.144MHz ± 43.536kHz, where n=1,2,3 ). Hz Hz 7

DIGITAL CHARACTERISTICS (Ta=25 C; VA=5.0V±5%; VD=3.0 ~ 5.25V) Parameter Symbol min typ max Units HighLevel Input Voltage LowLevel Input Voltage HighLevel Output Voltage Iout=20µA LowLevel Output Voltage Iout=20µA VIH VIL VOH VOL 70%VD VD0.1 30%VD 0.1 Input Leakage Current Iin ±10 µa SWITCHING CHARACTERISTICS (Ta=25 C; VA=5.0V±5%; VD=3.0 ~ 5.25V; C L =20pF) Parameter Symbol min typ max Units Control Clock Frequency Master Clock 256fs: Pulse width Low Pulse width High Serial Data Output Clock (SCLK) Channel Select Clock (LRCK) duty cycle Serial Interface Timing (Note 9) Slave Mode(SMODE1="L") SCLK Period SCLK Pulse width Low Pulse width High SCLK falling to LRCK Edge (Note 10) LRCK Edge to SDATA MSB Valid SCLK falling to SDATA Valid SCLK falling to FSYNC Edge Master Mode(SMODE1="H") SCLK Frequency (DFS="L") SCLK Frequency (DFS="H") duty cycle FSYNC Frequency duty cycle SCLK falling to LRCK Edge LRCK Edge to FSYNC rising SCLK falling to SDATA Valid SCLK falling to FSYNC Edge Reset/Calibration timing RST Pulse width RST falling to CAL rising RST rising to CAL falling (Note 11) RST rising to SDATA Valid (Note 11) fclk tclkl tclkh fslk fs tslk tslkl tslkh tslr tdlr tdss tsf fslk fslk ffsync tslr tlrf tdss tsf trtw trcr trcf trtv 0.256 29 29 1 25 144.7 65 65 45 45 20 20 150 12.288 6.144 48 128fs 64fs 50 2fs 50 1 8704 8960 13.824 6.912 108 75 45 45 45 45 20 45 20 V V V V MHz MHz khz % Notes: 9. Refer to Serial Data interface. 10. Specified LRCK edges not to coincide with the rising edges of SCLK. 11. The number of the LRCK rising edges after RST brought high at DFS="L". The value is in master mode. In slave mode it becomes one LRCK clock(1/fs) longer. When DFS="H", trcf=17408 and trtv=17920. 50 Hz Hz % Hz % tslk 1/fs 1/fs 8

n Timing Diagram LRCK tslk tslr tslkl tslkh SCLK tdlr tdss SDATA MSB MSB1 MSB2 Serial Data Timing (Slave Mode, FSYNC="H") LRCK tslr SCLK tsf tsf FSYNC tdlr tdss SDATA MSB D1 D0 Serial Data Timing (Slave Mode) LRCK tslk tslr tslkl tslkh SCLK tdss tdss SDATA MSB MSB1 Serial Data Timing (I 2 S Slave Mode, FSYNC = Don't Care) 9

LRCK tslr SCLK tsf tsf FSYNC tlrf SDATA MSB tdss MSB1 Serial Data Timing (Master Mode & I 2 S Master Mode, DFS ="L") trtw trtv RST trcf CAL trcr SDATA Reset & Calibration Timing 10

n System Clock Input OPERATION OVERVIEW The external clocks which are required to operate the AK5383 are MCLK, LRCK(fs), SCLK. MCLK should be synchronized with LRCK but the phase is free of care. MCLK should be 256fs in normal sampling mode(dfs="l") and double sampling mode needs 128fs as MCLK. Table 2 illustrates standard audio word rates and corresponding frequencies used in the AK5383. As the AK5383 includes the phase detect circuit for LRCK, the AK5383 is reset automatically when the synchronization is out of phase by changing the clock frequencies. Therefore, the reset is only needed for powerup. All external clocks must be present unless RST ="L", otherwise excessive current may result from abnormal operation of internal dynamic logic. Speed Normal(DFS ="L") Double(DFS ="H") LRCK (max) 54kHz 108kHz SCLK ~128fs ~64fs MCLK 256fs 128fs Table 1. System Clocks n Serial Data Interface fs MCLK SCLK 32.0kHz 8.1920MHz 4.0960MHz 44.1kHz 11.2896MHz 5.6448MHz 48.0kHz 12.2880MHz 6.1440MHz 96.0kHz 12.2880MHz 6.1440MHz Table 2. Examples of System Clock Frequency The AK5383 supports four serial data formats which can be selected via SMODE1 and SMODE2 pi(table 3). The data format is MSBfirst, 2's complement. Figure SMODE2 SMODE1 Mode LRCK Figure 1 L L Slave Mode Lch = H, Rch =L Figure 2 L H Master Mode Lch =H, Rch =L Figure 3 H L I 2 S Slave Mode Lch =L, Rch =H Figure 4 H H I 2 S Master Mode Lch =L, Rch =H Table 3. Serial I/F Format 11

LRCK(i) SCLK(i) 0 1 2 3 20 21 22 23 24 25 15 0 1 2 3 20 21 22 23 24 25 0 1 FSYNC(i) SDATA(o) 23 22 21 4 3 2 1 0 23 22 21 7 4 3 2 1 0 23 22 Lch Data Rch Data FSYNC(i) SDATA(o) 23 22 5 4 3 2 1 0 23 22 5 4 3 2 1 0 23 23:MSB,0:LSB Figure 1. Serial Data Timing (Slave Mode) LRCK(o) SCLK(o) 0 1 2 3 20 21 22 23 24 25 15 33 34 0 1 2 3 20 21 22 23 24 25 33 34 0 1 FSYNC(o) SDATA(o) 23 22 5 4 3 2 1 0 23 22 5 4 3 2 1 0 23 Lch Data Rch Data 23:MSB,0:LSB Figure 2. Serial Data Timing (Master mode, DFS="L") LRCK(i) SCLK(i) SDATA(o) 0 1 2 3 19 20 21 22 23 24 0 1 2 3 19 20 21 22 23 24 0 1 23 22 6 5 4 3 2 1 0 23 22 6 5 4 3 2 1 0 23 Lch Data Rch Data 23:MSB,0:LSB Figure 3. Serial Data Timing (I 2 S Slave mode, FSYNC: Don t care.) LRCK(o) SCLK(o) 0 1 2 3 20 21 22 23 24 25 15 33 34 0 1 2 3 20 21 22 23 24 25 33 34 0 1 FSYNC(o) SDATA(o) 23 22 5 4 3 2 1 0 23 23 22 5 4 3 2 1 0 23 23:MSB,0:LSB Lch Data Rch Data Figure 4. Serial Data Timing (I 2 S Master mode, DFS="L") 12

n Offset Calibration When RST pin goes to "L", the digital section is powereddown. Upon returning "H", an offset calibration cycle is started. An offset calibration cycle should always be initiated after powerup. During the offset calibration cycle, the digital section of the part measures and stores the values of calibration input of each channel in registers. The calibration input value is subtracted from all future outputs. The calibration input may be obtained from either the analog input pi (AIN+/) or the VCOM pi depending on the state of the ZCAL pin. With ZCAL "H", the analog input pin voltages are measured, and with ZCAL "L", the VCOM pin voltages are measured. The CAL output is "H" during calibration. n Digital High Pass Filter The AK5383 also has a digital high pass filter for DC offset cancel. The cutoff frequency of the HPF is 1Hz at fs=48khz and also scales with sampling rate(fs). 13

SYSTEM DESIGN Figure 5 and 6 show the system connection diagram. An evaluation board[akd5383] is available which demotrates the optimum layout, power supply arrangements and measurement results. 10µ 0.1µ + 0.22µ 1 2 3 VREFL GNDL VCOML VREFR 28 GNDR 27 VCOMR 26 0.1µ 0.22µ + 10µ Lch+ 4 AINL+ AINR+ 25 Rch+ +3.3~5V Digital Rch Lch + 0.1µ 10µ 5 6 7 8 AK5383 AINR 24 VA 23 AGND 22 BGND 21 AINL ZCAL VD DGND + 0.1µ 10µ +5V Analog Reset & Cal Control 9 10 CAL RST TEST 20 HPFE 19 Mode 11 SMODE2 DFS 18 Select fs 12 13 SMODE1 LRCK MCLK 17 FSYNC 16 System Controller 14 SCLK SDATA 15 256fs@fs=48k System Ground Analog Ground Figure 5. Typical Connection Diagram Notes: LRCK = fs, SCLK=64fs. Power lines of VA and VD should be distributed separately from the point with low impedance of regulator etc. AGND, BGND and DGND must be connected to the same analog ground plane. All input pi except pulldown/pullup pi should not be left floating. Digital Ground Analog Ground 1 VREFL VREFR 28 2 GNDL GNDR 27 3 VCOML VCOMR 26 System Controller 4 5 6 7 AINL+ AINL ZCAL VD AK5383 AINR+ 25 AINR 24 VA 23 AGND 22 8 DGND BGND 21 9 CAL TEST 20 10 RST HPFE 19 11 SMODE2 DFS 18 12 SMODE1 MCLK 17 13 LRCK FSYNC 16 14 SCLK SDATA 15 Figure 6 Ground layout 14

1. Grounding and Power Supply Decoupling The AK5383 requires careful attention to power supply and grounding arrangements. Analog ground and digital ground should be separate and connected together near to where the supplies are brought onto the printed circuit board. Decoupling capacitors should be as near to the AK5383 as possible, with the small value ceramic capacitor being the nearest. 2. Onchip voltage reference and VCOM The reference voltage for A/D converter is a differential voltage between the VREFL/R output voltage and the GNDL/R input voltage. The GNDL/R are connected to AGND and a 10uF electrolytic capacitor parallel with a 0.1uF ceramic capacitor between the VREFL/R and the GNDL/R eliminate the effects of high frequency noise. Especially a ceramic capacitor should be as near to the pi as possible. And all digital signals, especially clocks, should be kept away from the VREFL/R pi in order to avoid unwanted coupling into the AK5383. No load current may be taken from the VREFL/R pi. VCOM is a common voltage of the analog signal. In order to eliminate the effects of high frequency noise, a 0.22uF ceramic capacitor should be connected as near to the VCOM pin as possible. And all signals, especially clocks, should be kept away from the VCOM pin in order to avoid unwanted coupling into the AK5383. No load current may be drawn from the VCOM pin. 3. Analog Inputs Analog signal is differentially input into the modulator via the AIN+ and the AIN pi. The input voltage is the difference between AIN+ and AIN pi. The fullscale of each pin is nominally ± 2.45Vpp(typ). The AK5383 can accept input voltages from AGND to VA. The ADC output data format is 2's complement. The output code is 7FFFFFH(@24bit) for input above a positive full scale and 800000H(@24bit) for input below a negative full scale. The ideal code is 000000H (@24bit) with no input signal. The DC offset is removed by the offset calibration. The AK5383 samples the analog inputs at 128fs(6.144MHz @fs=48khz,dfs="l"). The digital filter rejects noise above the stop band except for multiples of 128fs. A simple RC filter may be used to attenuate any noise around 128fs and most audio signals do not have significant energy at 128fs. The AK5383 accepts +5V supply voltage. Any voltage which exceeds the upper limit of VA+0.3V and lower limit of AGND0.3V and any current beyond 10mA for the analog input pi(ain+ /) should be avoided. Excessive currents to the input pi may damage the device. Hence input pi must be protected from signals at or beyond these limits. Use caution specially in case of using ±15V in other analog circuits. 15

Figure 7shows an input buffer circuit example 1. This is a fulldifferential input buffer circuit with an invertedamp (gain :10dB). The capacitor of 10nF between AIN+ / decreases the clock feed through noise of modulator, and composes a 1st order LPF(fc=360kHz) with 22ohm resistor before the capacitor. This circuit also has a 1st order LPF(fc=370kHz) composed of opamp. In this example, the internal offset is removed by self calibration. The evaluation board should be referred about the detail. 4.7k 910 Analog In 10k 10k VA+ 8.1Vpp + 10µ 0.1µ 4.7k Bias VP+ + VP NJM5532 VA=±5V VP=±15V 47µ 47µ 3k Bias 3k Bias + + 470p 910 470p 22 22 "L" at self calibration 2.45Vpp 10n 2.45Vpp AIN+ AIN CAL ZCAL AK5383 Figure 7 Differential Input Buffer Example 1 Figure 8 shows an input buffer circuit example 2. (1 st order HPF; fc=0.66hz, Table 4, 1 st order LPF; fc=590khz, gain= 14dB, Table 5). The analog signal is able to input through XLR or BNC connectors. (short JP1 and JP2 for BNC input, open JP1 and JP2 for XLR input). The input level of this circuit is +/12.4Vpp (AK5383: +/2.45Vpp Typ.). BNC JP1 12.4Vpp XLR Vin+ 22u 1k VA + NJM5534 10k 180 AK5383 AIN+ 2.45Vpp 4.7k 0.1u 4.7k Bias 1.5n 100 4.7k 4.7k 10u 10k JP2 + + Vin 22u 1k NJM5534 NJM5534 12.4Vpp Figure 8 Differential Input Buffer Example 2 180 2.45Vpp AK5383 AIN fin 1Hz 10Hz Frequency Respoe 1.56dB 0.02dB Table 4. Frequency Respoe of HPF Fin 20kHz 40kHz 6.144MHz Frequency Respoe 0.005dB 0.02dB 15.6dB Table 5. Frequency Respoe of LPF 16

PACKAGE (AK5383VS) 28pin SOP (Unit: mm) 7.5 ± 0.2 10.4 ± 0.3 0.75 ± 0.2 1.095TYP 18.7±0.3 2.2 ± 0.1 +0.1 0.150.05 1.27 0.10 +0.1 0.10.05 0.4±0.1 0.12 M 010 n Package & Lead frame material Package molding compound: Lead frame material: Lead frame surface treatment: Epoxy Cu Solder plate 17

PACKAGE (AK5383VF) 28pin VSOP (Unit: mm) 0.675 28 *9.8±0.2 1.25±0.2 15 *5.6±0.2 A 7.6±0.2 1 14 0.22±0.1 0.65 +0.1 0.150.05 0.1±0.1 Detail A Seating Plane 0.10 1.0 0.5±0.2 NOTE: Dimeion "*" does not include mold flash. 010 n Package & Lead frame material Package molding compound: Lead frame material: Lead frame surface treatment: Epoxy Cu Solder plate 18

MARKING (AK5383VS) AKM JAPAN AK5383VS XXXBYYYYC XXXXBYYYYC: Date code identifier XXXB: Lot number (X : Digit number, B : Alpha character ) YYYYC: Assembly date (Y : Digit number C : Alpha character) 19

MARKING (AK5383VF) AKM AK5383VF XXXBYYYYC XXXXBYYYYC: Date code identifier XXXB: Lot number (X : Digit number, B : Alpha character ) YYYYC: Assembly date (Y : Digit number C : Alpha character) IMPORTANT NOTICE These products and their specificatio are subject to change without notice. Before coidering any use or application, coult the Asahi Kasei Microsystems Co., Ltd. (AKM) sales office or authorized distributor concerning their current status. AKM assumes no liability for infringement of any patent, intellectual property, or other right in the application or use of any information contained herein. Any export of these products, or devices or systems containing them, may require an export licee or other official approval under the law and regulatio of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials. AKM products are neither intended nor authorized for use as critical components in any safety, life support, or other hazard related device or system, and AKM assumes no respoibility relating to any such use, except with the express written coent of the Representative Director of AKM. As used here: (a) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applicatio in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property. (b) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability. It is the respoibility of the buyer or distributor of an AKM product who distributes, disposes of, or otherwise places the product with a third party to notify that party in advance of the above content and conditio, and the buyer or distributor agrees to assume any and all respoibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification. 20

易迪拓培训 专注于微波 射频 天线设计人才的培养网址 :http://www.edatop.com 射频和天线设计培训课程推荐 易迪拓培训 (www.edatop.com) 由数名来自于研发第一线的资深工程师发起成立, 致力并专注于微波 射频 天线设计研发人才的培养 ; 我们于 2006 年整合合并微波 EDA 网 (www.mweda.com), 现已发展成为国内最大的微波射频和天线设计人才培养基地, 成功推出多套微波射频以及天线设计经典培训课程和 ADS HFSS 等专业软件使用培训课程, 广受客户好评 ; 并先后与人民邮电出版社 电子工业出版社合作出版了多本专业图书, 帮助数万名工程师提升了专业技术能力 客户遍布中兴通讯 研通高频 埃威航电 国人通信等多家国内知名公司, 以及台湾工业技术研究院 永业科技 全一电子等多家台湾地区企业 易迪拓培训课程列表 :http://www.edatop.com/peixun/rfe/129.html 射频工程师养成培训课程套装该套装精选了射频专业基础培训课程 射频仿真设计培训课程和射频电路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材 ; 旨在引领学员全面学习一个射频工程师需要熟悉 理解和掌握的专业知识和研发设计能力 通过套装的学习, 能够让学员完全达到和胜任一个合格的射频工程师的要求 课程网址 :http://www.edatop.com/peixun/rfe/110.html ADS 学习培训课程套装该套装是迄今国内最全面 最权威的 ADS 培训教程, 共包含 10 门 ADS 学习培训课程 课程是由具有多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解, 并多结合设计实例, 由浅入深 详细而又全面地讲解了 ADS 在微波射频电路设计 通信系统设计和电磁仿真设计方面的内容 能让您在最短的时间内学会使用 ADS, 迅速提升个人技术能力, 把 ADS 真正应用到实际研发工作中去, 成为 ADS 设计专家... 课程网址 : http://www.edatop.com/peixun/ads/13.html HFSS 学习培训课程套装该套课程套装包含了本站全部 HFSS 培训课程, 是迄今国内最全面 最专业的 HFSS 培训教程套装, 可以帮助您从零开始, 全面深入学习 HFSS 的各项功能和在多个方面的工程应用 购买套装, 更可超值赠送 3 个月免费学习答疑, 随时解答您学习过程中遇到的棘手问题, 让您的 HFSS 学习更加轻松顺畅 课程网址 :http://www.edatop.com/peixun/hfss/11.html `

易迪拓培训 专注于微波 射频 天线设计人才的培养网址 :http://www.edatop.com CST 学习培训课程套装该培训套装由易迪拓培训联合微波 EDA 网共同推出, 是最全面 系统 专业的 CST 微波工作室培训课程套装, 所有课程都由经验丰富的专家授课, 视频教学, 可以帮助您从零开始, 全面系统地学习 CST 微波工作的各项功能及其在微波射频 天线设计等领域的设计应用 且购买该套装, 还可超值赠送 3 个月免费学习答疑 课程网址 :http://www.edatop.com/peixun/cst/24.html HFSS 天线设计培训课程套装套装包含 6 门视频课程和 1 本图书, 课程从基础讲起, 内容由浅入深, 理论介绍和实际操作讲解相结合, 全面系统的讲解了 HFSS 天线设计的全过程 是国内最全面 最专业的 HFSS 天线设计课程, 可以帮助您快速学习掌握如何使用 HFSS 设计天线, 让天线设计不再难 课程网址 :http://www.edatop.com/peixun/hfss/122.html 13.56MHz NFC/RFID 线圈天线设计培训课程套装套装包含 4 门视频培训课程, 培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合, 全面系统地讲解了 13.56MHz 线圈天线的工作原理 设计方法 设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作, 同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试 通过该套课程的学习, 可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理 设计和调试 详情浏览 :http://www.edatop.com/peixun/antenna/116.html 我们的课程优势 : 成立于 2004 年,10 多年丰富的行业经验, 一直致力并专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求 经验丰富的一线资深工程师讲授, 结合实际工程案例, 直观 实用 易学 联系我们 : 易迪拓培训官网 :http://www.edatop.com 微波 EDA 网 :http://www.mweda.com 官方淘宝店 :http://shop36920890.taobao.com 专注于微波 射频 天线设计人才的培养易迪拓培训官方网址 :http://www.edatop.com 淘宝网店 :http://shop36920890.taobao.com