Multimode fiber media types for 802.3cd

Similar documents
OPTICAL TECHNOLOGY TRAINING

Migration to 50/125 µm in the Local Area Network

Baseline proposal for a 400 Gb/s optical PMD supporting four MMF pairs

400G-BD4.2 Multimode Fiber 8x50Gbps Technical Specifications

The fundamental differences between OM5 and OM4+ fiber

10GBASE-S Technical Feasibility

10GBd SFP+ Short Wavelength (850nm) Transceiver

Comment Supporting materials: The Reuse of 10GbE SRS Test for SR4/10, 40G-LR4. Frank Chang Vitesse

Clarifying Issues Related to Spreadsheet Model using Full Link Simulation for 25G on MMF

PROLABS J9150A-C 10GBd SFP+ Short Wavelength (850nm) Transceiver

PROLABS GP-10GSFP-1S-C 10GBd SFP+ Short Wavelength (850nm) Transceiver

SFP-10G-SR Specifications, R01. SFP-10G-SR-OEM 10GBd SFP+ Short Wavelength (850nm) Transceiver

Variation in Multimode Fiber Response: Summary of Experimental Results

Fieldworthy ROFL/OFL Multimode Fiber Differential Mode Delay Measurement System

How Bend Insensitive Multimode Fiber is Affecting Installation and Testing of Enterprise and Data Center Cabling

Parameter Fiber Type Modal 850nm (MHz-km) Distance Range (m) 62.5/125um MMF /125um MMF

DELL EMC NETWORKING TRANSCEIVERS AND CABLES

Fiber Optic Principles. Oct-09 1

Introduction of 25 Gb/s VCSELs

Dynamic Behavior of Mode Partition Noise in MMF. Petar Pepeljugoski IBM Research

NEW YORK CITY COLLEGE of TECHNOLOGY

Measurements of VCSEL Mode Delays & Implications for System Performance

P802.3cd Clause 138 hazard level recommendations. P802.3cd Interim meeting, May 2017 Richard Johnson and Jonathan King, Finisar

Wavelength (nm) (m) ( o C) SPM-2100AWG 10.3 SR / SW 300 / 82 / 33* 850 VCSEL SFP+ with DMI -40 to 85 Yes

PROLABS XENPAK-10GB-SR-C

10GBASE-S Technical Feasibility RECAP

Arista 100G Transceivers and Cables: Q&A

TIA FO Task Group on Modal Dependence of Bandwidth. 7/99 Status Update

T Q S Q 1 4 H 9 J 8 2

Product Specification 100GBASE-SR10 100m CXP Optical Transceiver Module FTLD10CE1C APPLICATIONS

OPENETICS. P/N Gb/sQSFP+SR4Transceiver PRODUCT FEATURES APPLICATIONS STANDARD. Specialist Manufacturer Voice Data Security.

QSFP. Parameter Symbol Min Max Unit Notes. Relative Humidity (non-condensation) RH 0 85 %

Multilane MM Optics: Considerations for 802.3ba. John Petrilla Avago Technologies March 2008

Optical Fiber and PMD. Reach and Economics for EFM

1.25Gbps Multimode 1310nm, 1x9 DSC Transceiver

The Development of the 1060 nm 28 Gb/s VCSEL and the Characteristics of the Multi-mode Fiber Link

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

There are lots of problems or challenges with fiber, Attenuation, Reflections, Dispersion and so on. So here we will look at these problems.

XFP 10G SR 03km LC Optical Transceiver

Prolabs SFP-10G-LRM. Datasheet: Transceivers. 10GBd SFP+ LRM Transceiver. Ordering Information. Introduction. Ordering Information SFP-10G-LRM

Pluggable Transceiver Modules

Trends in Optical Transceivers:

VCSEL Based 10 Gigabit Serial Solutions

Product Specification RoHS-6 Compliant 10Gb/s 850nm Multimode Datacom XFP Optical Transceiver

Bending the Truth - Get the straight story about Corning ClearCurve multimode fibers

QSFP-100G-SR4-AR-LEG. 100Gbase QSFP28 Transceiver

Optical Digital Transmission Systems. Xavier Fernando ADROIT Lab Ryerson University

MMF Capabilities for 400-Gigabit Ethernet, and Beyond

T Q S Q 7 4 H 9 J C A

T A S A 1 E H

Electronic Dispersion Compensation of 40-Gb/s Multimode Fiber Links Using IIR Equalization

Transceiver Compatibility and Interoperability

MMF Channel Characteristics

T A S A 1 N H 1 P 1 1

FTLD12CL3C. Product Specification 150 Gb/s (12x 12.5Gb/s) CXP Optical Transceiver Module PRODUCT FEATURES

PROLABS SFP-10G-LR-C 10GBd SFP+ LR Transceiver

XENPAK-10GB-SR XENPAK-10GBASE-SR 850nm, 300m Reach

GYM Bilgi Teknolojileri

10GBd SFP+ LR Long Wavelength (1310nm) Transceiver

PROLABS EX-SFP-10GE-LR-C

τ mod = T modal = longest ray path shortest ray path n 1 L 1 = L n 2 1

Experimental Demonstration of 56Gbps NRZ for 400GbE 2km and 10km PMD Using 100GbE Tx & Rx with Rx EQ

Versatile Graded-Index Multi-Mode Fiber for High Capacity Single-and Multi-Mode Optical Home Network

QSFP+ Series Preliminary EOLQ-8540G-03-MO Series

Proposal for 400GE Optical PMDs for SMF Objectives based on 4 x 100G DMT David Lewis, Sacha Corbeil, Beck Mason

Reach Extension and Capacity Enhancement of VCSEL-based Transmission over Single Lane MMF Links

SFP-10G-M 10G Ethernet SFP+ Transceiver

QSFP, 40GBase-SR, 850nm, MM, MPO

Chapter 8. Digital Links

100G SR4 TxVEC Update. John Petrilla: Avago Technologies May 15, 2014

SFP-10G-SR-Arista-A SFP+, 10GBASE-SR 10G Ethernet Module 850mn, 300m, MMF, LC RoHS6. Approved Optics, Inc.

Research on Optical Access Network. Assoc. Prof. Dr. Duang-rudee Worasucheep Electrical Engineering Department Chulalongkorn University

Product Specification 40GE SWDM4 QSFP+ Optical Transceiver Module FTL4S1QE1C

Specification. T S P - S x C H 1 - C 1 1

Product Specification

Lecture 10. Dielectric Waveguides and Optical Fibers

Specification for 100GBASE-DR4. Piers Dawe

40GBd QSFP+ LR4 Optical Transceiver

Product Specification. RoHS-6 Compliant 10Gb/s 850nm Multimode Datacom SFP+ Transceiver FTLX8571D3BCL

User Manual. Installation Transmit Receive Module SFP/XFP

Product Specification 100GBASE-SR10 100m CXP Optical Transceiver Module FTLD10CE3C

for SWL and LWL Fiber Systems Chromatic Dispersion Limited Link Lengths David Cunningham, Leonid Kazovsky* and M. Nowell

Spiral Launch Method for Enhanced MMF Bandwidth

XFP 10G MM SR. 10Gbps XFP Optical Transceiver, 300m Reach

PROLABS GLC-SX-MM-C 1.25GBd SFP (Small Form Pluggable) Short Wavelength (850nm) Transceiver

Product Specification. RoHS-6 Compliant 10Gb/s 850nm Multimode Datacom XFP Optical Transceiver FTLX8511D3

100-Gbps QSFP28 SR4 Optical Transceiver Module PN: WST-QS28-SR4-C

Fiber Optic Communication Systems. Unit-05: Types of Fibers.

One Enterprise. One Infrastructure. One Partner. Optical Fiber Loss Testing. Optical loss testing in the field is not as simple as it seems.

850nm SFP28 Multi-Mode Transceiver, With Diagnostic Monitoring and Dual CDR Duplex SFP28 Transceiver, RoHS 6 Compliant. Fiber Type.

Product Specification. Industrial Temperature Range 10Gb/s 850nm Multimode Datacom XFP Optical Transceiver FTLX8512D3BTL

SO-SFP-16GFC-ER-Dxxxx

WHITE PAPER LINK LOSS BUDGET ANALYSIS TAP APPLICATION NOTE LINK LOSS BUDGET ANALYSIS

DATA SHEET. MODULETEK: SFP10-CWDM-DML-xxxx-20KM-15DB-D10. 10Gb/s SFP+ CWDM 20km Transceiver. SFP10-CWDM-DML-xxxx-20KM-15DB-D10 Overview

QSFP SV-QSFP-40G-PLR4L

10Gbps XFP Optical Transceiver

Modeling MM Light Propagation using measured index error, DMD, and bandwidth

SMF PMD Modulation Observations. 400 Gb/s Ethernet Task Force SMF Ad Hoc Conference Call 24 February 2015 Chris Cole

10Gbps SFP + BIDI Transceiver (850nm Tx / 1310nm Rx, 300m on OM3 MMF)

Specification. Small Form Factor Pluggable Duplex LC Receptacle SFP. Optical Transceivers 1000BASE-SX 1250Mbit/s. Ordering Information

Transcription:

1 Multimode fiber media types for 802.3cd P802.3cd, Fort Worth, Texas September 12-16, 2016 Rick Pimpinella Jose Castro Brett Lane Panduit Labs, Panduit Corp.

2 Laser Optimized Multimode Fiber Types Fiber Type EMB at 850 nm (MHz km) EMB at 953 nm (MHz km) OM3 2000 NA OM4 4700 NA WBMMF (OM4-W or OM5?) 4700 2470 OM3 and OM4 designed for high bandwidth at 850 nm WBMMF designed high bandwidth over wide range of wavelengths

3 TIA Round Robin Report Used for Specifying WBMMF CD Standard MMF Round Robin Participants 1. Corning 2. OFS 3. Panduit 4. Prysmian 5. J Fiber 6. YOFC Source: TR42.12-2015-06-022

EMB (MHz-km) 4 Range of EMB peak wavelengths for 5 OM4 fibers - EMB wavelength dependence Range of EMB for OM4 15000 14000 13000 12000 11000 10000 9000 8000 Shortest OM4 Peak l OM4 Fibers Longest OM4 Peak l 7000 6000 5000 4000 3000 2000 1000 800 820 840 860 880 900 920 940 960 980 1000 1020 Wavelength (nm)

TIA 42.12 Presentation: 5 Range of EMB at 850 nm Low EMB at 840 nm Source: TR42.12-2015-06-013

6 Modeling of OM4 EMB wavelength dependence Simulation parameters Fibers with both perfect alpha profiles and perturbed refractive index profiles Magnitude of index perturbation normally distributed w/ standard deviation ~10-4 Population of 40000 MMFs per wavelength generated over the range 830 nm to 980 nm Wavelengths varied in 1 nm steps Total fibers-wavelength combination = 6 million Blue dots represent the universe of MMFs including OM3 and OM4 12000 EMB at 953 nm (MHz km) 11000 10000 9000 8000 7000 6000 5000 4000 3000 2000 1000 0 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 EMB at 850 nm (MHz km)

EMB (MHz km) 953 nm 7 Modeling of OM4 & WBMMF EMB wavelength dependence 10000 9000 8000 7000 6000 5000 4000 3000 2000 EMB 850nm & 953nm OM4 EMB Population @ 850 nm WBMMF EMB Population @ 850 nm 1000 4700 6700 8700 10700 12700 14700 EMB (MHz km) 850 nm

Number of Lanes (fibers or wavelengths) 8 WBMMF Required for Future higher speed Ethernet using SWDM 16 400GbE 10 100GbE 8 4 MMF 40GbE MMF 100GbE 200GbE WBMMF Parallel optics 50 GbE PAM4 x 4 l s = 200GbE per fiber 800GbE 4 fiber pairs 2 Breakout Breakout 100GbE Breakout 400GbE 1 10GbE 25GbE 50GbE Duplex MMF 200GbE 1 fiber pair 10Gb/s 802.3ba 25Gb/s 802.3bm 802.3by 50Gb/s PAM4 802.3bs 802.3cd 100Gb/s PAM4 802.3bs Future PMDs PAM4 Bit rate per lane

9 Conclusions Inclusion of WBMMF as a media type option for P802.3cd depends on which 100G solution is adopted Required for SWDM Not Required for parallel optics (SR2) For SWDM, OM3 & OM4 EMB is not specified for l s 860 nm Only WBMMF can be specified for 100G SWDM-2 PMDs will require different MMF types for different data rates For parallel optics i.e., 100GBASE-SR2 WBMMF provides no benefit (modal and chromatic dispersions are the same as OM4) Concerns Including or excluding MMF media types for 50/200G vs 100G will confuse customers The use of OM4 for SWDM can result in channel failures Premature to specify SWDM or include Wideband MMF in 802.3cd

BACKUP 10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Radius offset, mm OSA Counts 11 Primary cause of BER performance disparity Spectral coupling of VCSEL MMF modes 7000 6000 5000 VCSEL Spectrum BER VCSEL Scan 1 Conventional system models assume homogenous fiber coupled spatialspectral distribution versus fiber radius Modal and chromatic dispersion effects remain independent 4000 3000 2000 Equal radial Mode Delays Near Perfect DMD + Chrom. Disp n 1000 VCSEL 0 847.5 847.7 847.9 848.1 848.3 848.5 848.7 848.9 849.1 849.3 849.5 849.7 Wavelength (nm) Low-order mode High-order mode Core Cladding 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0-1 -H direction relative time, ps/m VCSEL spectral width = 0.425nm

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Radius offset, mm 12 Actual VCSEL spatial-spectral coupling into MMF Radial Spectral Dependency Core Cladding Short wavelengths couple to high-order modes Long wavelengths couple to low-order modes 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0-1 There is a significant fiber coupled spatialspectral distribution Shorter spectral components preferentially coupled to larger fiber radii Interaction of modal and chromatic dispersion -H direction Peak shift (P-shift) Delay between 5 & 19mm relative time, ps/m Resultant DMD due to Modal Chromatic Dispersion

Amplitude (arb) Modal-Chromatic Dispersion Interaction Standard Algorithm 0.40 0.35 0.30 0.25 Output Pulse: No Chromatic Dispersion FWHM = 81.5 ps BW = 6435 MHz km CD BW = 6221 MHz km 1.00 0.90 0.80 0.70 DMD Measurement, l = 850 nm 3 um 10 um 19 um 0.60 0.50 0.40 0.30 0.20 0.10 0.00 3.5E-10 4.0E-10 4.5E-10 5.0E-10 5.5E-10 6.0E-10 Time (s) 0.20 0.15 0.10 0.05 0.00 4.0E-10 4.5E-10 5.0E-10 5.5E-10 6.0E-10 0.07 0.06 0.05 0.04 Output Pulse: With Chromatic Dispersion FWHM = 56.6 ps BW = 6435 MHz km CD BW = 9184 MHz km Panduit Algorithm 0.03 0.02 0.01 0.00 6.000E-10 6.500E-10 7.000E-10 7.500E-10 8.000E-10

14 System Performance versus Fiber Bandwidth Two fibers from same cable with the same EMB (similar DMD) L = 548 m Ti:Sapphire Laser - DMD L-Shifted R-Shifted Blue Fiber EMB = 4540 MHz km DMD inner = 0.12 ps/m DMD outer = 0.15 ps/m DMD sliding = 0.11 ps/m DMD P-Shift = -0.098 ps/m Brown Fiber EMB = 4540 MHz km DMD inner = 0.12 ps/m DMD outer = 0.13 ps/m DMD sliding = 0.13 ps/m DMD P-Shift = +0.096 ps/m

Bit Error Rate 15 Channel Performance Difference Same EMB Two fibers in same cable with the same EMB L = 548 m 1.E-03 1.E-04 1.E-05 1.E-06 Brown 1.E-07 EMB = 4540 MHz km 1.E-08 1.E-09 Blue EMB = 4540 MHz km 1.E-10 1.E-11 1.E-12-13.5-12.5-11.5-10.5-9.5-8.5 Rx Power (dbm)

Bit Error Rate (RX = -11 dbm) 5 Orders System Performance vs. Fiber Bandwidth System Performance (BER) versus Fiber Bandwidth Correlation Bit Error Rate Testing 10GBASE-SR compliant test mainframe Identical TX & RX Same fiber length, 300 m 1.E-03 Fiber Samples: OM3 included OM4 N = 100 Three fiber manufacturers Various cable constructions & bare fiber 16 1.E-04 1.E-05 OM3: EMB 2000MHz*km (Reach 300m) OM4: EMB 4700MHz*km (Reach 550m) 1.E-06 1.E-07 1.E-08 25% Failures N = 100 L = 300 m 1.E-09 1.E-10 1.E-11 1.E-12 1.E-13 1.E-14 1000 2000 3000 4000 5000 6000 7000 8000 EMB (MHz km)

Center Wavelength (nm) Center Wavelength (nm) Center Wavelength (nm) 17 Three Transmitter spectral radial dependencies 848.85 848.75 Lambda center X Lambda center Y 849.85 849.75 Lambda center X Lambda center Y 850.85 850.75 Lambda center X Lambda center Y 848.65 849.65 850.65 848.55 848.45 848.35 848.25 848.15 848.05 847.95 847.85-24 -16-8 0 8 16 24 Offset (mm) 849.55 849.45 849.35 849.25 849.15 849.05 848.95 848.85-24 -16-8 0 8 16 24 Offset (mm) 850.55 850.45 850.35 850.25 850.15 850.05 849.95 849.85-24 -16-8 0 8 16 24 Offset (mm) BERT XFP JDSU032 SFP+ 2M Dl c (nm) 0.72 0.53 0.22 Dl (nm) 0.45 0.34 0.23

-14.5-14.0-13.5-13.0-12.5-12.0-11.5-11.0-10.5-10.0-9.5-9.0-8.5-8.0-7.5-7.0 BER 18 300m Transceiver Performance B10 (R-Shifted) 1.0E-03 1.0E-04 1.0E-05 1.0E-06 1.0E-07 1.0E-08 1.0E-09 1.0E-10 10GbE Tx Variation, B10 (RS), 300m Length, 2/7/09 Dl c = 0.72nm BERT TX XFP SFP+ 1.0E-11 1.0E-12 1.0E-13 Dl c = 0.22nm Dl c = 0.53nm 1.0E-14 Rx Power (dbm)

19 Correlation Between Dl c and Dl 136 Transceivers (+2 esr4s) 1.4 1.2 1.0 N = 136 R² = 0.3056 Dl c vs Dl rms 0.8 Dl c (nm) 0.6 0.4 0.2 40G esr4: Dl c = 0.10nm 0.28nm Dl rms = 0.15nm 0.20nm 0.0-0.2-0.4 0 0.1 0.2 0.3 0.4 0.5 0.6 Dl rms (nm)

https://www.networks centre.com/informatio n/145/cisco- Compatible.html 20