PAM2310. Description. Pin Assignments NEW PRODUCT. Applications. Features 2A LOW NOISE STEP-DOWN DC-DC CONVERTER PAM2310

Similar documents
PAM2320. Description. Pin Assignments. Applications. Features. A Product Line of. Diodes Incorporated 3A LOW NOISE STEP-DOWN DC-DC CONVERTER PAM2320

PAM2303. Pin Assignments. Description. Features. Applications. A Product Line of. Diodes Incorporated 3A LOW NOISE STEP-DOWN DC-DC CONVERTER PAM2303

PAM2301. Description. Pin Assignments NEW PRODUCT. Applications. Features. 800mA STEP-DOWN DC-DC CONVERTER TSOT25 PAM2301

PAM2305D. Pin Assignments. Description. Features. Applications. A Product Line of. Diodes Incorporated 1A STEP-DOWN DC-DC CONVERTER.

PAM2306D. Description. Pin Assignments. Features. Applications. Typical Applications Circuit. A Product Line of. Diodes Incorporated

PAM2312. Pin Assignments. Description. Applications. Features. Typical Applications Circuit. A Product Line of. Diodes Incorporated

PAM2304. Pin Assignments. Description. Features. Applications. Typical Applications Circuit. A Product Line of. Diodes Incorporated

Applications AP7350 GND

PAM2321. Description. Pin Assignments. Applications. Features. A Product Line of. Diodes Incorporated. 3MHz, FAST TRANSIENT 2A STEP-DOWN CONVERTER

PAM2841. Pin Assignments. Description. Features NEW PRODUCT. Applications. Typical Applications Circuit 1.5A SW CURRENT, 40V PRECISION WLED DRIVER

NOT RECOMMENDED FOR NEW DESIGN USE AP2132

Battery-powered Equipment Laptop, Palmtops, Notebook Computers Portable Information Appliances SOT25 (WR Package)

NOT RECOMMENDED FOR NEW DESIGN USE AP2127N/K/

(Top View) transient response. No external compensation components are required. EN. Features

AP1506. Description. Pin Assignments. Features. Applications. 150kHz, 3A PWM BUCK DC/DC CONVERTER AP SD 4 FB 3 GND 2 Output

AP7384. Description. Pin Assignments. Features NEW PRODUCT. Applications. Typical Applications Circuit. WIDE INPUT VOLTAGE RANGE, 50mA ULDO REGULATOR

AL5816Q. Description. Pin Assignments. Applications. Features VCC PWM GND AUTOMOTIVE COMPLIANT 60V LINEAR LED CONTROLLER AL5816Q

Applications. Monitor TV STB Datacom

PAM2421/ PAM2422/ PAM2423. Pin Assignments. Description NEW PRODUCT. Applications Features. Typical Applications Circuit

PAM3112. Description. Pin Assignments. Features. Applications. Typical Applications Circuit NOT RECOMMENDED FOR NEW DESIGN USE AP2127

PAM2421/ PAM2422/ PAM2423. Pin Assignments. Description. Features. Applications. Typical Applications Circuit. A Product Line of. Diodes Incorporated

AL5811. Description. Pin Assignments. Features. Applications. Typical Applications Circuit. (Top View) V CC LED GND R SET 3 U-DFN

PAM2861. Description. Pin Assignments. Features. Applications. A Product Line of. Diodes Incorporated 1A LED DRIVER WITH INTERNAL SWITCH PAM2861

AZ1117I. Description. Pin Assignments NEW PRODUCT. Features Applications LOW DROPOUT LINEAR REGULATOR WITH INDUSTRIAL TEMPERATURE RANGE AZ1117I

V-DFN Pin1. Part Number Case Packaging DML1005LDS-7 V-DFN ,000/Tape & Reel

Features. Applications

AZ1085C. Features. Description. Applications. Pin Assignments. A Product Line of. Diodes Incorporated 3A LOW DROPOUT LINEAR REGULATOR AZ1085C INPUT

AP3403. General Description. Features. Applications. Typical Application Schematic. A Product Line of Diodes Incorporated

AP2132. Description. Pin Assignments. Features. Applications. A Product Line of. Diodes Incorporated 2A CMOS LDO REGULATOR AP2132.

AP XX XXX X - X. G: Green. Lead Free/ Green. Quantity

AP3409/A. Description. Pin Assignments. Features. Applications. A Product Line of. Diodes Incorporated

AP8802. General Description. Features. Applications. Typical Application Circuit. 1A LED Step-down Converter. Figure 1: Typical Application Circuit

ZLDO1117. Description. Pin Assignments. Features. Typical Applications Circuit ZLDO V 1.8V MLCC MLCC. A Product Line of. Diodes Incorporated

AP8802 1A LED STEP-DOWN CONVERTER. Pin Assignments. Description. Applications. Features. Typical Application Circuit AP8802

ZXCT1009Q. Pin Assignments. Description. Features. Applications. Typical Application Circuit. A Product Line of. Diodes Incorporated

AP4340S. Description. Pin Assignments NEW PRODUCT. Features. Applications. Typical Applications Circuit. A Product Line of. Diodes Incorporated

Features. Applications

Applications. Tape and Reel Device Qualification Packaging AL5802LP4 Commercial X2-DFN ,000/Tape & Reel -7

Features. Typical Configuration ZXGD3113W6. Top View Pin-Out

DGD Ordering Information (Note 4) Marking Information YYWW DGD05473 HIGH FREQUENCY HIGH-SIDE AND LOW-SIDE GATE DRIVER IN W-DFN

AN431. Pin Assignments. Description. Features. Applications. Typical Applications Circuit. A Product Line of. Diodes Incorporated

DGD Features. Description. Mechanical Data. Applications. Ordering Information (Note 4) Marking Information YYWW DGD05463

PART OBSOLETE USE AH3774. Applications

Features. Product Marking Reel Size (inches) Tape Width (mm) Quantity per Reel DGD21844S14-13 DGD ,500

AP5004 PWM CONTROL 2.5A STEP-DOWN CONVERTER. Description. Pin Assignments. Applications. Features AP5004 SOP-8L. (Top View ) EN FB Vboost Output

AP5727. General Description. Features. Applications. Typical Application Circuit. Bias Power Supply For OLED Sub Display and TFT-LCD V OUT.

NOT RECOMMENDED FOR NEW DESIGN - NO ALTERNATE PART. Applications

AP3211. Pin Assignments. Description. Features. Applications. Typical Applications Circuit V IN =12V. C B 10nF 25V. L1 4.7mH V OUT =3.3V (1.

AZ2940. Description. Features. Applications. Pin Assignments. A Product Line of. Diodes Incorporated 1A ULTRA LOW DROPOUT LINEAR REGULATOR AZ2940

AP2138/2139. Features. Description ADVANCED INFORMATION. Applications. Pin Assignments ULTRA LOW QUIESCENT CURRENT CMOS LDO AP2138/2139 GND V OUT V IN

AL8811. Description. Pin Assignments. Features. Applications. Typical Application Diagram. Boost/Buck/Inverting DC-DC CONVERTER AL8811

PAM2841EV1 User Guide 1.5A SW CURRENT, 40V PRECISION WLED DRIVER

V CC RESET. Applications

Part Number Case Packaging DMN2990UFO-7B X2-DFN k/Tape & Reel

Features. Top View. Part Number Case Packaging DMN3008SCP10-7 X4-DSN /Tape & Reel

AL8822. Pin Assignments. Description NEW PRODUCT. Features. Applications 50V, 2A BOOST LED DRIVER AL8822 VCC VIN COMP

Features. Part Number Marking Reel Size (inches) Tape Width (mm) Quantity Per Reel DGD2101MS8-13 DGD ,500

Green. Bottom View. Top View. Part Number Compliance Case Packaging SDT3A45SA-13 Commercial SMA 5,000/Tape & Reel

AP1688. Description. Features NEW PRODUCT. Pin Assignments. Applications. Typical Applications Circuit. A Product Line of. Diodes Incorporated

Features. Product Marking Reel Size (inch) Tape Width (mm) Quantity per Reel DGD2103MS8-13 DGD2103M ,500

PAM2804. Applications. Typical Application. 1A Step-Down Constant Current, High Efficiency LED Driver. Power Analog Microelectronics,Inc

AL5814. Description. Pin Assignments. Applications NEW PRODUCT. Features 60V LINEAR DIMMABLE LED CONTROLLER AL5814 VCC SFAULT OUT 7 EP 3 6 REF

Green. Features G S. Pin Out Top View. Part Number Case Packaging DMNH6021SK3Q-13 TO252 (DPAK) 2,500/Tape & Reel

AP7217 AP mA CMOS LDO. Pin Assignments. Description. Applications. Features. Typical Application Circuit. ( Top View ) AP7217 SOP-8L U1 2

74LVC08A. Description. Pin Assignments. Features. Applications QUADRUPLE 2-INPUT AND GATES 74LVC08A. (Top View) Vcc 4B 4A 4Y 3B 3A 3Y

AL5809Q. Pin Assignments. Description ADVANCED INFORMATON. Applications. Features. Typical Applications Circuit

Green T-DFN Part Number Compliance Case Packaging LBS10-13 Commercial T-DFN ,000/Tape & Reel

AL8823. Pin Assignments. Description NEW PRODUCT. Features. Applications OUT COMP VCC GND VIN MR16 SINGLE BOOST LED CONTROLLER AL8823

Features. Product Marking Reel Size (inches) Tape Width (mm) Quantity per Reel DGD2304S8-13 DGD ,500

ZLDO1117 1A LOW DROPOUT POSITIVE REGULATOR 1.2V, 1.5V, 1.8V, 2.5V, 3.3V, 5.0V and ADJUSTABLE OUTPUTS

VIN1 VIN1 EN1 VBIAS EN2 VIN2 VIN2. Applications

Green. Pin Diagram. Part Number Compliance Case Packaging MSB30M-13 Commercial MSBL 2,500/Tape & Reel

ZTL431/ZTL432. Pin Assignments. Description. Features. Applications COST EFFECTIVE ADJUSTABLE PRECISION SHUNT REGULATOR ZTL431/ZTL432

AH3574. Description. Pin Assignments NEW PRODUCT. Features. Applications HIGH VOLTAGE HIGH SENSITIVITY HALL EFFECT OMNIPOLAR SWITCH 3 OUTPUT GND 2

AP1117. General Description. Features. Applications. Typical Application Circuit. Note: R 1A LOW DROPOUT POSITIVE ADJUSTABLE OR FIXED-MODE REGULATOR

AH3373. Description. Pin Assignments NEW PRODUCT. Applications. Features HIGH VOLTAGE HIGH SENSITIVITY HALL EFFECT UNIPOLAR SWITCH AH3373

ZTL431AQ, ZTL431BQ ZTL432AQ, ZTL432BQ. Pin Assignments. Description. Features. Typical Application. Applications

(Top View) operation modes for setting the output voltage. Fixed output voltage mode senses the output voltage on V OUT, adjustable output voltage

AP8802H 60V 1A LED STEP-DOWN CONVERTER. Description. Pin Assignments. (Top View) CTRL GND SW SW SET GND V IN SO-8EP NEW PRELIMINARY.

AS431H. Description. Pin Assignments NEW PRODUCT. Features. Applications ADJUSTABLE PRECISION SHUNT REGULATORS AS431H ANODE CATHODE ANODE CATHODE REF

AP4320. Description. Pin Assignments. Features. Applications. Typical Applications Circuit. A Product Line of. Diodes Incorporated

PAM2804. Applications. Typical Application. 1A Step-Down Constant Current, High Efficiency LED Driver. Power Analog Microelectronics,Inc

Green. Case Material: Molded Plastic. UL Flammability Classification 3.3V - 200V Nominal Zener Voltage Range

74LVC125A. Pin Assignments. Description. Features. Applications QUADRUPLE 3-STATE BUFFERS 74LVC125A

B3XXAE B320AE-B345AE. Product Summary. Features and Benefits. Mechanical Data. Description and Applications NEW PRODUCT. Ordering Information (Note 4)

ZXRE160. Description. Pin Assignments NEW PRODUCT. Features. Applications. A Product Line of. Diodes Incorporated

AP431i. Description. Features NEW PRODUCT. Applications. Pin Assignments. A Product Line of. Diodes Incorporated

AP1117 1A LOW DROPOUT POSITIVE ADJUSTABLE OR FIXED-MODE REGULATOR. Pin Assignments. Description. Features. Applications SOT89-3L.

Top View. Part Number Compliance Case Packaging DMN6066SSD-13 Commercial SO-8 2,500/Tape & Reel DMN6066SSDQ-13 Automotive SO-8 2,500/Tape & Reel

Features. Part Number Marking Reel Size (inches) Tape Width (mm) Quantity per Reel DGD2005S8-13 DGD

AP4305. Description. Pin Assignments. Features. Applications. Typical Applications Circuit AP4305. A Product Line of. Diodes Incorporated

Features DNC GND GND GND GATE GATE. Product Marking Reel Size (inches) Tape Width (mm) Quantity per Reel ZXGD3108N8TC ZXGD ,500

ADVANCED INFORMATION

Features. Product Marking Reel Size (inches) Tape Width (mm) Quantity per Reel ZXGD3104N8TC ZXGD ,500

AP7217A. General Description. Features. Applications. Typical Application Circuit AP7217A. 3.3V 600mA CMOS LDO U1 V OUT 2 VR OUT V IN VD OUT GND 7

AS393/393A. Description. Pin Assignments. Features. Applications. Typical Applications Circuit LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS

Features SO-7. Typical Configuration for Low-Side -ve Supply Rail DRAIN. Top View

Green. Top View Pin Diagram Internal Schematic. Part Number Case Packaging MSB12M-13 MSB 3,000/Tape & Reel

Features SOT363. Top View. Part Number Case Packaging DMN2004DWK-7 SOT363 3,000/Tape & Reel

Top View. Part Number Case Packaging DMTH4014LPDQ-13 PowerDI (Type C) 2,500/Tape & Reel

Transcription:

2A LOW NOISE STEP-DOWN DC-DC CONVERTER Description Pin Assignments The is a 2A step-down DC-DC converter. At heavy load, the constant-frequency PWM control performs excellent stability and transient response. No external compensation components are required Top View The supports a range of input voltages from 2.7V to 5.5V, allowing the use of a single Li+/Li -polymer cell, multiple Alkaline/ NiMH cell,and other standard power sources. The output voltage is adjustable from 0.6V to the input voltage. The employs internal power switch and synchronous rectifier to minimize external part count and realize high efficiency. During shutdown, the input is disconnected from the output and the shutdown current is less than 1µA. Other key features include over-temperature and short circuit protection, and under-voltage lockout to prevent deep battery discharge. The delivers 2A maximum output current while consuming only 42µA of no-load quiescent current. Ultra-low R DS(ON) integrated MOSFETs and 100% duty cycle operation make the an ideal choice for high output voltage, high current applications which require a low dropout threshold. SO-8EP The is available in SO-8EP package. Features Output Current: Up to 2A Output Voltage: 0.6V to VIN Input Voltage: 2.7V to 5.5V Peak Efficiency up to 95% 42µA (typ.) No Load Quiescent Current Shutdown Current: <1µA 100% Duty Cycle Operation 1.5MHz Switching Frequency Internal Soft Start No External Compensation Required Current Limit Protection Thermal Shutdown SO-8EP Package Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2) Halogen and Antimony Free. Green Device (Note 3) Applications 5V or 3.3V Point of Load Conversion Telecom/Networking Equipment Set Top Boxes Storage Equipment Video Cards DDR Power Supply Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant. 2. See https:///quality/lead-free/ for more information about Diodes Incorporated s definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds. 1 of 11

Typical Applications Circuit V IN V O CIN 22F CO 22F R1 VO 0.6x 1 R2 Pin Descriptions Pin Name Package Name Function NC 1 No Connected VIN 2 Bias supply. Chip main power supply pin SW 3 The drains of the internal main and synchronous power MOSFET. GND 4 GND FB 5 Feedback voltage to internal error amplifier, the threshold voltage is 0.6V. NC 6 No Connected EN 7 Enable control input. Force this pin voltage above 1.5V, enables the chip, and below 0.3V shuts down the device. NC 8 No Connected Functional Block Diagram 2 of 11

Absolute Maximum Ratings (@T A = +25 C, unless otherwise specified.) These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability. All voltages are with respect to ground. Parameter Rating Unit Input Voltage V IN 6 V SW Pin Voltage -0.3 to (V IN +0.3) V FB Pin Voltage -0.3 to (V IN +0.3) V EN Pin Voltage -0.3 to 6.0 V Maximum Junction Temperature +150 C Storage Temperature Range -65 to +150 C Soldering Temperature +300, 5s C Recommended Operating Conditions (@T A = +25 C, unless otherwise specified.) Parameter Rating Unit Supply Voltage 2.7 to 5.5 V Junction Temperature Range -40 to +125 C Ambient Temperature Range -40 to +85 Thermal Information Symbol Parameter Package Max Unit θ JA Thermal Resistance (Junction to Ambient) SO-8EP 90 C/W θ JC Thermal Resistance (Junction to Case) SO-8EP 11 P D Internal Power Dissipation (@ T A = +25 C) SO-8EP 1100 mw Electrical Characteristics (@T A = +25 C, V IN = 5.0V, V O = 1.8V, C IN = 22µF, C O = 22µF, L = 2.2µH, unless otherwise specified.) Symbol Parameter Test Conditions Min Typ Max Unit V IN Input Voltage Range - 2.7-5.5 V V O Output Voltage Range - 0.6 - V IN V V O Regulated Output Voltage Accuracy I O = 0 to 2A, V IN = 2.7 to 5.5V -2 - +2 % V FB Regulated Feedback Voltage - 0.588 0.600 0.612 V I FB FB Leakage Current V O =1V - - 0.2 µa LNR Output Voltage Line Regulation V IN = 2.7V to 5V - 0.2 - %/V LDR Output Voltage Load Regulation I O = 0A to 2A - 0.5 - %/A I Q Quiescent Current No Load - 42 90 µa I SD Shutdown Current V EN = 0V - - 1 µa I LIM Peak Inductor Current - 3 - - A f OSC Oscillator Frequency - - 1.5 1.8 MHz R DS(ON) Drain-Source On-State Resistance I SW = 100mA High Side - 90 - Ω Low Side - 70 - Ω t S Start-Up Time From Enable to Output Regulation - 0.5 3 ms V EH EN Threshold High - 1.5 - - V V EL EN Threshold Low - - - 0.3 V I EN EN Leakage Current V IN = V EN = 0V -1.0 - +1.0 µa OTP Over Temperature Protection - - +150 - C OTH OTP Hysteresis - - +30 - C 3 of 11

Typical Performance Characteristics (@T A = +25 C, C IN = 22µF, C O = 22µF, unless otherwise specified.) IO=100mA VIN=3.6V VIN=5.0V VIN=5.5V IO=1000mA IO=2000mA Output Current (ma) Input Voltage (V) VIN=3.6V VIN=5.0V VIN=5.5V Output Current (ma) Input Voltage (V) IO=100mA VIN=4.5V VIN=5.0V VIN=5.5V IO=1000mA IO=2000mA Output Current (ma) Input Voltage (V) 4 of 11

Typical Performance Characteristics (Cont.) (@T A = +25 C, C IN = 22*2µF, C O = 22µF, unless otherwise specified.) VIN=3.6V VIN=5.0V VIN=5.5V V IN=4.5V V O = 1.2V V IN = 4.5V I LOAD = 0A 5 of 11

Typical Performance Characteristics (Cont.) (@T A = +25 C, C IN = 22*2µF, C O = 22µF, unless otherwise specified.) V IN=4.5V V IN=5V V IN=5V 6 of 11

Application Information The basic application circuit is shown in Page 1. External component selection is determined by the load requirement, selecting L first and then C IN and C OUT. Inductor Selection For most applications, the value of the inductor will fall in the range of 1μH to 2.7μH. Its value is chosen based on the desired ripple current and efficiency. Large value inductors lower ripple current and small value inductors result in higher ripple currents. Higher V IN or V OUT also increases the ripple current as shown in equation 2A reasonable starting point for setting ripple current is ΔI L = 1.2A (40% of 2A). 1 V OUT IL VOUT 1 Equation (1) f L VIN The DC current rating of the inductor should be at least equal to the maximum load current plus half the ripple current to prevent core saturation. Thus, a 4.2A rated inductor should be enough for most applications (2A + 1.2A). For better efficiency, choose a low DC-resistance inductor. V O 1.2V 1.5V 1.8V 2.5V 3.3V L 1.2µH 1.5µH 2.2µH 2.2µH 2.2µH C IN and C OUT Selection In continuous mode, the source current of the top MOSFET is a square wave of duty cycle V OUT/V IN. To prevent large voltage transients, a low ESR input capacitor sized for the maximum RMS current must be used. The maximum RMS capacitor current is given by: 1/ 2 VOUT VIN VOUT CINrequiredIRMS IOMAX VIN This formula has a maximum at V IN = 2V OUT, where I RMS = I OUT/2. This simple worst-case condition is commonly used for design because even significant deviations do not offer much relief. Note that the capacitor manufacturer's ripple current ratings are often based on 2000 hours of life. This makes it advisable to further derate the capacitor, or choose a capacitor rated at a higher temperature than required. Consult the manufacturer if there is any question. The selection of C OUT is driven by the required effective series resistance (ESR). Typically, once the ESR requirement for C OUT has been met, the RMS current rating generally far exceeds the I RIPPLE (P-P) requirement. The output ripple V OUT is determined by: VOUT IL ESR 1/ 8f COUT Where f = operating frequency, C OUT = output capacitance and ΔI L = ripple current in the inductor. For a fixed output voltage, the output ripple is highest at maximum input voltage since ΔI L increases with input voltage. Using Ceramic Input and Output Capacitors Higher values, lower cost ceramic capacitors are now becoming available in smaller case sizes. Their high ripple current, high voltage rating and low ESR make them ideal for switching regulator applications. Using ceramic capacitors can achieve very low output ripple and small circuit size. When choosing the input and output ceramic capacitors, choose the X5R or X7R dielectric formulations. These dielectrics have the best temperature and voltage characteristics of all the ceramics for a given value and size. Thermal Consideration Thermal protection limits power dissipation in the. When the junction temperature exceeds +150 C, the OTP (Over Temperature Protection) starts the thermal shutdown and turns the pass transistor off. The pass transistor resumes operation after the junction temperature drops below +120 C. For continuous operation, the junction temperature should be maintained below +125 C. The power dissipation is defined as: VORDS(ON)H VIN 2 VO RDS(ON)L PD IO t SW F S I O I Q V IN VIN I Q is the step-down converter quiescent current. The term tsw is used to estimate the full load step-down converter switching losses. 7 of 11

Application Information (Cont.) For the condition where the step-down converter is in dropout at 100% duty cycle, the total device dissipation reduces to: 2 PD IO RDS(ON)H IQ VIN Since R DS(ON), quiescent current, and switching losses all vary with input voltage, the total losses should be investigated over the complete input voltage range. The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surrounding airflow and temperature difference between junction and ambient. The maximum power dissipation can be calculated by the following formula: P D T J(MAX) JA T A Where T J(MAX) is the maximum allowable junction temperature +125 C. T A is the ambient temperature and θ JA is the thermal resistance from the junction to the ambient. Based on the standard JEDEC for a two layers thermal test board, the thermal resistance θ JA of SO-8EP is 90 C/W. The maximum power dissipation at T A = +25 C can be calculated by following formula: P D = (125 C - 25 C) /90 C/W = 1.11W Setting the Output Voltage The internal reference is 0.6V (Typical). The output voltage is calculated as below: The output voltage is given by Table 1. R1 VO 0.6x 1 R2 Table 1: Resistor selection for output voltage setting. V O R1 R2 1.2V 150k 150k 1.5V 225k 150k 1.8V 300k 150k 2.5V 475k 150k 3.3V 680k 150k 100% Duty Cycle Operation As the input voltage approaches the output voltage, the converter turns the P-Channel transistor continuously on. In this mode the output voltage is equal to the input voltage minus the voltage drop across the P-Channel transistor: VOUT VIN ILOAD RDSON RL where R DS(ON) = P-Channel switch ON resistance, I LOAD = Output Current, R L = Inductor DC Resistance UVLO and Soft-Start The reference and the circuit remain reset until the V IN crosses its UVLO threshold. The has an internal soft-start circuit that limits the in-rush current during start-up. This prevents possible voltage drops of the input voltage and eliminates the output voltage overshoot. The soft-start acts as a digital circuit to increase the switch current in several steps to the P-Channel current limit (3000mA). Short Circuit Protection The switch peak current is limited cycle-by-cycle to a typical value of 3000mA. In the event of an output voltage short circuit, the device operates with a frequency of 500kHz and minimum duty cycle, therefore the average input current is typically 500mA. Thermal Shutdown When the die temperature exceeds +150 C, a reset occurs and the reset remains until the temperature decrease to +120 C, at which time the circuit can be restarted. 8 of 11

Ordering Information X X X XXX X Pin Configuration Package Type Number of Pins Output Voltage Shipping Package B: Type of 8 Pins E: SOP-8(EP) SO-8EP C: 8 ADJ: Adjustable R: Tape & Reel Part Number Output Voltage Package Type Shipping Package BECADJR ADJ SO-8EP 2500 Units/Tape & Reel Marking Information Top View SO-8EP 9 of 11

A1 A C Q E1 H Package Outline Dimensions (All dimensions in mm.) Please see http:///package-outlines.html for the latest version. SO-8EP R 0.1 1 9 (All side) e D b EXPOSED PAD 4 ± 3 7 N 45 F E E0 L Gauge Plane Seating Plane SO-8EP Dim Min Max Typ A 1.40 1.50 1.45 A1 0.00 0.13 - b 0.30 0.50 0.40 C 0.15 0.25 0.20 D 4.85 4.95 4.90 E 3.80 3.90 3.85 E0 3.85 3.95 3.90 E1 5.90 6.10 6.00 e - - 1.27 F 2.75 3.35 3.05 H 2.11 2.71 2.41 L 0.62 0.82 0.72 N - - 0.35 Q 0.60 0.70 0.65 All Dimensions in mm Suggested Pad Layout Please see http:///package-outlines.html for the latest version. SO-8EP X2 Y2 X1 Y1 Dimensions Value (in mm) C 1.270 X 0.802 X1 3.502 X2 4.612 Y 1.505 Y1 2.613 Y2 6.500 Y C X 10 of 11

IMPORTANT NOTICE DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION). Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages. Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated. LIFE SUPPORT Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein: A. Life support devices or systems are devices or systems which: 1. are intended to implant into the body, or 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user. B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness. Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems. Copyright 2018, Diodes Incorporated 11 of 11