Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting

Similar documents
High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength

High-speed optical frequency-domain imaging

Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal

Pulsed-source spectral-domain optical coherence tomography with reduced motion artifacts

Simultaneous acquisition of the real and imaginary components in Fourier domain optical coherence tomography using harmonic detection

High-speed imaging of human retina in vivo with swept-source optical coherence tomography

Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts

Chapter 1. Overview. 1.1 Introduction

Optical frequency domain imaging with a rapidly swept laser in the nm range

Phase-resolved optical frequency domain imaging

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy

Spectral phase shaping for high resolution CARS spectroscopy around 3000 cm 1

Frequency comb swept lasers

Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry

Testing with Femtosecond Pulses

Directly Chirped Laser Source for Chirped Pulse Amplification

Frequency comb swept lasers for optical coherence tomography

some aspects of Optical Coherence Tomography

Characterization of a fibre optic swept laser source at 1!m for optical coherence tomography imaging systems

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers

SUPPLEMENTARY INFORMATION DOI: /NPHOTON

Lab Report 3: Speckle Interferometry LIN PEI-YING, BAIG JOVERIA

G. Norris* & G. McConnell

Comparison of FMCW-LiDAR system with optical- and electricaldomain swept light sources toward self-driving mobility application

Frequency comb swept lasers

Swept Wavelength Testing:

Optical coherence tomography

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

Opto-VLSI-based reconfigurable photonic RF filter

60 MHz A-line rate ultra-high speed Fourier-domain optical coherence tomography

Supplementary Figures

Improved lateral resolution in optical coherence tomography by digital focusing using twodimensional numerical diffraction method

Citation for published version (APA): Nguyen, D. V. (2013). Integrated-optics-based optical coherence tomography

Module 12 : System Degradation and Power Penalty

High stability multiplexed fibre interferometer and its application on absolute displacement measurement and on-line surface metrology

Timing Noise Measurement of High-Repetition-Rate Optical Pulses

Periodic Error Correction in Heterodyne Interferometry

Multi-format all-optical-3r-regeneration technology

Real-time optical spectrum analysis of a light source using a polarimeter

OCT Spectrometer Design Understanding roll-off to achieve the clearest images

200-GHz 8-µs LFM Optical Waveform Generation for High- Resolution Coherent Imaging

A new picosecond Laser pulse generation method.

Ultrafast Optical Physics II (SoSe 2017) Lecture 9, June 16

Theory and Applications of Frequency Domain Laser Ultrasonics

Mode analysis of Oxide-Confined VCSELs using near-far field approaches

PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS

Dispersion measurement in optical fibres over the entire spectral range from 1.1 mm to 1.7 mm

Precise control of broadband frequency chirps using optoelectronic feedback

D.C. Emmony, M.W. Godfrey and R.G. White

GRENOUILLE.

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Full-range k -domain linearization in spectral-domain optical coherence tomography

Polarization Sagnac interferometer with a common-path local oscillator for heterodyne detection

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017

7 CHAPTER 7: REFRACTIVE INDEX MEASUREMENTS WITH COMMON PATH PHASE SENSITIVE FDOCT SETUP

Phase-sensitive high-speed THz imaging

Lecture 21. Wind Lidar (3) Direct Detection Doppler Lidar

Modified Spectrum Auto-Interferometric Correlation. (MOSAIC) for Single Shot Pulse Characterization

3 General Principles of Operation of the S7500 Laser

MAKING TRANSIENT ANTENNA MEASUREMENTS

Stability of a Fiber-Fed Heterodyne Interferometer

S.R.Taplin, A. Gh.Podoleanu, D.J.Webb, D.A.Jackson AB STRACT. Keywords: fibre optic sensors, white light, channeled spectra, ccd, signal processing.

White-light interferometry, Hilbert transform, and noise

Phasor monitoring of DxPSK signals using software-based synchronization technique

Designing for Femtosecond Pulses

Spectral domain optical coherence tomography with balanced detection using single line-scan camera and optical delay line

A novel tunable diode laser using volume holographic gratings

Single camera spectral domain polarizationsensitive optical coherence tomography using offset B-scan modulation

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

High-Coherence Wavelength Swept Light Source

Isolator-Free 840-nm Broadband SLEDs for High-Resolution OCT

University of Lübeck, Medical Laser Center Lübeck GmbH Optical Coherence Tomography

Optics and Lasers. Matt Young. Including Fibers and Optical Waveguides

Optical Coherence Tomography Systems and signal processing in SD-OCT

Coherent power combination of two Masteroscillator-power-amplifier. semiconductor lasers using optical phase lock loops

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

Fringe Parameter Estimation and Fringe Tracking. Mark Colavita 7/8/2003

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback

The Lightwave Model 142 CW Visible Ring Laser, Beam Splitter, Model ATM- 80A1 Acousto-Optic Modulator, and Fiber Optic Cable Coupler Optics Project

Supplementary Figure 1. Effect of the spacer thickness on the resonance properties of the gold and silver metasurface layers.

Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform

Optical Complex Spectrum Analyzer (OCSA)

Talbot bands in the theory and practice of optical coherence tomography

Dispersion in Optical Fibers

Figure1. To construct a light pulse, the electric component of the plane wave should be multiplied with a bell shaped function.

Optical phase-coherent link between an optical atomic clock. and 1550 nm mode-locked lasers

R. J. Jones Optical Sciences OPTI 511L Fall 2017

Broadband photonic microwave phase shifter based on controlling two RF modulation sidebands via a Fourier-domain optical processor

Temperature-Independent Torsion Sensor Based on Figure-of-Eight Fiber Loop Mirror

FMCW Multiplexing of Fiber Bragg Grating Sensors

Simultaneous measurement of two different-color ultrashort pulses on a single shot

Vibration-compensated interferometer for measuring cryogenic mirrors

Simple interferometric fringe stabilization by CCD-based feedback control

Nd:YSO resonator array Transmission spectrum (a. u.) Supplementary Figure 1. An array of nano-beam resonators fabricated in Nd:YSO.

Instructions for the Experiment

A Multiwavelength Interferometer for Geodetic Lengths

University of Huddersfield Repository

Title. Author(s)Saitoh, Fumiya; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 18(5): Issue Date Doc URL.

Optical-domain subsampling for data efficient depth ranging in Fourier-domain optical coherence tomography

101 W of average green beam from diode-side-pumped Nd:YAG/LBO-based system in a relay imaged cavity

Transcription:

Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma Harvard Medical School and Wellman Center of Photomedicine, Massachusetts General Hospital 5 Blossom Street, BAR-718, Boston, Massachusetts 2114 syun@hms.harvard.edu Abstract: A novel technique using an acousto-optic frequency shifter in optical frequency domain imaging (OFDI) is presented. The frequency shift eliminates the ambiguity between positive and negative differential delays, effectively doubling the interferometric ranging depth while avoiding image cross-talk. A signal processing algorithm is demonstrated to accommodate nonlinearity in the tuning slope of the wavelength-swept OFDI laser source. 24 Optical Society of America OCIS codes: (11.165) Coherence imaging; (17.388) Medical and biological imaging References and links 1. A.F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El-Zaiat, Measurement of intraocular distances by backscattering spectral interferometry, Opt. Comm. 117, 43-48 (1995). 2. B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr 4+ :forsterite laser, Opt. Lett. 22, 174-176 (1997). 3. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, High-speed optical frequencydomain imaging, Opt. Express 11, 2953-2963 (23) http://www.opticsexpress.org/abstract.cfm?uri=opex-11-22-2953 4. W. Eickhoff and R. Ulrich, Optical frequency domain reflectrometry in single-mode fiber, Appl. Phys. Lett. 39, 693-695 (1981). 5. H. Barfuss and E. Brinkmeyer, Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optics systems, J. Lightwave Technol. 7, 3-1, (1989). 6. X Zhou, K. Iiyama, and K. Hayashi, Extended-range FMCW reflectometry using an optical loop with a frequency shifter, IEEE Photon. Technol. Lett. 8, 248-25 (1996). 7. J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, On the characterization of optical fiber network components with optical frequency domain reflectometry, J. Lightwave Technol. 15, 1131-1141 (1997). 8. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter, Opt. Lett. 28, 1981-1983 (23). 9. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, Opt. Lett. 27, 1415-1417 (22). 1. Y. H. Zhao, Z. P. Chen, Z. H. Ding, H. W. Ren, and J. S. Nelson, Opt. Lett. 27, 98-1 (22). 11. M. A. Choma, C. Yang, and J. Izatt, Instantaneous quadrature low-coherence interferometry with 3x3 fiber-optic couplers, Opt. Lett. 28, 2162-2164 (23). 12. C. Dorrer, N. Belabas, J-P Likforman, and M. Joffre, Spectral resolution and sampling issues in Fouriertransform spectral interferometry, J. Opt. Soc. Am. B 17, 1795-182 (2). 13. J. G. Proakis and D. G. Manolakis, Digital signal processing, 3 rd Ed. (Prentice Hall, New Jersey, 1996), Chap. 5. 1. Introduction Optical frequency domain imaging (OFDI) is an interferometric technique using a wavelength-swept source to obtain 2- or 3-dimensional images of a biomedical sample. 1-3 Backscattered light from the biological sample is combined with reference light to generate an (C) 24 OSA 4 October 24 / Vol. 12, No. 2 / OPTICS EXPRESS 4822

interference signal in a photodetector. Each frequency component of the detector signal is related, in amplitude and phase, to the backscattered light from a corresponding depth in the image. Therefore, an axial reflectivity profile of the sample (A-line) is obtained from a Fourier transform of the detector signal. Although this basic principle of frequency domain ranging has been well known in the context of optical frequency domain reflectometry 4-7, recently developed high-speed OFDI 3 makes use of a wide-band rapidly-swept laser 8 with a sweep repetition rate of a few tens of khz to provide a vastly improved measurement speed. In high-speed OFDI, the maximum ranging depth is typically limited by the finite width of the coherence function of the laser output because the coherence length associated with the instantaneous linewidth is often compromised to obtain higher tuning speed, higher output power, or wider tuning range. The finite coherence length causes the visibility of the interference fringe to decrease as the path length difference of the interferometer increases. This results in a degradation of signal-to-noise ratio (SNR) and therefore limits the useful ranging depth. 2 Furthermore, the inability to distinguish between a positive and negative electrical frequency in a conventional interferometry leads to the ambiguity between positive and negative depths. To avoid the superposition or folding of the positive-delay image upon the negative-delay image, the reference delay of the interferometer can be adjusted to be outside of the sample. This, however, further limits the ranging depth for a given coherence length of the source. To avoid this limitation, researchers have measured quadrature interference signals based on active or passive phase biasing using a piezoelectric actuator 9, birefringence plate 1 or 3x3 coupler 11. These techniques could unfold otherwise overlapping images associated with positive and negative depths, but tended to leave residual artifacts due to the difficulty of producing stable quadrature signals. In this paper, we propose and demonstrate a simple technique that effectively and instantaneously eliminates the ambiguity between positive and negative depths. The technique uses an optical frequency shifter in the interferometer to provide a constant frequency shift of the detector signal. This method allows both sides of the coherence range to be used without crosstalk and doubles the ranging depth. The same concept has been described previously in the context of 1-dimensional optical frequency domain reflectometry using rotating birefringence plates at 58 Hz 5 or a recirculating frequency shifting loop. 6 In this work we use an acousto-optic frequency shifter and apply the technique to high-speed OFDI with several orders of magnitude faster ranging speed. Furthermore, we demonstrate a signal processing algorithm to accommodate nonlinear tuning in the wavelength-swept OFDI source. 2. Principle 2.1 Frequency shift Figure 1 depicts a simplified OFDI system comprising a wavelength-swept source, a singlemode-fiber interferometer employing an optical frequency shifter in the reference arm, a photodetector, and a signal processor. With a roundtrip frequency shift of f in the reference arm and an interferometer pathlength difference (or depth) of z, the detector signal can be expressed as 4π is( t) = 2 η Pr() t Ps() t R( z) G( z)cos[ ν() t z+ φ( z) + 2 π ft] dz, (1) c where η denotes the quantum efficiency of the detector, P r (t) and P s (t) the optical powers of the reference and sample arm light, respectively, R(z) the reflectivity profile of the sample, G( z ) the coherence function corresponding to the fringe visibility, c the speed of light, ν(t) the optical frequency, and φ(z) the phase of backscattering. For linear tuning, i.e. ν () t = ν ν t, the frequency of the detector signal is given by 1 (C) 24 OSA 4 October 24 / Vol. 12, No. 2 / OPTICS EXPRESS 4823

2z fs = ν1 f (2) c A signal frequency of zero (DC) corresponds to a depth z = c f /(2ν 1 ). Therefore, by choosing f and ν 1 to have opposite signs, the zero signal-frequency can be made to point to a negative depth. Figure 2 illustrates the effect of the frequency shift. A typical Gaussian-like coherence function is assumed; therefore the fringe visibility has a peak value at the zero depth and decreases as the depth increases. The coherence length z c indicates the depth where the visibility drops to.5 and thereby the SNR drops by 6 db. One may arguably define the effective ranging depth as the maximum depth span where the SNR penalty is less than 6 db. In Fig. 2(a), with no frequency shift, only one side of the coherence range (hatched region) can be used due to the sign ambiguity of the signal frequency. In contrast, with an appropriate frequency shift, both sides of the coherence range from z c to z c can be utilized without any image crosstalk between the negative and positive depths. Image crosstalk, however, may arise through an imperfection of the frequency shifting device. A typical acousto-optic frequency shifter produces frequency sidebands of 5 to 6 db in the optical spectrum due to crosstalk with other diffraction orders. The frequency sidebands can create ghost images. However, because the dynamic range of biological samples is typically less than 6 db, a 5 to 6 db suppression of ghost images may be sufficient in terms of diagnostic image quality. Furthermore, when dual frequency shifters are used, as demonstrated in Section 3, the level of image crosstalk is given as a multiplication of the extinction ratios of the two devices and therefore can be in principle better than 1 db. Fig. 1. A basic configuration of an OFDI system employing a frequency shifter, FS. Fig. 2. Illustration of coherence range (a) without and (b) with a frequency shift f. The frequency shift enables both sides of the coherence range to be used in OFDI, doubling the effective ranging depth (hatched region). (C) 24 OSA 4 October 24 / Vol. 12, No. 2 / OPTICS EXPRESS 4824

2.2 Nonlinear tuning Nonlinearity in the tuning frequency of the source results in a chirping of the signal at a constant depth and causes a degradation of axial resolution, 5,7 As a solution to this problem, the detector signal may be sampled with nonlinear time intervals compensating for the frequency chirping. Alternatively, the detector signal can be sampled with a constant time interval if the sampled data is re-mapped to a uniform ν-space by interpolation prior to discrete Fourier transform (DFT). 12 Both methods have been demonstrated to yield a transform-limited axial resolution given by the tuning spectral range of the source. These methods, however, are not directly applicable in the frequency shifting technique. Both the nonlinear sampling and interpolation method result in artificial chirping of the frequency shift, leading to sub-optimal axial resolution. In this work, a modified interpolation method based on frequency shifting and zero padding 13 was used to achieve nearly transformlimited axial resolution over the entire ranging depth. The algorithm is as follows: Step 1. Obtain N samples of the signal with uniform time interval during each wavelength sweep of the source. Step 2. Calculate DFT of N data points in the electrical frequency domain. Step 3. Separate two frequency bands below and above f corresponding to negative and positive depths, respectively. Step 4. Shift each frequency band such that the zero depth is aligned to the zero electrical frequency. Step 5. Apply zero-padding to each frequency band and calculate inverse DFT resulting in an array of increased number of samples in the time domain with smaller time interval for each frequency band. Step 6. Interpolate each array in the time domain into a uniform ν space using a mapping function calibrated to the nonlinearity of the source with linear interpolation. Step 7. Calculate DFT of each interpolated array. Step 8. Combine the two arrays (images) by shifting the array index. The tuning curve of the source used to generate the mapping function in Step 6 was obtained using an unbalanced interferometer. The interference signal was recorded with a 3-MHz digital oscilloscope and a polynomial curve fit was applied to zero crossings of the interference signal up to the cubic term in time. 3. Experiment 3.1 OFDI System Figure 3 depicts the experimental setup of the OFDI system employing two acousto-optic frequency shifters (FS1 and FS2, Brimrose Inc. AMF-25-1.3, 1 st -order diffraction). The two frequency shifters were driven with voltage controlled oscillators to produce a net shift of f = FS2 FS1. The use of two frequency shifters balanced the material dispersion of the acoustooptic crystals between the interferometer arms and suppressed image crosstalk due to finite frequency sidebands of the frequency shifters. The insertion loss of each device including fiber coupling was less than 2.5 db. A swept laser was constructed to provide a tuning range of 18 nm from 1271 nm to 1379 nm (ν 1 = 135 GHz/µs). To generate an optical trigger signal, a portion of the laser output was tapped from the reference arm and transmitted through a narrowband filter. The photodetector then detected a train of short pulses generated when the output spectrum of the laser swept through the pass band of the filter. From the photodetector output, TTL pulses were generated with adjustable phase delay and used as trigger and gating pulses in a data acquisition board (National instruments Inc., PCI 6115). Although a repetition rate up to 36 khz could be achieved, the laser was operated at a reduced rate of 7 khz so that 13 samples could be acquired during a 91% of each wavelength sweep with the available digitizer board operating at 1 Ms/s. The depth span in the image was 5.8 mm corresponding to the Nyquist frequency of 5 MHz. A low-pass electrical filter (order 6 elliptic function) with (C) 24 OSA 4 October 24 / Vol. 12, No. 2 / OPTICS EXPRESS 4825

a 3dB cutoff at 5.7 MHz was used as an anti-aliasing filter. The probe comprising a galvanometer mirror and an imaging lens produced a 3 µm 1/e 2 diameter focal spot on the sample with a confocal parameter of 1.1 mm. swept laser 9/1 2/8 circulator probe sample computer filter detector FS1 FS2 mirror digitizer trigger TTL low-pass filter balanced receiver 5/5 Fig. 3. Experimental setup of the OFDI system. FS: acousto-optic frequency shifter. 3.2 Point Spread Functions To characterize the coherence function of the swept laser, the point spread function of the system was measured at f = (FS1 = 25 MHz, FS2 = 25 MHz). With a calibrated partial reflector at various depths in the sample arm, the detector signal was acquired for individual frequency sweeps of the source. For comparison, the sampled data acquired at each depth were processed with and without the mapping algorithm described in Section 2.2. Figure 4 shows the results, where the y-axis represents the square of the DFT amplitudes normalized to the value at zero frequency, and the bottom and top x-axes represent the signal frequency and the depth z, respectively. Without mapping, the point spread function suffers from significant broadening and large degradation of the peak power as the depth increases, because of the tuning nonlinearity of our swept laser [Fig. 4(a)]. With the mapping algorithm, however, the point spread function exhibits nearly transform-limited axial resolution at all depths, as shown in Fig. 4(b). The finite coherence length of the laser accounts for the decrease of the signal power with depth. Over the entire depth span of 5.8 mm, the SNR is reduced by more than 11 db. According to the criterion for the effective ranging depth introduced in Section 2.1, the ranging depth without frequency shifting was only 2.9 mm. The same experiment was conducted with a nonzero frequency shift, f = 2.5 MHz (FS1 = 22.5 MHz, FS2 = 25 MHz). The magnitude of the frequency shift corresponded to a half of the Nyquist frequency. Figures 5(a) and (b) show the point spread functions measured with and without the mapping process, respectively. In this case, the peak signal power occurs at the depth corresponding to the net acousto-optic frequency shift of 2.5 MHz. The measured axial resolution, defined as the full-width-at-half-maximum of the point spread function, was 14.5 15.5 µm over the entire depth range. This compares with the theoretical value of 14 µm calculated from the Fourier transform of the integrated optical spectrum of the source. The nearly transform-limited axial resolution observed in Fig. 5(b) validates the mapping algorithm described in Section 2.2. The reduction in signal power with depth is less than 5 db over the entire depth span of 5.8 mm, demonstrating the benefit of the frequency shifting technique in terms of extending the ranging depth. The measured system sensitivity was approximately 11 db at zero delay and 15 db at the maximum depth. No indication of image crosstalk between positive and negative depths was observed up to a 7 db power level limited by the finite signal to noise ratio. (C) 24 OSA 4 October 24 / Vol. 12, No. 2 / OPTICS EXPRESS 4826

1 2 3 4 5 6 1 2 3 4 5 6 signal power (db.) -5-1 -15-2 -3-6 -9-25 1 2 3 4 5 (a) -12 1 2 3 4 5 (b) Fig. 4. Point spread functions obtained at 7 different depth points for f = ; (a) before and (b) after mapping to linear ν-space. -3-2 -1 1 2 3-3 -2-1 1 2 3 signal power (db.) -5-1 -15-2 -3-6 -9-25 1 2 3 4 5-12 1 2 3 4 5 (a) Fig. 5. Point spread functions obtained at 7 different depth points when f = 2.5 MHz; (a) before and (b) after mapping to linear ν-space. The degradation in signal power with depth is no more than 5 db over the total depth span of 5.8 mm in (b), as opposed to an 11 db degradation shown in Fig. 4(b) without the frequency shift. (b) 3.3 Image Imaging of human lung tissue ex vivo was conducted with the OFDI system. Figure 6 depicts two images, A and B, obtained under identical experimental conditions except that f = for A and f = 2.5 MHz for B. Each image was obtained using the mapping algorithm described earlier and plotted in logarithmic grayscale over a dynamic range of 55 db in reflectivity. The surface of the tissue was placed at an angle with respect to the probe beam axis, and the reference mirror was positioned such that the signal was present at both positive and negative depths in the image. In A, the tissue image is contained within the effective ranging depth of 2.8 mm, i.e. the top half of the total depth span. However, the slope of the sample surface resulted in a folding of the negative-depth portions of the sample onto the positive-depth portions. In contrast, in B the entire positive and negative depths could be displayed without ambiguity, taking advantage of the ranging depth increase to 5.8 mm by the frequency shifting technique. (C) 24 OSA 4 October 24 / Vol. 12, No. 2 / OPTICS EXPRESS 4827

2.9 A B +2.9 2.9 1 mm Fig. 6. OFDI images of human lung tissue ex vivo obtained with f =, A, and f = 2.5 MHz, B. Image folding with respect to zero depth, distinct in A, is absent in B where the effective ranging depth is doubled by the frequency shift. Each image consists of 65 vertical x 5 transverse pixels. 4. Conclusion We have demonstrated that the degeneracy between positive and negative depths in OFDI can be resolved by introducing a differential frequency shift in the interferometer. This approach provides a 2-fold increase of the effective ranging depth. Additionally, we have demonstrated a modified mapping algorithm that compensates for laser tuning nonlinearity and permits transform-limited resolution throughout the extended imaging range. These results are particularly significant for high-resolution and high-speed OFDI where laser coherence length and tuning linearity are often compromised for higher tuning speed, higher output power, or wider tuning range. Acknowledgement This research was supported in part by the National Institute of Health, contracts (R33- CA1113, R1-HL739) and by a generous gift from Dr. and Mrs. J.S. Chen to the optical diagnostics program of the Massachusetts General Hospital Wellman Center for Photomedicine. +2.9 (C) 24 OSA 4 October 24 / Vol. 12, No. 2 / OPTICS EXPRESS 4828