Copyright 2005 Society of Photo Instrumentation Engineers.

Similar documents
Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens

Analysis And Design Of Wide-angle Foveated Optical Systems

MODULAR ADAPTIVE OPTICS TESTBED FOR THE NPOI

Copyright 2006 Society of Photo Instrumentation Engineers.

Open-loop performance of a high dynamic range reflective wavefront sensor

Copyright 2000 Society of Photo Instrumentation Engineers.

Null Hartmann test for the fabrication of large aspheric surfaces

3.0 Alignment Equipment and Diagnostic Tools:

Active optics null test system based on a liquid crystal programmable spatial light modulator

Ron Liu OPTI521-Introductory Optomechanical Engineering December 7, 2009

Deep Horizontal Atmospheric Turbulence Modeling and Simulation with a Liquid Crystal Spatial Light Modulator. *Corresponding author:

Wavefront sensing by an aperiodic diffractive microlens array

Study of self-interference incoherent digital holography for the application of retinal imaging

GEOMETRICAL OPTICS AND OPTICAL DESIGN

Optical Design with Zemax

Department of Mechanical and Aerospace Engineering, Princeton University Department of Astrophysical Sciences, Princeton University ABSTRACT

Explanation of Aberration and Wavefront

Use of Mangin and aspheric mirrors to increase the FOV in Schmidt- Cassegrain Telescopes

Dynamic Opto-VLSI lens and lens-let generation with programmable focal length

Copyright 2006 Society of Photo Instrumentation Engineers.

Chapter Ray and Wave Optics

Carbon Fiber Reinforced Polymer (CFRP) Optics Quality Assessment for Lightweight Deployable Optics

Modeling and Performance Limits of a Large Aperture High-Resolution Wavefront Control System Based on a Liquid Crystal Spatial Light Modulator

Use of Computer Generated Holograms for Testing Aspheric Optics

True%Analog%Non-Mechanical%Beam%Steering%Using%Liquid%Crystal% Waveguide%Techniques%

Aberrations and adaptive optics for biomedical microscopes

Deep Horizontal Atmospheric Turbulence Modeling and Simulation with a Liquid Crystal Spatial Light Modulator. *Corresponding author:

Copyright 2004 Society of Photo Instrumentation Engineers.

Copyright 2004 Society of Photo Instrumentation Engineers.

Copyright 2000 by the Society of Photo-Optical Instrumentation Engineers.

Shaping light in microscopy:

WaveMaster IOL. Fast and accurate intraocular lens tester

Optical Zoom System Design for Compact Digital Camera Using Lens Modules

Tunable wideband infrared detector array for global space awareness

Variable zoom system with aberration correction capability

Lecture PowerPoint. Chapter 25 Physics: Principles with Applications, 6 th edition Giancoli

Imaging with microlenslet arrays

Warren J. Smith Chief Scientist, Consultant Rockwell Collins Optronics Carlsbad, California

Lecture Notes 10 Image Sensor Optics. Imaging optics. Pixel optics. Microlens

Stereoscopic Hologram

25 cm. 60 cm. 50 cm. 40 cm.

Simulation of Zernike Aberrations in optical systems. Michael Koch, July 5, 2018

WaveMaster IOL. Fast and Accurate Intraocular Lens Tester

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge).

Adaptive Optics for LIGO

Confocal Imaging Through Scattering Media with a Volume Holographic Filter

Submillimeter Pupil-Plane Wavefront Sensing

Refractive index homogeneity TWE effect on large aperture optical systems

Pablo Artal. Adaptive Optics visual simulator ( and depth of focus) LABORATORIO DE OPTICA UNIVERSIDAD DE MURCIA, SPAIN

Some of the important topics needed to be addressed in a successful lens design project (R.R. Shannon: The Art and Science of Optical Design)

Waves & Oscillations

SUPPLEMENTARY INFORMATION

Testing Aspheric Lenses: New Approaches

An Experimental Analysis of Polarization Shearing Interferometer based Wavefront Sensor

A liquid crystal spatial light phase modulator and its applications

Advanced Lens Design

The Design, Fabrication, and Application of Diamond Machined Null Lenses for Testing Generalized Aspheric Surfaces

EE119 Introduction to Optical Engineering Spring 2002 Final Exam. Name:

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Ultralight Weight Optical Systems using Nano-Layered Synthesized Materials

Raytheon Missile Systems, Tucson, Arizona, USA b Thorlabs, Inc., Newton, New Jersey, USA c Rensselaer Polytechnic Institute, Troy, New York, USA

Immersion Lithography Micro-Objectives

4th International Congress of Wavefront Sensing and Aberration-free Refractive Correction ADAPTIVE OPTICS FOR VISION: THE EYE S ADAPTATION TO ITS

Converging and Diverging Surfaces. Lenses. Converging Surface

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Compensation of hologram distortion by controlling defocus component in reference beam wavefront for angle multiplexed holograms

Analysis of Hartmann testing techniques for large-sized optics

Laser Beam Steering and Tracking using a Liquid Crystal Spatial Light Modulator

Fabrication of 6.5 m f/1.25 Mirrors for the MMT and Magellan Telescopes

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Inverted-COR: Inverted-Occultation Coronagraph for Solar Orbiter

Vladimir Vassiliev UCLA

CS 443: Imaging and Multimedia Cameras and Lenses

Customized Correction of Wavefront Aberrations in Abnormal Human Eyes by Using a Phase Plate and a Customized Contact Lens

Potential benefits of freeform optics for the ELT instruments. J. Kosmalski

Tutorial Zemax Introduction 1

Research and Development of an Integrated Electro- Optical and Radio Frequency Aperture 12

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

PHY 431 Homework Set #5 Due Nov. 20 at the start of class

Difrotec Product & Services. Ultra high accuracy interferometry & custom optical solutions

Chapter 25 Optical Instruments

Optical Design of an Off-axis Five-mirror-anastigmatic Telescope for Near Infrared Remote Sensing

PROCEEDINGS OF SPIE. Measurement of low-order aberrations with an autostigmatic microscope

Chapter 3. Introduction to Zemax. 3.1 Introduction. 3.2 Zemax

Electrowetting-Based Variable-Focus Lens for Miniature Systems

Spatial-Phase-Shift Imaging Interferometry Using Spectrally Modulated White Light Source

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember

Why is There a Black Dot when Defocus = 1λ?

Using Stock Optics. ECE 5616 Curtis

Beam expansion standard concepts re-interpreted

Chapter 2 - Geometric Optics

Exam Preparation Guide Geometrical optics (TN3313)

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

A novel tunable diode laser using volume holographic gratings

A LEADER IN OPTICAL TECHNOLOGY. GRADIUM Lenses.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Dynamic closed-loop system for focus tracking using a spatial light modulator and a deformable membrane mirror

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS

!!! DELIVERABLE!D60.2!

Transcription:

Copyright 2005 Society of Photo Instrumentation Engineers. This paper was published in SPIE Proceedings, Volume 5874 and is made available as an electronic reprint with permission of SPIE. One print or electronic copy may be made for personal use only. Systemic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

Wide field-of-view imaging system using a liquid crystal spatial light modulator George Curatu a*, David V. Wick b, Don M. Payne c, Ty Martinez d, Jamie Harriman e, and James E. Harvey a a University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816 b Sandia National Laboratories, PO Box 5800, MS 1188, Albuquerque, NM 87185 c Narrascape, 3101 Hyder Ave. SE, Albuquerque, NM 87106 d Naval Research Laboratory, c/o AFRL/DEBI, 3550 Aberdeen Ave. SE, Kirtland AFB, NM 87117 e Boulder Nonlinear Systems, 450 Courtney Way, Lafayette, CO 80026 ABSTRACT This paper presents the optical design and experimental demonstration of a compact, foveated, wide field-of-view (FOV) imaging system using two lenses and a liquid crystal spatial light modulator (SLM). The FOV of this simple doublet system is dramatically improved by the SLM, which can be programmed to correct all the geometrical aberrations at any particular field angle. The SLM creates a variation in the image quality across the entire FOV, with a diffraction-limited performance at the field angle of interest (similar to the foveated human vision). The region of interest can be changed dynamically, such that any area within the FOV of the system can be highly resolved within milliseconds. The wide FOV, compactness, and absence of moving parts make this system a good candidate for tracking and surveillance applications. We designed an f/7.7 system, with a 60 full FOV, and a 27 mm effective focal length. Only two lenses and a beam splitter cube were used along with a reflective SLM. The theoretical wavefront aberration coefficients were used to program the SLM, which was placed in the pupil plane of the system. A prototype was built and the system was experimentally demonstrated using monochromatic light and a CCD camera. Keywords: foveated imaging, adaptive optics, imaging systems, aberration compensation, spatial light modulators, liquid crystal devices. 1. INTRODUCTION Wide field-of-view (FOV) optical systems have always been a challenge for optical designers. Such systems generally require severe bending of the rays in order to form an image of the wide-angle object. To avoid this abrupt bending of rays, which introduces aberrations, wide-angle lenses tend to be complex designs, with multiple elements [1]. These systems end up being heavy, bulky, and expensive. A slower system (larger f/#) can minimize the complexity of the lens at the expense of less light hitting the detector or larger overall length. Currently there is an increasing demand for small, lightweight imaging systems with a wide FOV, with applications in tracking, surveillance, threat detection, and other areas that could benefit by using such systems. 2. FOVEATED IMAGING Recent developments in systems that mimic human sensors inspired research on foveated imaging. The human visual acuity is highly resolved only within a few degrees around the part of the retina called the fovea, and decreases towards the peripheral FOV. However, humans can still detect objects or movement near the peripheral FOV, but in order to * Now with LightPath Technologies, 2603 Challenger Tech Court, Orlando, FL, 32826 E-mail: gcuratu@lightpath.com; Tel: 407-382-4003 ext. 355 Current Developments in Lens Design and Optical Engineering VI, edited by Pantazis Zakos Mouroulis, Warren J. Smith, R. Barry Johnson, Proceedings of SPIE Vol. 5874 (SPIE, Bellingham, WA, 2005) 0277-786X/05/$15 Proc. of SPIE 587408-1

highly resolve such objects, they would have to center their eyes such that the image of the object forms on the fovea. Our system mimics the human vision system, where a large FOV is covered with variable resolution across the FOV. The idea behind the proposed wide FOV foveated imaging system is to use a liquid crystal spatial light modulator (SLM). SLMs are compact devices used to control optical wavefronts. They consist of a thin cell of birefringent liquid crystal material sandwiched between two pixilated transparent electrodes. Just like segmented deformable mirrors, SLMs can control the optical path seen by the wavefront. The optical path can be adjusted such that it would compensate for the optical path difference (OPD) in the aberrated wavefront. The OPD can be controlled at each pixel on the SLM by changing the refractive index of the liquid crystal (OPD = n z z, where n z is the index change in the direction of propagation, and z is the physical path length). The index of refraction is changed by applying a small voltage (typically less than 50 Volts) at each pixel across the liquid crystal. If the maximum wavefront error is larger than the maximum achievable OPD (dynamic range) of the SLM, correction can still be done modulo-λ [2,3]. We presented previously a theoretical concept for increasing the diffraction-limited FOV of a simple monochromatic doublet [4]. A pixilated liquid-crystal SLM placed at the pupil plane was used in transmission to correct for off-axis geometrical aberrations that would have otherwise limited the FOV. The computer-modeled system was compact (only two meniscus lenses), fast (f/2.4), and had a very large FOV (diffraction-limited over 90 full-field). We also demonstrated a foveated imaging system experimentally, using a 512 512 pixels reflective liquid crystal SLM and an off-the-shelf plano-convex lens [5]. The system was very simple, and it only covered a 15 FOV, but it proved the concept and its feasibility. Other applications were proposed where an SLM would be used along with conventional optics to create a zoom lens [6], or to correct off-axis aberrations and defocus in a telescope [7]. 3. OPTICAL DESIGN The goal of this project was to design and build a custom foveated imaging system with a larger FOV than the previous experiment. Although a transmissive SLM is preferable in order to simplify the optical setup, currently there are no commercially available transmissive devices that have sufficient resolution and dynamic range for this application. Therefore, we had to limit our design again to a reflective SLM. Furthermore, we limited our preliminary optical design to a doublet formed by a plano-concave and a plano-convex lens, with spherical surfaces. The use of such common lenses in the preliminary design made it easy to replace them with off-the-shelf lenses in the final design. Figure 1 shows the optical layout of the final design. The f/7.7 system has a focal length of 27 mm, a full FOV of 60, and includes a window, a polarizer, and a 633 nm narrowband filter (the system was optimized for 633 nm). The SLM limits the operation of the system to monochromatic polarized light, hence the use of the narrowband filter and the polarizer. A beam splitter cube was added to fold the system, and increase the usable FOV. The full image size to be captured on the CCD camera is 25 mm. The system was first optimized without SLM, in order to minimize the peak-tovalley wavefront error and the distortion across the entire FOV. Our goal was to achieve less than 35 waves peak-tovalley wavefront error (Figure 2) and less than 15% distortion across the FOV. There is no vignetting in the system. The SLM was modeled as a Zernike phase surface - an infinitely thin phase plate, where the phase is described by a Zernike polynomial - placed at the pupil plane. The Zernike phase surface was optimized for each field of interest in order to minimize the wavefront error. For this demonstration, we chose to correct the aberrations at the 0 and 30 fields. In both cases, after the SLM correction was applied, the peak-to-valley wavefront error was reduced to less than 0.2 waves (Figure 3). The computer model of our foveated imaging system exhibited diffraction-limited performance at each point within the FOV where the OPD introduced by the SLM was optimized to correct the wavefront error. Proc. of SPIE 587408-2

CCD/ /1 Window Polarizer Filter Beam-splitter cube Figure 1: Optical layout of the final design (EFL = 27mm, f/7.7, FOV = 60 ). Proc. of SPIE 587408-3

oar: aoo. OOO DEG py > - oar: aoo. SDOD DEG - -!!!! / Figure 2: Wavefront error (OPD versus normalized pupil) without SLM correction at the 0 and 30 fields as a function of normalized pupil (maximum scale is ±25λ). 061: D6666. 66OOO DEG At! p p ri. - 061: 666. S66O DEG - - Figure 3: Wavefront error with SLM correction at the 0 and 30 fields as a function of normalized pupil (maximum scale is ±0.25λ). Proc. of SPIE 587408-4

4. EXPERIMENTAL DEMONSTRATION Figure 4 shows on the left a picture of the prototype built following the lens prescription from the final optical design. The SLM is a 7.68 7.68 mm reflective device with 512 512 pixels (15 15 µm pitch), and a response time of 10 ms. The dynamic range of the SLM was given by the thickness of the liquid crystal cell (2.5 µm used in double-pass), and the maximum change in the refractive index (0.39). Although the high-birefringence liquid crystal used in the SLM provided a fairly wide dynamic range, it was not enough to correct for the maximum wavefront error (35 waves). The optical path correction had to be done modulo-λ. Figure 4: Left foveated imaging system prototype. Right aerial picture used for experimental and simulated imaging. Using the computer model, Zernike phase surfaces were determined for each field angle such that the OPD introduced by the SLM would minimize the wavefront error at that particular field angle. We calculated thirty different Zernike phase surfaces to correct the wavefront error from 0 to 30, in increments of 1. Since our imaging system is rotationally symmetric, it is sufficient to map only half of the FOV in one direction. For each field angle, the two dimensional array of voltages to be applied to the pixels was calculated from the corresponding Zernike phase surface using modulo-2π phase-wrap. To demonstrate the wavefront correction capabilities of our foveated imaging system, an 8 by 8 ft print of an airport was placed in the object plane. The narrowband filter filtered out everything but the 633 nm light. The aerial image of the airport shows various structures and planes located on a tarmac (Figure 4, on the right). The SLM was first addressed to correct the wavefront error at the field angle corresponding to the position of the two planes at the left-bottom of the image (Figure 5). The targeted planes are highly resolved, while other planes and structures around the target planes are clearly visible. However, the structures in the upper part of the image are not resolved. Figure 6 shows the image with the SLM being readdressed to correct the wavefront error at the field angle corresponding to the position of the structures in the upper part of the image. The targeted structures are now highly resolved. The experiment was simulated using the computer model of our imaging system, with the same aerial picture as object. For the simulation, the SLM correction was applied at the same field angles as for the experiment. The simulated images are shown on the right side of Figures 5 and 6. Proc. of SPIE 587408-5

Figure 5: Image with the SLM correction applied to resolve the two planes at the left-bottom. Left image obtained experimentally. Right simulated image. Figure 6: Image with the SLM correction applied to resolve the structures at the top. Left image obtained experimentally. Right simulated image. Proc. of SPIE 587408-6

5. CONCLUSION We have successfully designed, built, and demonstrated a 60º FOV foveated imaging system using a 512 512 reflective SLM and commercial off-the-shelf optical components. The liquid crystal SLM corrected off-axis aberrations that would have otherwise limited the FOV. Our lens is simple and more compact than conventional wide FOV lenses. However, the SLM limits the operation of our foveated imaging system to monochromatic polarized light. The new developments in high-birefringence liquid crystal materials along with technological advances in highresolution transmissive SLM devices will facilitate the design and development of new, more compact foveated imaging systems, with larger FOV. ACKNOWLEDGEMENTS The authors would like to acknowledge S.T. Wu and his group at the University of Central Florida for providing the high-birefringence liquid crystal material. This effort was funded by the BOSS program of DARPA/DSO *. REFERENCES 1. R.R. Shannon, The art and science of optical design, Ch. 7, Cambridge University Press, New York, 1997. 2. D.S. Acton, Correction of static optical errors in a segmented adaptive optical system, Appl. Opt. 34, 7965-7968, 1995. 3. G.D. Love, Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator, Appl. Opt. 36, 1517-1524, 1997. 4. T. Martinez, D.V. Wick, S.R. Restaino, Foveated, wide field-of-view imaging system using a liquid crystal spatial light modulator, Opt. Express 8, 555-560, 2001. 5. D.V. Wick, T. Martinez, S.R. Restaino, B.R. Stone, Foveated imaging demonstration, Opt. Express 10, 60-65, 2002. 6. D.V. Wick, T. Martinez, Adaptive optical zoom, Opt. Eng. 43, 8-9, 2004. 7. M.T. Gruneisen, R.C. Dymale, J.R. Rotge, L.F. DeSandre, D.L. Lubin, Compensated telescope system with programmable diffractive optic, Opt. Eng. 44, 2005. * Approved for public release, distribution unlimited. Proc. of SPIE 587408-7