MIMO RADAR SIGNAL PROCESSING

Similar documents
MIMO RADAR SIGNAL PROCESSING

Performance of MMSE Based MIMO Radar Waveform Design in White and Colored Noise

Adaptive Wireless. Communications. gl CAMBRIDGE UNIVERSITY PRESS. MIMO Channels and Networks SIDDHARTAN GOVJNDASAMY DANIEL W.

SIGNAL MODEL AND PARAMETER ESTIMATION FOR COLOCATED MIMO RADAR

Systems. Advanced Radar. Waveform Design and Diversity for. Fulvio Gini, Antonio De Maio and Lee Patton. Edited by

Principles of Modern Radar

MIMO Radar Signal Processing of Space Time Coded Waveforms

Multipath Effect on Covariance Based MIMO Radar Beampattern Design

MIMO Radar Diversity Means Superiority

Principles of Space- Time Adaptive Processing 3rd Edition. By Richard Klemm. The Institution of Engineering and Technology

Ambiguity function of the transmit beamspace-based MIMO radar

MIMO Radar Waveform Constraints for GMTI

Signal Processing for MIMO and Passive Radar

MOVING TARGET DETECTION IN AIRBORNE MIMO RADAR FOR FLUCTUATING TARGET RCS MODEL. Shabnam Ghotbi,Moein Ahmadi, Mohammad Ali Sebt

Amultiple-input multiple-output (MIMO) radar uses multiple

STAP Capability of Sea Based MIMO Radar Using Virtual Array

5926 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 12, DECEMBER X/$ IEEE

Advances in Direction-of-Arrival Estimation

Coding for MIMO Communication Systems

RECENTLY, the concept of multiple-input multiple-output

MIMO RADAR DIVERSITY MEANS SUPERIORITY. Department of Electrical and Computer Engineering, University of Florida, Gainesville

OVER the last decade, the multiple-input multiple-output

Robust Wideband Waveforms for Synthetic Aperture Radar (SAR) and Ground Moving Target Indication (GMTI) Applications

Adaptive Transmit and Receive Beamforming for Interference Mitigation

WHY THE PHASED-MIMO RADAR OUTPERFORMS THE PHASED-ARRAY AND MIMO RADARS

Wireless Communications Over Rapidly Time-Varying Channels

Radar Equations. for Modern Radar. David K. Barton ARTECH HOUSE BOSTON LONDON. artechhouse.com

Space-Time Adaptive Processing Using Sparse Arrays

Beamforming in MIMO Radar Nilay Pandey Roll No-212EC6192

MIMO enabled multipath clutter rank estimation

Cooperative Sensing for Target Estimation and Target Localization

TRANSMITS BEAMFORMING AND RECEIVER DESIGN FOR MIMO RADAR

Signal Processing Algorithm of Space Time Coded Waveforms for Coherent MIMO Radar: Overview on Target Localization

Contents at a Glance

Antennas and Propagation. Chapter 5c: Array Signal Processing and Parametric Estimation Techniques

Eigenvalues and Eigenvectors in Array Antennas. Optimization of Array Antennas for High Performance. Self-introduction

Copyright 2013 IEEE. Published in the IEEE 2013 International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2013), scheduled for

THOMAS PANY SOFTWARE RECEIVERS

Robust Wideband Waveforms for Synthetic Aperture Radar (SAR) and Ground Moving Target Indication (GMTI) Applications

MIMO RADAR DEMYSTIFIED AND WHERE IT MAKES SENSE TO USE

PRINCIPLES OF SPREAD-SPECTRUM COMMUNICATION SYSTEMS

DECEPTION JAMMING SUPPRESSION FOR RADAR

Space-Time Adaptive Processing for Distributed Aperture Radars

Challenges in Advanced Moving-Target Processing in Wide-Band Radar

6 Uplink is from the mobile to the base station.

MIMO RADAR: SIGNAL PROCESSING, WAVEFORM DESIGN, AND APPLICATIONS TO SYNTHETIC APERTURE IMAGING

Wideband, Long-CPI GMTI

Index. Cambridge University Press Fundamentals of Wireless Communication David Tse and Pramod Viswanath. Index.

Modern Radar Systems

Direction-of-Arrival Estimation and Cramer-Rao Bound for Multi-Carrier MIMO Radar

CHAPTER 8 MIMO. Xijun Wang

OPTIMAL POINT TARGET DETECTION USING DIGITAL RADARS

Waveform-Agile Sensing for Range and DoA Estimation in MIMO Radars

MIMO RADAR CAPABILITY ON POWERFUL JAMMERS SUPPRESSION

Antenna Design and Site Planning Considerations for MIMO

CDMA Systems Engineering Handbook

JOINT TRANSMIT ARRAY INTERPOLATION AND TRANSMIT BEAMFORMING FOR SOURCE LOCALIZATION IN MIMO RADAR WITH ARBITRARY ARRAYS

WIRELESS COMMUNICATIONS

Antenna Allocation for MIMO Radars with Collocated Antennas

Optimal Adaptive Waveform Design for Cognitive MIMO Radar

MIMO Environmental Capacity Sensitivity

Multiple Antenna Processing for WiMAX

Circular SAR GMTI Douglas Page, Gregory Owirka, Howard Nichols a, Steven Scarborough b a

Non Unuiform Phased array Beamforming with Covariance Based Method

Multi-Waveform STAP. Shannon D. Blunt 1, John Jakabosky 1, Justin Metcalf 1, James Stiles 1, and Braham Himed 2 1

Basic Radar Definitions Introduction p. 1 Basic relations p. 1 The radar equation p. 4 Transmitter power p. 9 Other forms of radar equation p.

SUPERRESOLUTION methods refer to techniques that

Mobile-to-Mobile Wireless Channels

MIMO Radar Ambiguity Properties and Optimization Using Frequency-Hopping Waveforms

Ultra Wideband Signals and Systems in Communication Engineering

B SCITEQ. Transceiver and System Design for Digital Communications. Scott R. Bullock, P.E. Third Edition. SciTech Publishing, Inc.

Waveform-Space-Time Adaptive Processing for Distributed Aperture Radars

COMBINED BEAMFORMING WITH ALAMOUTI CODING USING DOUBLE ANTENNA ARRAY GROUPS FOR MULTIUSER INTERFERENCE CANCELLATION

Maneuverable Array. Jeffrey S. Rogers. Department of Electrical and Computer Engineering Duke University. Approved: Jeffrey Krolik, Advisor

Frequency Diverse Array Radar Data Processing

CHAPTER 2 WIRELESS CHANNEL

Performance Evaluation of STBC-OFDM System for Wireless Communication

Mobile Broadband Multimedia Networks

E-VEHICLE: AN IMPLICATION TO NEXT GENERATION TRANSPORTATION

This is a repository copy of Robust DOA estimation for a mimo array using two calibrated transmit sensors.

3G Evolution. Outline. Chapter: Multi-antenna configurations. Introduction. Introduction. Multi-antenna techniques. Multiple receiver antennas, SIMO

MULTIPLE-INPUT multiple-output (MIMO) radar

Adaptive SAR Results with the LiMIT Testbed

Phased Array Antennas

Performance Comparison of MIMO Systems over AWGN and Rician Channels with Zero Forcing Receivers

Cognitive Radio Techniques

Space-Time Adaptive Processing: Fundamentals

Introduction p. 1 Review of Radar Principles p. 1 Tracking Radars and the Evolution of Monopulse p. 3 A "Baseline" Monopulse Radar p.

Journal Publications

INTRODUCTION TO RF PROPAGATION

COMMUNICATION SYSTEMS

Joint DOA and Array Manifold Estimation for a MIMO Array Using Two Calibrated Antennas

Target Echo Information Extraction

Direction of Arrival Estimation in Smart Antenna for Marine Communication. Deepthy M Vijayan, Sreedevi K Menon /16/$31.

Performance Analysis of MUSIC and MVDR DOA Estimation Algorithm

A Single Channel GLR Detector for High- Frequency Surface Wave Radar

Joint Waveform Optimization and Adaptive Processing for Random-phase Radar Signals

Principles of Pulse-Doppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p.

Channel Modeling between Seaborne MIMO Radar and MIMO Cellular System


Transcription:

MIMO RADAR SIGNAL PROCESSING Edited by JIAN LI PETRE STOICA WILEY A JOHN WILEY & SONS, INC., PUBLICATION

PREFACE CONTRIBUTORS xiii xvii 1 MIMO Radar Diversity Means Superiority 1 Лап Li and Petre Stoica 1.1 Introduction 1 1.2 Problem Formulation 4 1.3 Parameter Identifiability 5 1.3.1 Preliminary Analysis 5 1.3.2 Sufficient and Necessary Conditions 7 1.3.3 Numerical Examples 8 1.4 Nonparametric Adaptive Techniques for Parameter Estimation 11 1.4.1 Absence of Array Calibration Errors 12 1.4.2 Presence of Array Calibration Errors 15 1.4.3 Numerical Examples 18 1.5 Parametric Techniques for Parameter Estimation 28 1.5.1 ML and BIC 28 1.5.2 Numerical Examples 34 1.6 Transmit Beampattern Designs 35 1.6.1 Beampattern Matching Design 35 1.6.2 Minimum Sidelobe Beampattern Design 38 1.6.3 Phased-Array Beampattern Design 39

1.6.4 Numerical Examples 40 1.6.5 Application to Ultrasound Hyperthermia Treatment of Breast Cancer 47 1.7 Conclusions 56 Appendix IA Generalized Likelihood Ratio Test 57 Appendix IB Lemma and Proof 59 Acknowledgments 60 References 60 MIMO Radar: Concepts, Performance Enhancements, and Applications 65 Keith W. Forsythe and Daniel W. Bliss 2.1 Introduction 65 2.1.1 A Short History of Radar 65 2.1.2 Definition and Characteristics of MIMO Radar 66 2.1.3 Uses of MIMO Radar 68 2.1.4 The Current State of МГМО Radar Research 70 2.1.5 Chapter Outline 71 2.2 Notation 72 2.3 MIMO Radar Virtual Aperture 73 2.3.1 МГМО Channel 73 2.3.2 МГМО Virtual Array: Resolution and Sidelobes 74 2.4 MIMO Radar in Clutter-Free Environments 77 2.4.1 Limitations of Cramer-Rao Estimation Bounds 77 2.4.2 Signal Model 77 2.4.3 Fisher Information Matrix 79 2.4.4 Waveform Correlation Optimization 82 2.4.5 Examples 85' 2.5 Optimality of МГМО Radar for Detection 87 2.5.1 Detection 88 2.5.2 High SNR 89 2.5.3 Weak-Signal Regime 90 2.5.4 Optimal Beamforming without Search 92 2.5.5 Nonfading Targets 92 2.5.6 Some Additional Benefits of MIMO Radar 93 2.6 МГМО Radar with Moving Targets in Clutter: GMTI Radars 93 2.6.1 Signal Model 93 2.6.2 Localization and Adapted SNR 96 2.6.3 Inner Products and Beamwidths 101 2.6.4 SNR Loss 103

vii 2.6.5 SNR Loss and Waveform Optimization 107 2.6.6 Area Search Rates 109 2.6.7 Some Examples 109 2.7 Summary 111 Appendix 2A A Localization Principle 111 Appendix 2B Bounds on R(N) 114 Appendix 2C An Operator Norm Inequality 115 Appendix 2D Negligible Terms 115 Appendix 2E Bound on Eigenvalues 115 Appendix 2F Some Inner Products 116 Appendix 2G An Invariant Inner Product 117 Appendix 2H Krönecker and Tensor Products 118 2H.1 Lexicographical Ordering 118 2H.2 Tensor and Krönecker Products 118 2H.3 Properties 119 Acknowledgments 119 References 120 3 Generalized MIMO Radar Ambiguity Functions 123 Geoffrey San Antonio, Daniel R. Fuhrmann, and Frank C. Robey 3.1 Introduction 123 3.2 Background 124 3.3 MIMO Signal Model 127 3.4 MIMO Parametric Channel Model 131 3.4.1 Transmit Signal Model 131 3.4.2 Channel and Target Models 132 3.4.3 Received Signal Parametric Model 133 3.5 MIMO Ambiguity Function 134 3.5.1 MIMO Ambiguity Function Composition 137 3.5.2 Cross-Correlation Function under Model Simplifications 138 3.5.3 Autocorrelation Function and Transmit Beampatterns 141 3.6 Results and Examples 143 3.6.1 Orthogonal Signals 143 3.6.2 Coherent Signals 147 3.7 Conclusion 149 References 150

Vlll 4 Performance Bounds and Techniques for Target Localization Using MIMO Radars 153 Joseph Tabrikian 4.1 Introduction 153 4.2 Problem Formulation 155 4.3 Properties 158 4.3.1 Virtual Aperture Extension 159 4.3.2 Spatial Coverage and Probability of Exposure 162 4.3.3 Beampattern Improvement 163 4.4 Target Localization 165 4.4.1 Maximum-Likelihood Estimation 165 4.4.2 Transmission Diversity Smoothing 167 4.5 Performance Lower Bound for Target Localization 170 4.5.1 Cramer-Rao Bound 170 4.5.2 The Barankin Bound 173 4.6 Simulation Results 175 4.7 Discussion and Conclusions 180 Appendix 4A Log-Likelihood Derivation 181 4A.1 General Model 182 4A.2 Single Range-Doppler with No Interference - 184 Appendix 4B Transmit-Receive Pattern Derivation 185 Appendix 4C Fisher Information Matrix Derivation 186 References 189 5 Adaptive Signal Design For MEMO Radars 193 Benjamin Friedlander 5.1 5.2 5.3 5.4 Introduction Problem Formulation 5.2.1 Signal Model with Reduced Number of Range Cells 5.2.2 Multipulse and Doppler Effects 5.2.3 The Complete Model 5.2.4 The Statistical Model Estimation 5.3.1 Beamforming Solution 5.3.2 Least-Squares Solutions 5.3.3 Waveform Design for Estimation Detection 5.4.1 The Optimal Detector 5.4.2 The SINR 193 195 199 200 203 203 203 204 210 210 214 214 215

ix 5.4.3 Optimal Waveform Design 217 5.4.4 Suboptimal Waveform Design 218 5.4.5 Constrained Design 219 5.4.6 The Target and Clutter Models 220 5.4.7 Numerical Examples 221 5.5 МГМО Radar and Phased Arrays 226 5.5.1 Scan Transmit Beam after Receive 228 5.5.2 Adaptation of Transmit Beampattern 229 5.5.3 Combined Transmit-Receive Beamforming 229 Appendix 5A Theoretical SINR Calculation 231 References 232 6 MIMO Radar Spacetime Adaptive Processing and Signal Design 235 Chun-Yang Chen and P. P. Vaidyanathan 6.1 Introduction 236 6.1.1 Notations 238 6.2 The Virtual Array Concept 238 6.3 Spacetime Adaptive Processing in МГМО Radar 242 6.3.1 Signal Model 243 6.3.2 Fully Adaptive MDVIO-STAP 246 6.3.3 Comparison with SDVIO System 247 6.3.4 The Virtual Array in STAP 248 6.4 Clutter Subspace in MIMO Radar 249 6.4.1 Clutter Rank in MIMO Radar: МГМО Extension of Brennan's Rule 250 6.4.2 Data-Independent Estimation of the Clutter Subspace with PSWF 253 6.5 New STAP Method for МГМО Radar 257 6.5.1 The Proposed Method 258 6.5.2 Complexity of the New Method 259 6.5.3 Estimation of the Covariance Matrices 259 6.5.4 Zero-Forcing Method 260 6.5.5 Comparison with Other Methods 260 6.6 Numerical Examples 261 6.7 Signal Design of the STAP Radar System 265 6.7.1 MIMO Radar Ambiguity Function 265 6.7.2 Some Properties of the МГМО Ambiguity Function 267 6.7.3 The МГМО Ambiguity Function of Periodic Pulse Radar Signals 272 6.7.4 Frequency-Multiplexed LFM Signals 274 6.7.5 Frequency-Hopping Signals 276

X 6.8 Conclusions 278 Acknowledgments 279 References 279 7 Slow-Time MIMO SpaceTime Adaptive Processing 283 Vito F. Mecca, Dinesh Ramakrishnan, Frank C. Robey, and Jeffrey L. Krolik 7.1 Introduction 283 7.1.1 МГМО Radar and Spatial Diversity 284 7.1.2 MIMO and Target Fading 286 7.1.3 MIMO and Processing Gain 286 7.2 SIMO Radar Modeling and Processing 289 7.2.1 Generalized Transmitted Radar Waveform 289 7.2.2 SIMO Target Model 290 7.2.3 SDVIO Covariance Models 291 7.2.4 SDVIO Radar Processing 292 7.3 Slow-Time MIMO Radar Modeling 293 7.3.1 Slow-Time MIMO Target Model 293 7.3.2 Slow-Time MMO Covariance Model 295 7.4 Slow-Time MIMO Radar Processing 297 7.4.1 Slow-Time МГМО Beampattern and VSWR 299 7.4.2 Subarray Slow-Time MIMO 301 7.4.3 SIMO versus Slow-Time МГМО Design Comparisons 301 7.4.4 MIMO Radar Estimation of Transmit-Receive Directionality Spectrum 302 7.5 OTHr Propagation and Clutter Model 303 7.6 Simulations Examples 307 7.6.1 Postreceive/Transmit Beamforming 307 7.6.2 SINR Performance 311 7.6.3 Transmit-Receive Spectrum 315 7.7 Conclusion 316 Acknowledgment 316 References 316 8 MIMO as a Distributed Radar System 319 H. D. Griffiths, C. J. Baker, P. F. Sammartino, and M. Rangaswamy 8.1 Introduction 319 8.2 Systems 321 8.2.1 Signal Model 323 8.2.2 Spatial MIMO System 325

xi 8.2.3 Netted Radar Systems 325 8.2.4 Decentralized Radar Network (DRN) 327 8.3 Performance 329 8.3.1 False-Alarm Rate (FAR) 329 8.3.2 Probability of Detection (P d ) 336 8.3.3 Jamming Tolerance 348 8.3.4 Coverage 352 8.4 Conclusions 359 Acknowledgment 361 References 361 Concepts and Applications of A MIMO Radar System with Widely Separated Antennas 365 Hana Godrich, Alexander M. Haimovich, and Rick S. Blum 9.1 Background 365 9.2 MIMO Radar Concept 369 9.2.1 Signal Model 369 9.2.2 Spatial Decorrelation 373 9.2.3 Other Multiple Antenna Radars 375 9.3 Noncoherent МГМО Radar Applications 377 9.3.1 Diversity Gain 377 9.3.2 Moving-Target Detection 380 9.4 Coherent MIMO Radar Applications 383 9.4.1 Ambiguity Function 385 9.4.2 CRLB 388 9.4.3 MLE Target Localization 390 9.4.4 BLUE Target Localization 393 9.4.5 GDOP 395 9.4.6 Discussion 399 9.5 Chapter Summary 399 Appendix 9A Deriving the FTM 400 Appendix 9B Deriving the CRLB on the Location Estimate Error 403 Appendix 9C MLE of Time Delays Error Statistics 405 Appendix 9D Deriving the Lowest GDOP for Special Cases 407 9D.1 Special Case: N x N MIMO 407 9D.2 Special Case: 1 x N MIMO 408 9D.3 General Case: M x N МГМО 408 Acknowledgments 408 References 408

Xll 10 SpaceTime Coding for MEMO Radar 411 Antonio De Maio and Marco Lops 10.1 Introduction 411 10.2 System Model 415 10.3 Detection In MEMO Radars 417 10.3.1 Full-Rank Code Matrix 419 10.3.2 Rank 1 Code Matrix 420 10.4 Spacetime Code Design 421 10.4.1 Chernoff-Bound-Based (CBB) Code Construction 423 10.4.2 SCR-Based Code Construction 426 10.4.3 Mutual-Information-Based (MIB) Code Construction 427 10.5 The Interplay Between STC and Detection Performance 429 10.6 Numerical Results 431 10.7 Adaptive Implementation 437 10.8 Conclusions 441 Acknowledgment 442 References 442 INDEX 445