IMPLEMENTATION OF TM4 INTO OAI SOFTMODEM

Similar documents
3G/4G Mobile Communications Systems. Dr. Stefan Brück Qualcomm Corporate R&D Center Germany

LTE Channel State Information (CSI)

LTE systems: overview

Wireless Test World 2009

LTE Aida Botonjić. Aida Botonjić Tieto 1

Improving MU-MIMO Performance in LTE-(Advanced) by Efficiently Exploiting Feedback Resources and through Dynamic Scheduling

Agenda. Overview of LTE UE Attach Procedure OAI-UE Threading Structure & Timing Walk through the OAI-UE Codes

UNDERSTANDING LTE WITH MATLAB

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN

Ten Things You Should Know About MIMO

Architecture Overview NCHU CSE LTE - 1

MIMO-OFDM for LTE 최수용. 연세대학교전기전자공학과

LTE-Advanced research in 3GPP

TECHTRAINED. Foundations Explained. Learn Technology in 10 minutes. Contact:

TS 5G.201 v1.0 (2016-1)

MU-MIMO in LTE/LTE-A Performance Analysis. Rizwan GHAFFAR, Biljana BADIC

ETSI TS V ( )

3GPP TS V8.0.0 ( )

DOWNLINK ADAPTIVE CLOSED LOOP MIMO RESEARCH FOR 2 ANTENNAS IN TD-LTE SYSTEM

LTE-Advanced and Release 10

(COMPUTER NETWORKS & COMMUNICATION PROTOCOLS) Ali kamil Khairullah Number:

3GPP Long Term Evolution LTE

Enhanced Uplink Dedicated Channel (EDCH) High Speed Uplink Packet Access (HSUPA)

Carrier Aggregation and MU-MIMO: outcomes from SAMURAI project

References. What is UMTS? UMTS Architecture

LTE Air Interface. Course Description. CPD Learning Credits. Level: 3 (Advanced) days. Very informative, instructor was engaging and knowledgeable!

Interference-Aware Receivers for LTE SU-MIMO in OAI

3GPP TS V8.0.0 ( )

DOWNLINK AIR-INTERFACE...

Technology Introduction. White Paper

3GPP TS V ( )

3GPP TS V ( )

High-Speed Downlink Packet Access (HSDPA)

TEPZZ A T EP A2 (19) (11) EP A2. (12) EUROPEAN PATENT APPLICATION published in accordance with Art.

EDCH Background & Basics. Principles: scheduling, handover Performance Results

Interference management Within 3GPP LTE advanced

TS 5G.213 v1.9 (2016-9)

ARIB STD-T V Evolved Universal Terrestrial Radio Access (E-UTRA); Services provided by the physical layer.

MACHINE TO MACHINE (M2M) COMMUNICATIONS-PART II

ETSI TS V ( ) Technical Specification

RAN and Key technologies in 5G NR

Beam-Forming-Aware Link-Adaptation for Differential Beam-Forming in an LTE FDD System

Technical Aspects of LTE Part I: OFDM

3GPP TS V ( )

ARIB STD-T V Evolved Universal Terrestrial Radio Access (E-UTRA); LTE Physical Layer - General Description (Release 8)

3G/4G Mobile Communications Systems. Dr. Stefan Brück Qualcomm Corporate R&D Center Germany

3GPP TS V ( )

TEPZZ A T EP A2 (19) (11) EP A2. (12) EUROPEAN PATENT APPLICATION published in accordance with Art.

ETSI TS V (201

ETSI TS V9.0.0 ( ) Technical Specification

Keysight Technologies LTE-Advanced Signal Generation and Measurement Using SystemVue. Application Note

What LTE parameters need to be Dimensioned and Optimized

NR Radio Access Network 2019 Training Programs. Catalog of Course Descriptions

LTE and NB-IoT. Luca Feltrin. RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna. Telecom Italia Mobile S.p.a. - TIM

ETSI TS V (201

TITLE DOWNLINK CONTROL INFORMATION IN A WIRELESS DEVICE AND WIRELESS NETWORK CROSS-REFERENCE TO RELATED APPLICATIONS

HSPA+ Technology Introduction Application Note

Advanced Radio Access Techniques in LTE

HSDPA RF Measurements with the R&S CMW500 in line with 3GPP TS Application Note. Products: R&S CMW500

Link Adaptation Strategies for Cellular Downlink with lowfixed-rate

SOURCE: Signal Theory and Communications Department Universitat Politecnica de Catalunya, Barcelona, Spain

On the Definition of Reference Scenarios for LTE-A Link Level Simulations within COST IC1004

<Technical Report> Number of pages: 20. XGP Forum Document TWG TR

ETSI TS V (201

TEPZZ Z7Z87ZA_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: H04L 5/00 ( ) H04L 1/18 (2006.

ETSI TS V8.1.0 ( ) Technical Specification

ETSI TS V ( )

3GPP TS V ( )

3GPP TS V ( )

3GPP TS V9.3.0 ( )

UNIVERSITY OF SUSSEX

Wprowadzenie do techniki LTE. Prowadzący: Szymon Raksimowicz

3G TS V3.0.0 ( )

Lecture 13 UMTS Long Term Evolution. I. Tinnirello

ETSI TS V ( )

ETSI TS V ( )

Performance Studies on LTE Advanced in the Easy-C Project Andreas Weber, Alcatel Lucent Bell Labs

Performance of wireless Communication Systems with imperfect CSI

ETSI TS V ( ) Technical Specification

OAI UE 5G NR FEATURE PLAN AND ROADMAP

Content. WCDMA BASICS HSDPA In general HSUPA

ETSI TS V ( )

High Performance LTE Technology: The Future of Mobile Broadband Technology

Keysight Technologies Concepts of High Speed Downlink Packet Access: Bringing Increased Throughput and Efficiency to W-CDMA

HSDPA Background & Basics Principles: Adaptive Modulation, Coding, HARQ Channels/ UTRAN Architecture Principles: Fast scheduling, Mobility

3GPP TR V9.0.0 ( )

Closed-loop MIMO performance with 8 Tx antennas

TITLE DUAL CONNECTIVITY POWER CONTROL FOR WIRELESS NETWORK AND WIRELESS DEVICE

ETSI TS V ( )

5000 LTE. The ultimate authority. in wireless testing. your essential tool for. troubleshooting wireless. development and.

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved.

HSPA & HSPA+ Introduction

LTE and the Evolution to LTE-Advanced Fundamentals

3G Evolution HSPA and LTE for Mobile Broadband Part II

Interference-Aware Receiver Structure for Multi-User MIMO and LTE

LabVIEW Communications LTE Application Framework 2.5 This document provides basic information about how to get started with LTE Application Framework.

ETSI TS V ( )

ETSI TS V ( )

American Journal of Engineering Research (AJER) 2015

ETSI TS V ( )

Transcription:

IMPLEMENTATION OF TM4 INTO OAI SOFTMODEM Joint ETSI - OSA Workshop: Open Implementations and Standardization Pre Event Training December 08 Fraunhofer Institute for Integrated Circuits (IIS) Khodr Saaifan khodr.saaifan@iis.fraunhofer.de

Agenda o TM4 Basics in LTE o Review of OAI-eNB Thread and PHY Procedures o enb: PHY TX Procedures o MAC: DL Scheduling o Review of OAI-UE Thread and PHY Procedures o UE: PHY RX Procedures o UE Measurement Procedures o Demo Setup and Results o UE Statistics o enb Statistics

TM4 Basics in LTE Non Access-Stratum (NAS) RRC MAC PHY RF PDCP RLC OAI-eNB Master Branch The MIMO channel at the k th subcarrier: Channel decomposition: X Modulated Symbols X = VX X X = VX H = H [k] H [k] H [k] H [k] H = U λ 0 0 λ V H H H dlch 0 : H [k] H dlch []: H [k] H dlch : H [k] H dlch [3]: H [k] Feedback Y = HX + Z Y = U H Y Y = λ X + Z Y = λ X + Z Non Access-Stratum (NAS) RRC MAC PHY RF OAI-UE PDCP RLC Master Branch k th RE X X txdataf[0][tti offest ] txdataf[][tti offest ] k th RE Y Y rxdataf ext [0][tti offest ] rxdataf ext [][tti offest ] 3

TM4 Basics in LTE Non Access-Stratum (NAS) Closed loop precoding in LTE: Requires feedback from the UE Rank indicator (RI) Precoding matrix indicator (PMI) Non Access-Stratum (NAS) PDCP RRC RLC MAC PHY RF OAI-eNB H Modulated Symbols X = PX X X jh Index 3: X = PX H + H H j H H dlch 0 : H [k] H dlch []: H [k] H dlch : H [k] H dlch [3]: H [k] Feedback H eff = H H H H P pmiq # of layer (RI 0) 0 3 Y = H eff X + Z Y Y j j PDCP RRC RLC MAC PHY RF OAI-UE 4

TM4 Basics in LTE Non Access-Stratum (NAS) Closed loop precoding in LTE: Requires feedback from the UE Rank indicator (RI) Precoding matrix indicator (PMI) Non Access-Stratum (NAS) PDCP RRC RLC MAC PHY RF OAI-eNB X Modulated Symbols X = PX X X = PX H H dlch 0 : H [k] H dlch []: H [k] H dlch : H [k] H dlch [3]: H [k] H eff Y = H eff X + Z = H H H H P Y Y PDCP RRC RLC MAC PHY RF OAI-UE H ρ = H H H Feedback pmiq =, for Re(ρ ) Im(ρ ), for Re ρ < Im(ρ ) pmiq # of layer (RI ) j j 5

TM4 Basics in LTE Non Access-Stratum (NAS) In OAI-eNB, we verify and review the MAC/PHY code to support: MAC: format with Nl=, PHY: layer mapping of codeword into Nl layers Non Access-Stratum (NAS) PDCP RRC RLC MAC PHY RF OAI-eNB X Modulated Symbols X = PX X X = PX H H dlch 0 : H [k] H dlch []: H [k] H dlch : H [k] H dlch [3]: H [k] H eff Y = H eff X + Z = H H H H P Y Y PDCP RRC RLC MAC PHY RF OAI-UE Feedback UE statistics CQI/PMI reporting UCI format CQI, PMI, and RI UE measurements 6

TM4 Basics in LTE In OAI-UE, we verify and review the PHY code to support: lte_ue_measurements: CQI, PMI, and RI ue_pdcch_procedures: format detection generate_ue_dlsch_params_from_dci: extract format for DL decoding Non Access-Stratum (NAS) RRC MAC PHY RF PDCP RLC OAI-eNB ue_pdsch_procedures: rx_pdsch for processing layers into codeword X Modulated Symbols X = PX X UE statistics X = PX H H dlch 0 : H [k] H dlch []: H [k] H dlch : H [k] H dlch [3]: H [k] Feedback CQI/PMI reporting H eff UCI format CQI, PMI, and RI Y = H eff X + Z = H H H H P Y Y Non Access-Stratum (NAS) RRC UE measurements MAC PHY RF OAI-UE PDCP RLC 7

Review of OAI-eNB Thread and PHY Procedures 8

Review of OAI-eNB Thread and PHY Procedures enb: phy_procedures_enb_tx openair/sched/phy_procedures_lte_enb.c RB5 RB RB9 subframe 0 9

Review of OAI-eNB Thread and PHY Procedures enb: phy_procedures_enb_tx openair/sched/mac/phy_procedures_lte_enb.c PSS/SSS/PBCH: common_signal_procedures() generate_pilots_slot() generate_pss()/generate_sss() generate_pbch(): SISO and Alamouti HARQ_UL: synchronous ul_subframe=((subframe_tx+4)%0) ul_frame=(frame+(subframe_tx>=6? :0)) harq_pid=(((ul_frame<<)+ul_subframe)&7); 0

Review of OAI-eNB Thread and PHY Procedures enb: phy_procedures_enb_tx openair/sched/phy_procedures_lte_enb.c

Review of OAI-eNB Thread and PHY Procedures enb: phy_procedures_enb_tx openair/sched/phy_procedures_lte_enb.c

Review of OAI-eNB Thread and PHY Procedures enb: phy_procedures_enb_tx openair/sched/phy_procedures_lte_enb.c 3

enb: TX (MAC+PDSCH) enb_dlsch_ulsch_scheduler() openair/layer/mac/enb_scheduler.c DCCH DCCH Logical channel Prioritization/Multiplexing DTCH schedule_ra schedule_si schedule_ue_spec schedule_ulsch format phy_procedures_enb_tx() openair/sched/phy_procedures_lte_enb.c pdsch_procedures() openair/sched/phy_procedures_lte_enb.c nb_antenna_ports_enb = TBS off (mcs = 0, rv = ) TBS0 on tpmi=0 to 7 DLSCH_pdu TBS generate enb_dlsch params() generate enb_dlsch params_from_dci() format, formata format fill_dlsch_dci DCI pdu generate enb_ulsch params() generate enb_ulsch params_from_dci() format0 For N l = layers, dlsch0_harq->mimo_mode is configured based on tpmi TBS is assigned based on N l nb rb G = (nb rb mod order ((4 num pdcchsymbols ) 3 4) G adj ) N l dlsch_encoding() crc, lte_segmentation, turbo_encoding, rate_matching Turbo Encoding LTE_TRANSPORT/dlsch_coding.c G bits G/Q m symbols dlsch_ scrambling() G bits G/Q m /N l symbols dlsch_ modulation() allocate_res_in_rb() LTE_TRANSPORT/dlsch_modulation.c X 0 i = QAM e Q m i,, Q m i + Q m, i = 0,, G/Q m X 0 i X i X 0 X X i = QAM e Q m (i + ),, Q m (i + ) + Q m, txdataf[0][tti offest ] txdataf[][tti offest ] 4

MAC: schedule_ue_spec(module_idp,framep,subframep,mbsfn_flag) /openair/layer/mac/enb_scheduler_dlsch.c Direction: E-UTRAN => UE RLC Mode: AM (ARQ) Logical Channel: DCCH-DTCH Transport Channel: DL-SCH The enb scheduler consists of a scheduling entity, a DL HARQ entity, and a multiplexing entity The scheduling entity supports resource requirement, assignment, and allocation (implemented in dlsch_scheduler_pre_processor()) The transmit HARQ operation includes transmission and retransmission of TBs, and reception and processing of ACK/NACK signaling In OAI, synchronous HARQ is used for both the downlink and the uplink harq_pid=((frame_tx 0)+subframe_tx)&7 5

MAC: schedule_ue_spec(module_idp,framep,subframep,mbsfn_flag) /openair/layer/mac/enb_scheduler_dlsch.c 6

MAC: dlsch_scheduler_pre_processor (module_idp, framep, subframep, N_RBG, mbsfn_flag) /openair/layer/mac/pre_processor.c 7

MAC: assign_rbs_required (module_idp,framep,subframep,nb_rbs_required[max_num_ccs][num_ue_max], min_rb_unit[max_num_ccs]) /openair/layer/mac/pre_processor.c 8

MAC: schedule_ue_spec(module_idp,framep,subframep,mbsfn_flag) /openair/layer/mac/enb_scheduler_dlsch.c 9

MAC: schedule_ue_spec(module_idp,framep,subframep,mbsfn_flag) /openair/layer/mac/enb_scheduler_dlsch.c 0

MAC: schedule_ue_spec(module_idp,framep,subframep,mbsfn_flag) /openair/layer/mac/enb_scheduler_dlsch.c

MAC: schedule_ue_spec(module_idp,framep,subframep,mbsfn_flag) /openair/layer/mac/enb_scheduler_dlsch.c

MAC: schedule_ue_spec(module_idp,framep,subframep,mbsfn_flag) /openair/layer/mac/enb_scheduler_dlsch.c 3

PHY: generate_enb_dlsch_params_from_dci(): /openair/phy/lte_transport/dci_tools.c DL Scheduling assignment for MIMO closed loop spatial multiplexing enb->ue_stats[ue_id]->dl_pmi_single (DCI_5MHz_A_FDD_t*)dci_pdu rah rballoc TPC Harq pid Tb swap mcs ndi rv mcs ndi rv tpmi 3 3 5 5 3 0 rballoc tpc harq_pid mcs -oldndi 0 0 0/7 dlsch0_harq->nb_rb dlsch0_harq->tbs TB0 ON TB OFF dlsch0=dlsch[0] dlsch=null tpmi=0: AlAMOUTI, Nl= tpmi=: UNIFORM_PRECODING pmiq 0, Nl= tpmi=: UNIFORM_PRECODINGm, pmiq, Nl= tpmi=3: UNIFORM_PRECODINGj, pmiq, Nl= tpmi=4: UNIFORM_PRECODINGmj, pmiq3, Nl= tpmi=5: PUSCH_PRECODING0, Nl= tpmi=6: PUSCH_PRECODING, Nl= tpmi=7: TM4_NO_PRECODING, Nl= dlsch0_harq->mimo_mode dlsch0_harq->nl dlsch0_harq->pmi_alloc 4

enb: TX (MAC+PDSCH) enb_dlsch_ulsch_scheduler() openair/layer/mac/enb_scheduler.c DCCH DCCH Logical channel Prioritization/Multiplexing DTCH schedule_ra schedule_si schedule_ue_spec schedule_ulsch format phy_procedures_enb_tx() openair/sched/phy_procedures_lte_enb.c pdsch_procedures() openair/sched/phy_procedures_lte_enb.c nb_antenna_ports_enb = TBS off (mcs = 0, rv = ) TBS0 on tpmi=0 to 7 DLSCH_pdu TBS generate enb_dlsch params() generate enb_dlsch params_from_dci() format, formata format fill_dlsch_dci DCI pdu generate enb_ulsch params() generate enb_ulsch params_from_dci() format0 For N l = layers, dlsch0_harq->mimo_mode is configured based on tpmi TBS is assigned based on N l nb rb G = (nb rb mod order ((4 num pdcchsymbols ) 3 4) G adj ) N l dlsch_encoding() crc, lte_segmentation, turbo_encoding, rate_matching Turbo Encoding LTE_TRANSPORT/dlsch_coding.c G bits G/Q m symbols dlsch_ scrambling() G bits G/Q m /N l symbols dlsch_ modulation() allocate_res_in_rb() LTE_TRANSPORT/dlsch_modulation.c X 0 i = QAM e Q m i,, Q m i + Q m, i = 0,, G/Q m X 0 i X i X 0 X X i = QAM e Q m (i + ),, Q m (i + ) + Q m, txdataf[0][tti offest ] txdataf[][tti offest ] 5

Review of OAI-UE Thread and PHY Procedures 6

Review of OAI-UE Thread and PHY Procedures After synchronization, the flag start_rx_stream=0. Hence, Correct rx_offest by capturing rx_offest samples from the USRP UE->rx_offset=0; (sync with rx_offest) UE->time_sync_cell=0; (sync with the cell) Set UE->proc.proc_rxtx[th_id].frame_rx=0 (Ready to read frame 0) Read the first OFDM symbol of the subframe 0 from the RF device slot_fep(ue,0, 0, 0, 0, 0) for l=0 7

Review of OAI-UE Thread and PHY Procedures After the first slot_fep(), the UE thread loops over subframe_rx=0,..., 9 In each loop, the UE thread gets TTI samples from USRP The UE thread wakes up the even or the odd UE_thread_rxn_txnp4 according to the subframe number phy_procedures_ue_rx(): LTE UE Receiver UE_MAC(): MAC layer of UE phy_procedures_ue_tx(): LTE UE Transmitter 8

UE: RX (PDCCH+PDSCH) ue_measurement_procedures() /openair/sched/phy_procedures_lte_ue.c lte_ue_measurements() ue_pdcch_procedures() openair/sched/phy_procedures_lte_ue.c rx_pdcch() dci_cnt = dci_decoding_ procedure() RI + CQI/PMI reporting UCI format: Wideband CQI (4 bits) PMI (4 bits) is_phich_subframe rx_phich () generate_ue_dlsch_ params_from_dci() ue_ulsch_uespec_procedures() DCI pdu generate_ue_ulsch_ params_from_dci() search all possible DCIs Format,A,,... Format 0 DL format : format: Alamouti/TM4 ue_pdsch_procedures() LTE_TRANSPORT/dlsch_demodulation.c generate_ue_dlsch_params_from_dci() LTE_TRANSPORT/dci_tools.c extract_dci _info() status = check_dci_format_a _coherency() TBS0 on TBS off (mcs = 0, rv = ) dlsch0_harq->nl = dlsch0_harq->mimo_mode = Alamouti/TM4_NO_PRECODING dlsch0_harq->mimo_mode tpmi:0 Alamouti tpmi: 7 test TM4 prepare_dl_decoding _format_a() N l = nb_rb = dlsch_extract _rbs_dual dlsch_scal e_channel dlsch_channel _level() dlsch_channel_ compensation dlsch_detection _mrc dlsch _alamouti Y 0 [k] Y [k] rxdataf[0][tti offest ] rxdataf[][tti offest ] rx_pdsch() dlsch_qam_llr() TM4 postprocessor 9

ue_measurement_procedures openair/sched/phy_procedures_lte_ue.c lte_ue_measurements(): OFDM symbol l=0 at every slot Rx spatial power: rx_spatial_power[enb_id][aatx][aarx] and rx_power_tot[enb_id] Rank Estimation: rank_estimation_tm3_tm4() Signal and noise average power computation: rx_power_avg and n0_power_avg CQI measurements: wideband_cqi_tot, wideband_cqi_avg, and rx_rssi_dbm Subband CQI measurements: subband_cqi[enb_id][aarx][subband], subband_cqi_tot[enb_id][subband] PMI measurements: subband_pmi_re[enb_id][subband][aarx], subband_pmi_im[enb_id][subband][aarx], wideband_pmi_re[enb_id][aarx], and wideband_pmi_im[enb_id][aarx] ue_rcc_measurements(): OFDM symbol l=6 at subframe 0/subframe 5 Noise Floor Calculation: n0_power[aarx], n0_power_db[aarx], n0_power_tot, n0_power_tot_db, n0_power_tot_dbm Reference Signal Rx power: rsrp and rssi Additional measurements: every subfarme at slot 0 and OFDM symbol 4 phy_adjust_gain(): AGC lte_adjust_synch(): Accum/filtering time offest estimation 30

ue_measurement_procedures openair/sched/phy_procedures_lte_ue.c The received quantized OFDM samples can be expressed as y n = P rxa G N X k e jπkn/n k=0 + z[n], 0 < n < N where P rx denotes the power of the received passband signal and A G is the voltage Gain of the USRP The samples of z[n] are complex-valued Gaussian RVs with zero mean and variance (power) N 0F N f The quantized IQ samples are represented by 6-bit short integers ( bit: sign and 5 bits: fixed point representation) + y(t) y[n] 6 bits 6 bits I Q R = y q [n] The quantization width is given by: Q = R 5 = 30 μv = 6 nt s t 3

ue_measurement_procedures openair/sched/phy_procedures_lte_ue.c The received quantized OFDM samples can be expressed as y n = P rxa G N X k e jπkn/n k=0 + z[n], 0 < n < N where P rx denotes the power of the received passband signal and A G is the voltage Gain of the USRP The samples of z[n] are complex-valued Gaussian RVs with zero mean and variance (power) N 0F N f rx_offset nb prefix samples (40 or 36) slot_fep() signal processing &common_vars->rxdata[aa] [rx_offset % frame_length_samples] 5 subcarriers 3 bits (I/Q 6 bits per samples input OFDM discrete signal) 5-DFT operation &common_vars_rx_data_per_thread.rxdataf[aa] [frame_parms->ofdm_symbol_size*symbol] Channel Estimation If(l==0 l==4) Pilot positions 3

ue_measurement_procedures openair/sched/phy_procedures_lte_ue.c The received quantized OFDM samples can be expressed as y n = P rxa G N X k e jπkn/n k=0 + z[n], 0 < n < N where P rx denotes the power of the received passband signal and A G is the voltage Gain of the USRP The samples of z[n] are complex-valued Gaussian RVs with zero mean and variance (power) N 0F N f rx_offset nb prefix samples (40 or 36) slot_fep() signal processing &common_vars->rxdata[aa] [rx_offset % frame_length_samples] 5 subcarriers 3 bits (I/Q 6 bits per samples input OFDM discrete signal) Y k = N N n=0 y n e jπkn/n 5-DFT operation Y k 6 f &common_vars_rx_data_per_thread.rxdataf[aa] [frame_parms->ofdm_symbol_size*symbol] Channel Estimation A N A N A = P rxa G 0 l=0 l=4 If(l==0 l==4) Pilot positions 0 6 f f s = N f 33

ue_measurement_procedures openair/sched/phy_procedures_lte_ue.c The received quantized OFDM samples can be expressed as y n = P rxg A N X k e jπkn/n k=0 + z[n], 0 < n < N 6 f 0 where P rx denotes the power of the received passband signal and G A is the voltage Gain of the USRP The samples of z[n] are complex-valued Gaussian RVs with zero mean and variance (power) N 0F N f Reference Signal Rx power: N rsrp and rssi Y k = y N n e jπkn/n l=0 l=4 rsrp = N E Y[k] = A, k pilots = P rxg A 30 (W/RE) where G A (db) = UE rxgain USRP Offest is the RX gain of the USRP DL rssi = RSRP N RB The max gain for RX on the AD936x is 76 db, for TX 89 db The ranges can be printed out when you run 'uhd_usrp_probe' for any USRP A Y[k] N n=0 A N A = P rxg A 0 6 f f s = N f 34

ue_measurement_procedures openair/sched/phy_procedures_lte_ue.c The received quantized OFDM samples can be expressed as y n = P rxg A N X k e jπkn/n k=0 + z[n], 0 < n < N The samples of z[n] are complex-valued Gaussian RVs with zero mean and variance (power) N 0F N f RB5 Null REs Noise Floor Calculation: n0 power (aarx) and n0 powertot RB RB9 n0 power aarx = E Z aarx k, k null RE SSS/PSS = N 0F N f 30 (W) where N 0F = 74 dbm/hz + NF db + G A (db) and G A (db) = UE rxgain USRP Offest is the RX gain of the USRP The max gain for RX on the AD936x is 76 db, for TX 89 db Subframe0/5, slot0, at l=5,6 35

ue_measurement_procedures openair/sched/phy_procedures_lte_ue.c Rank Indicator (RI) H dlch 0 : H [k] H dlch []: H [k] H dlch : H [k] H dlch [3]: H [k] (H, H, H, H, N RB ) rank_es tim ation _tm3_tm4 The MIMO channel: H(k) = H [k] H [k] H [k] H [k] A MF (k) = H k H k = H + H H H + H H H H + H H H + H The eignvalues of H are related to those of A MF as λ i = β i, i =, For a unitary matrix, the condition number ε k λmax =, cond λ db k = 0 db min In OAI, the condition number: ε k = β max = ε k = A β MF(k) min det(a MF k ) cond db [k] = numer db (k) denum db (k) If cond db k 5 db, hence, Rank= 36

ue_measurement_procedures openair/sched/phy_procedures_lte_ue.c PM Indicator (PMI) The UE computes subband pmire/im subband n rx = E H nrx k H nrx k, n rx =, The correlation coefficient H dlch 0 : H [k] H dlch []: H [k] RB 4 RB 3 RB RB RB 0 RB 3 RB RB RB 0 6 5 0 H dlch : H [k] H dlch [3]: H [k] pmiq pmiq pmiq subband pmire/im subband += subband pmire/im subband n rx Precoding for (rank =) TM4 pmivect = pmiq << ( i), for i = 0,, nb subbands θ pmire/im : (35 o, 5 o ) Index : Imaginary axis θ pmire/im : (45 o, 35 o ) Index : j real axis θ pmire/im : (5 o, 35 o ) Index 3: j θ pmire/im : (45 o, 45 o ) Index 0: 37

ue_measurement_procedures openair/sched/phy_procedures_lte_ue.c PM Indicator (PMI) The UE computes subband pmire/im subband n rx = E H nrx k H nrx k, n rx =, The correlation coefficient H dlch 0 : H [k] H dlch []: H [k] RB 4 6 H dlch : H [k] H dlch [3]: H [k] pmiq subband pmire/im subband += subband pmire/im subband n rx Precoding for (rank =) TM4 pmivect = (pmiq ) << i, for i = 0,, nb subbands RB 3 RB RB RB 0 RB 3 5 pmiq H ρ = H H H pmiq =, for Re(ρ ) Im(ρ ), for Re ρ < Im(ρ ) pmiq # of layer (RI ) j j RB RB 0 pmiq RB 0 38

TM4 Setup and Results USRP B0 USRP B0 Shared UE-Side Distributed Antenna System OAI-eNB URU IF5 --fh IF5 OAI-UE ue_transmissionmode=4 RI and CQI/PMI Feedback Multiple UEs 39

TM4 Setup and Results UE Statistics RI= ( layers) n0 power aarx Noise Floor Calculation: = N 0F N f 30 (W) where N 0F = 74 dbm/hz + NF db + G A (db) and G A (db) = UE rxgain USRP Offest is the RX gain of the USRP 40

TM4 Setup and Results enb Statistics RI= ( layers) 4

TM4 Setup and Results enb Statistics RI= ( layers) 4

TM4 Setup and Results UE Statistics RI=0 ( layers) 43

TM4 Setup and Results enb Statistics RI=0 ( layers) 44

Thank You 45