Research Article Differences in User Influence on MIMO Handset Antenna Performance in Reverberation Chamber

Similar documents
Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems

Research Article Compact Multiantenna

Research Article Embedded Spiral Microstrip Implantable Antenna

Research Article Feasibility of UAV Link Space Diversity in Wooded Areas

Comparison of Different MIMO Antenna Arrays and User's Effect on. their Performances

Research Article Modified Dual-Band Stacked Circularly Polarized Microstrip Antenna

Performance of Closely Spaced Multiple Antennas for Terminal Applications

Research Article A Miniaturized Triple Band Monopole Antenna for WLAN and WiMAX Applications

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications

Research Article A Miniaturized Meandered Dipole UHF RFID Tag Antenna for Flexible Application

Research Article Small-Size Meandered Loop Antenna for WLAN Dongle Devices

IEEE Proof Web Version

Research Article Miniaturized Circularly Polarized Microstrip RFID Antenna Using Fractal Metamaterial

Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers

Research Article Very Compact and Broadband Active Antenna for VHF Band Applications

Multiband Integrated Antennas for 4G Terminals. David A. Sanchez-Hernandez Universidad Politecnica de Cartagena. Editor.

Research Article Compact Antenna with Frequency Reconfigurability for GPS/LTE/WWAN Mobile Handset Applications

Research Article A MIMO Reversed Antenna Array Design for gsm1800/td-scdma/lte/wi-max/wilan/wifi

DUAL antennas in mobile terminals are used more and

Research Article SAR Reduction Using Integration of PIFA and AMC Structure for Pentaband Mobile Terminals

A Printed Wideband MIMO Antenna System for GSM1800/1900, UMTS, WLAN2450, LTE2300/2500, and GPS Applications

Research Article A Compact Experimental Planar Antenna with a USB Connector for Mobile Phone Application

A compact dual-band dual-port diversity antenna for LTE

Research Article Wideband Microstrip 90 Hybrid Coupler Using High Pass Network

Diversity Performance of an Optimized Meander PIFA Array for MIMO Handsets

Chalmers Publication Library

Chalmers Publication Library

Research Article Theoretical and Experimental Results of Substrate Effects on Microstrip Power Divider Designs

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

Research Article CPW-Fed Slot Antenna for Wideband Applications

Effectiveness of a Fading Emulator in Evaluating the Performance of MIMO Systems by Comparison with a Propagation Test

Research Article High Efficiency and Broadband Microstrip Leaky-Wave Antenna

Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler

SCME true PDP emulation using a channel emulator and a mode-stirred reverberation chamber

Research Article Novel Design of Microstrip Antenna with Improved Bandwidth

Chalmers Publication Library

Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

Research Article A Design of Wide Band and Wide Beam Cavity-Backed Slot Antenna Array with Slant Polarization

Research Article Multiband Printed Asymmetric Dipole Antenna for LTE/WLAN Applications

Research Article CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

TRI-BAND COMPACT ANTENNA ARRAY FOR MIMO USER MOBILE TERMINALS AT GSM 1800 AND WLAN BANDS

Research Article Low-Profile Dual-Wideband MIMO Antenna with Low ECC for LTE and Wi-Fi Applications

Design of a Short/Open-Ended Slot Antenna with Capacitive Coupling Feed Strips for Hepta-Band Mobile Application

Research Article A Broadband Circularly Polarized Stacked Probe-Fed Patch Antenna for UHF RFID Applications

Research Article Effect of Parasitic Element on 408 MHz Antenna for Radio Astronomy Application

Application Article Dual-Beam Antenna Design for Autonomous Sensor Network Applications

Research Article Cross-Slot Antenna with U-Shaped Tuning Stub for Ultra-Wideband Applications

Chalmers Publication Library

Compact MIMO Antenna with Cross Polarized Configuration

Over The Air Performance Test System. Employing Reverberation Chamber

Universidad Politécnica de Cartagena Departamento de Tecnologías de la Información y las Comunicaciones

Research Article Harmonic-Rejection Compact Bandpass Filter Using Defected Ground Structure for GPS Application

CHRISTIAN S. LÖTBÄCK PATANÉ. Master of Science Thesis

Reference Environment System Testing of LTE Devices

Research Article Gain Enhancement of Low-Profile, Electrically Small Capacitive Feed Antennas Using Stacked Meander Lines

Research Article A Reconfigurable Coplanar Waveguide Bowtie Antenna Using an Integrated Ferroelectric Thin-Film Varactor

3. LITERATURE REVIEW. 3.1 The Planar Inverted-F Antenna.

Research Article Design of a Novel UWB Omnidirectional Antenna Using Particle Swarm Optimization

Research Article Quad Band Handset Antenna for LTE MIMO and WLAN Application

Research Article Bandwidth Extension of a Printed Square Monopole Antenna Loaded with Periodic Parallel-Plate Lines

Research Article Wideband Dual-Element Antenna Array for MIMO Mobile Phone Applications

Research Article Quadrature Oscillators Using Operational Amplifiers

Application Article Synthesis of Phased Cylindrical Arc Antenna Arrays

Aalborg Universitet. Correlation Evaluation on Small LTE Handsets. Barrio, Samantha Caporal Del; Pedersen, Gert F.

Application Article Improved Low-Profile Helical Antenna Design for INMARSAT Applications

A Pair Dipole Antenna with Double Tapered Microstrip Balun for Wireless Communications

Research Letter Throughput of Type II HARQ-OFDM/TDM Using MMSE-FDE in a Multipath Channel

Compact and Low Profile MIMO Antenna for Dual-WLAN-Band Access Points

A Novel Method for Determining the Lower Bound of Antenna Efficiency

Adaptive impedance matching performance of MIMO terminals with different bandwidth and isolation properties in realistic user scenarios

EVALUATION AND MEASUREMENT OF THE DOPPLER SPECTRUM IN A REVERBERATION CHAMBER. X. Chen * Chalmers University of Technology, Gothenburg , Sweden

Research Article Ka-Band Slot-Microstrip-Covered and Waveguide-Cavity-Backed Monopulse Antenna Array

Minimization of Mutual Coupling Using Neutralization Line Technique for 2.4 GHz Wireless Applications

Research Article UWB Directive Triangular Patch Antenna

Research Article Yagi Array of Microstrip Quarter-Wave Patch Antennas with Microstrip Lines Coupling

Politecnico di Torino. Porto Institutional Repository

Dual-band MIMO antenna using double-t structure for WLAN applications

Research Article Small-Size Wearable High-Efficiency TAG Antenna for UHF RFID of People

On the Design of CPW Fed Appollian Gasket Multiband Antenna

A New Fractal Based PIFA Antenna Design for MIMO Dual Band WLAN Applications

Research Article Design and Optimization of LTE 1800 MIMO Antenna

Research Article Design and Optimization of a Millimetre Wave Compact Folded Magic-T

Research Article A High-Isolation Dual-Polarization Substrate-Integrated Fabry-Pérot Cavity Antenna

Integration of inverted F-antennas in small mobile devices with respect to diversity and MIMO systems

Research Article Compact and Wideband Parallel-Strip 180 Hybrid Coupler with Arbitrary Power Division Ratios

Evaluation of V2X Antenna Performance Using a Multipath Simulation Tool

Research Article A Multibeam Antenna Array Based on Printed Rotman Lens

Channel Modelling ETI 085. Antennas Multiple antenna systems. Antennas in real channels. Lecture no: Important antenna parameters

Research Article A UWB Band-Pass Antenna with Triple-Notched Band Using Common Direction Rectangular Complementary Split-Ring Resonators

Overview. Measurement Aspects of Mobile Terminal Antennas. Mobile communications antennas. Antenna Characteristics. Clemens Icheln.

Switched MEMS Antenna for Handheld Devices

Research Article A Compact CPW-Fed UWB Antenna with Dual Band-Notched Characteristics

A multi-band printed monopole antenna

SAR REDUCTION IN SLOTTED PIFA FOR MOBILE HANDSETS USING RF SHIELD

Research Article Circularly Polarized Microstrip Yagi Array Antenna with Wide Beamwidth and High Front-to-Back Ratio

Research Article Preparation and Properties of Segmented Quasi-Dynamic Display Device

Antennas Multiple antenna systems

Millimeter Wave Small-Scale Spatial Statistics in an Urban Microcell Scenario

This is the published version of a paper presented at Antennas: Gateways to the Global Network..

Transcription:

Antennas and Propagation Volume 22, Article ID 826425, 5 pages doi:5/22/826425 Research Article Differences in User Influence on MIMO Handset Antenna Performance in Reverberation Chamber Juan D. Sánchez-Heredia, Paul Hallbjörner, 2 Juan F. Valenzuela-Valdés, 3 Thomas Bolin, 4 and Antonio M. Martínez-González Departamento de Tecnologías de la Información y Comunicaciones, Universidad Politécnica de Cartagena, 322 Cartagena, Spain 2 Electronics Department, SP Technical Research Institute of Sweden, Box 857, 5 5 Borås, Sweden 3 Departamento de Ingeniería de Sistemas Informáticos y Telemáticos, Universidad de Extremadura, 68 Mérida, Spain 4 Network Communication Research Lab, Sony Mobile Communications, Nya Vattentornet, 22 88 Lund, Sweden Correspondence should be addressed to Juan D.Sánchez-Heredia, jd.sanchez@upct.es Received 3 July 22; Accepted 7 October 22 Academic Editor: Guangyi Liu Copyright 22 Juan D. Sánchez-Heredia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. User influence on multiple-input multiple-output (MIMO) performance is studied for different dual antenna handsets specially designed to have good and bad MIMO performance. The study reveals that user influence can cause either improvement or degradation for different test objects, including a spread effect over the parameters.differences in performance between good and bad handsets can be clear when they are measured without user influence, but become small under real person influence. This result illustrates the particular importance of user influence to characterize MIMO handsets.. Introduction User influence on multiple antenna device performance has been a topic for research in the last few years, since it is well known that a user in the vicinity of a wireless device affects the propagation conditions that the device is experiencing. This effect is well known for single-input single-output (SISO) communications, consisting of a degradation of radiation performance due to the losses introduced by the user. This effect is usually quantified by the changes in radiation efficiency and absorbed power []. In spite of this knowledge, it is still not clear what the consequences are when it comes to multiple antenna devices, since they base their enhanced capabilities on a rich field distribution in terms of signal paths. Numerous studies have been performed over the last years, agreeing to the fact that the effectofthehumanbodyismorecomplexinmimo terminals than in traditional ones [ 5]. The presence of the user has been demonstrated to have immediate influence on radiation patterns, input impedances and therefore on the correlation matrix, yet the effects are not fully understood and contradictory findings are commonplace. In [3], the envelope correlation coefficients were significant when the user was present. These changes showed a more important dependence to antenna orientation in []. In contrast, an increment of the correlation coefficients is also available in the literature [6]. Contradictory findings can also be found for the effects on diversity gain [7]. In this paper, the performance of different handsets has been analyzed. All the handsets used within this study consist of two antennas, in order to implement diversity at the receiving terminal end of the link (SIMO: Single Input Multiple Output). This SIMO configuration is relevant for this study since it is one of the normal over-the-air (OTA) test cases for the new communication standards (HSDPA and LTE). 2. Measurements 2.. Test Objects. Four different handsets are used for this study. Two of them work at low frequency (7 78 MHz) and the other two work at a higher frequency (262 269 MHz). For each band, there is one handset with a good

2 Antennas and Propagation Stirring paddle Control PC Ant. Ant. 2 2 RF switch Network Exciting antenna Figure : Scheme of the reverberation chamber measurement setup. antenna solution and the other one has been designed on purpose to have bad MIMO performance. 2... 7 MHz Test Objects. Two samples of the same handset model are used with dimensions 5 mm 65 mm. The two test objects are referred to as Prototype A and Prototype B. Prototype A has two monopole antennas located at each short side of the handset. The two monopoles excite the chassis in the same way, so high correlation is expected. Prototype B includes one monopole located at one of the short sides of the handset and a notch antenna located along the long side of it. These two antennas have different radiation patterns which cause a low correlation with each other. 2..2. 26 MHz Test Objects. Two terminal antenna models are used with dimensions mm 4 mm. The two test objects are referred to as Prototype C and Prototype D. Both Prototype C and Prototype D consist of a ground plane and two Planar Inverted F Antennas (PIFA) fed by coaxial cables. Prototype C is designed to have high correlation on purpose, by slightly connecting the patches of the two single PIFA antennas; however, Prototype D has low correlation. 2.2. Measurement Setup. Measurements were carried out using a reverberation chamber (RC) (length 3 m, width 2.45 m, and height 2.45 m) located at SP Technical Research Institute of Sweden, Borås, Sweden. The RC comprises an electronically controlled turn table, as well as a rotational zig-zag stirrer placed in a corner of the metallic cavity. The shielding effectiveness of this RC is db. Figure showed a basic scheme of the setup used for the measurements performed during this study. Three different scenarios (No User, Head Phantom, and Real Person) are used to simulate different effects of the user on the radiation performance of the antennas. No User scenario is the classical scenario generated in a reverberation chamber, with an isotropic and Rayleigh distributed field strength at the device. In this scenario, the antennas under test were placed over a low loss dielectric foam piece, in order to avoid as much as possible the effect of the holder. Head Phantom is the commonly used scenario to estimate the behavior of a device including user influence, that is, Figure 2: Measurement setup with the presence of the head phantom and the device placed in talk position. device attached to the cheek of the phantom and aligned between the ear point and the mouth point (Figure 2). Real Person scenario is performed with the introduction of a real person inside the chamber, holding the device with the hand simulating talk position, in the same way as in the Head Phantom scenario. The person is sitting on a chair placed in the center of the chamber, in order to have the antenna in a similar place as in the other scenarios. No User is used as a reference case. This scenario, although useful, is not intended to be realistic. With the introduction of a head phantom, the effect of the user head on the antenna is included. The head phantom affects the close environment of the antenna, but it is still an intermediate approach to a real user influence simulation, since a head phantom does not block all the incident waves that a real person would. This is the motivation of the Real Person scenario. 3. User Influence on Antenna Parameters 3.. Correlation. Antenna correlation is the figure-of-merit which has been commonly accepted to be a good indicator of the MIMO performance of an antenna pair. As showed in [8], correlation affects MIMO capacity, which is clearly decreased when antennas at the receiver are highly correlated. The complex correlation coefficient of two antennas can be calculated from the complex transmission coefficients (S 2 ) between the exciting antenna of the RC and the antenna pair under test, by [9] ρ = ρ complex Nk= ( = S2, (k) )( S 2, S2,2 (k) ) S 2,2 Nk= S 2, (k) S 2, 2 Nk= S 2,2 (k) S 2,2 2, () wherek stands for the current stirrer position, and S 2 = N S 2 (k) (2) N k=

Antennas and Propagation 3 Correlation Correlation Correlation 7 7.5 7. 7.5 7.2 7.25 7.3 7.35 7.4 7.45 Real person 8 7 7.5 7. 7.5 7.2 7.25 7.3 7.35 7.4 7.45 8 7 7.5 7. 7.5 7.2 7.25 7.3 7.35 7.4 7.45 Frequency (Hz) 8 Prot. B k = Prot. B k = 2 No user Head phantom Prot. A k = Prot. A k = 2 Correlation Correlation Correlation 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69 9 No user 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69 Head phantom Real person 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69 Frequency (Hz) 9 9 Figure 3: Correlation of the 7 MHz band devices for the three different scenarios. Prot. D k = Prot. D k = 2 Prot. C k = Prot. C k = 2 (i) N is the total number of stirrer positions over a whole sequence of stirring movement. (ii) S 2, is the S 2 parameter between the transmission antenna and receiving antenna. (iii) S 2, is the S 2 parameter between the transmission antenna and receiving antenna 2. For the purpose of these measurements, 4 different positions are selected ( stirrer position 4turntable positions), and the number of points of the vector network analyzer used to perform the S 2 measurements is set to 4. Two repetitions (k =, k = 2) of each measurement were performed. The measurement of each of the scenarios took about 4 minutes, for each dual antenna. Some problems were detected due to the decorrelation introduced by the cables connected to the antennas. In order to avoid those problems, an RF switch is introduced between one of the connectors of the vector network analyzer and the antennas under test, so the S 2 can be measured for the two receiving antennas without changing the position of the cables. Figures 3 and 4 show the different correlation values obtained under the three different user influence scenarios, for antennas at both bands. Tables and 2 show the values of mean and standard deviation of the measured correlation values. Correlation is clearly affected by the presence of the user. Normally when an object is close to the antenna, the object produces two different effects. The first effectis to create new reflection points for the signal thus producing new clusters and increasing the richness of multipath propagation, which means that it decreases the correlation between antennas. On the other hand, when an object is positioned near an antenna, this object blocks the signal incoming from other Figure 4: Correlation of the 26 MHz band devices for the three different scenarios. cluster which impoverishes multipath propagation of the signal causing an increase of the correlation. These two opposed effects, as they are combined, cause the a randomization of the measured correlation. That is, when an object is inserted in the vicinity of a wireless device, the device can either increase or decrease its correlation. In other words, we can say that the effect of introducing objects near the antenna makes these antenna lose their inherent properties and their correlation depend more on the propagation environment. While the handsets present a well-recognized low and high correlation behavior in the No User scenario, this difference becomes smaller as the presence of the user is more significant. In fact, in the Real Person case, where there exist the influences of both the head and the hand of the person, the random effect on the results is much greater than when it is the head phantom only. It is also worth noticing the different impact depending on the frequency. Even though the effect is important at the higher frequency, it has a dramatic impact at the 7 MHz band, where correlation becomes very similar in both test objects, and with large variations over the band. This is because in terms of (d/λ), the distance over which the objects are placed (phantom or real person) is much smaller at 7 MHz compared to 26 MHz, which means that an object placed closer has a greater influence. Another factor is that the real person has a physiognomy much rougher than a phantom which is the average of many users (being the average of many users tends to round the shape). This rougher shape of individual persons, when compared to phantoms, creates more scattering effects and therefore some differences can be appreciated.

4 Antennas and Propagation Table : Correlation results (mean). Band Prototype k No User Head Phantom Real Person.689.676 7 A 2.687.676 26 7 MHz.33.389 6 B 2.3.39.492.885.889.83 C 2.886.886.76 26 MHz.257.354.336 D 2.255.34.375 Table 2: Correlation results (standard deviation). Band Prototype k No User Head Phantom Real Person.99.55 A 2.98.57.68 7 MHz 5.29.64 B 2 6.3.69.26.32.79 C 2.27.35.74 26 MHz.7.77.26 D 2.73.83 Finally, it should be noted that the standard deviation of the correlation (Table 2) is always higher for the scenario of real person in all the prototypes. This is also observable in Figures 3 and 4, where we can see that variations in correlation are much larger with the frequency. Also the difference between the two measurement repetitions is much higher for the real person case. This is due to abrupt changes in the appearance of the real person, together with the uncertainty on the position of the prototypes introduced when a real person is holding them. Both phantoms and holders are designed so they represent the average of human shape. However, in order to detect minimums and maximums in performance, average shapes are not as useful as particular cases are. Therefore, it is advisable to perform these tests with real people because the results of these tests may differ from the results obtained using a phantom. 3.2. Diversity Gain. Diversity gain (DG) is one of the most recognized figures-of-merit when evaluating multiple antenna terminals. DG quantifies the improvement created by the existence of more than one antenna over a reference case. In this study, the reference case chosen is the average power of both antennas operating separately. Several schemes can be used to combine the signals coming from the two antennas. Since the prototypes and antennas used in this study are intended to be part of complex wireless devices, the maximum ratio combining (MRC) [ 2] scheme is used, which is common for these kind of devices. Table 3 shows the measured DG (in db) of the devices for a signal reliability of %. Efficiency of antennas is not taken in account for the DG calculations, which means that apparent diversity gain (ADG) is calculated [3, 4]. Table 3: Apparent diversity gain results (decibels). Band Prototype No User Head Phantom Real Person 7 MHz A 6.38 6.98 6.7 B 8.2 8.4 7.35 26 MHz C 5.52 5.75 7.28 D 8.76 8. 8.38 Low correlation handsets present a reduction in diversity gain when the user influence becomes more important. The effect is the opposite for the high correlated handsets. This effect is in line with the correlation that both devices present under the three different scenarios. As we have seen before, the correlation between antennas is decreased in high correlated devices when they are under user influence. This effect can actually lead to a better MIMO performance of the device under user influence, compared to the performance the device has under No User scenario. Even more so, we can see how the DG results become very similar for both bad and good devices, in the case of a real person influence. It then seems that the real effect of a user on DG is the equalization of device performance, and not necessarily deterioration. 4. Conclusion In this paper, user influence over correlation and diversity gain is evaluated for some different scenarios including a real person. This is the first time that measurements using a real person in a reverberation chamber are reported. Results show that user influence equalizes MIMO performance of devices which have very different behavior when analyzed without user influence. Furthermore, the user influence on correlation does not seem to be a linear constant offset but a spread effect. The different behavior of different user calls for detailed studies with different body phantoms in order to define the effect of the user influence over the antenna. It is important to study standard deviations from different body phantoms. Finally, it is necessary to deepen the shadowing effect that actually changes the propagation environment where the antenna is being measured. Further research includes the development of a theoretical model for the user influence on MIMO devices, as well as the repetition of this study including realistic propagation channel models (including delay and angular properties). Acknowledgments The authors wish to thank Kristian Karlsson at SP for the implementation of the measurement software for the RC. This work was supported in part by MICINN (Project TEC28-58) through an FPI Doctoral Grant (BES-29-3764).

Antennas and Propagation 5 References [] G. F. Pedersen and S. Skjaerris, Influence on antenna diversity for a handheld phone by the presence of a person, in Proceedings of the 47th IEEE Vehicular Technology Conference, pp. 768 772, May 997. [2] T. Zervos, A. Alexandridis, K. Peppas et al., The influence of MIMO terminal user s hand on channel capacity, in Proceedings of the st European Conference on Antennas and Propagation (EuCAP 6), Nice, France, November 26. [3] K. Meksamoot, M. Krairiksh, and J. I. Takada, A polarization diversity PIFA on portable telephone and the human body effects on its performance, Proceedings of the IEICE Transactions on Communications, vol. E84-B, no. 9, pp. 246 2467, 2. [4] D. C. Kemp and Y. Huang, Antenna diversity and user interaction at 8 MHz, in Proceedings of the IEEE Antennas and Propagation Society International Symposium, vol. 3, pp. 479 482, July 25. [5] B.M.GreenandM.A.Jensen, Diversityperformanceofdualantenna handsets near operator tissue, IEEE Transactions on Antennas and Propagation, vol. 48, no. 7, pp. 7 24, 2. [6] J. F. Valenzuela-Valdês, A. M. Martínez-González, and D. Sánchez-Hernández, Effectofuserpresenceonreceivediversity and MIMO capacity for Rayleigh-Fading channels, IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 596 599, 27. [7]V.Plicanic,B.K.Lau,A.Derneryd,andZ.Ying, Actual diversity performance of a multiband diversity antenna with hand and head effects, IEEE Transactions on Antennas and Propagation, vol. 57, no. 5, pp. 547 556, 29. [8] M. Kang and M. S. Alouini, Impact of correlation on the capacity of MIMO channels, in Proceedings of the International Conference on Communications (ICC 3), pp. 2623 2627, May 23. [9] D. A. Hill and J. M. Ladbury, Spatial-correlation functions of fields and energy density in a reverberation chamber, IEEE Transactions on Electromagnetic Compatibility, vol. 44, no., pp. 95, 22. [] R. G. Vaughan and J. B. Andersen, Antenna diversity in mobile communications, in Proceedings of the IEEE Transactions on Vehicular Technology, vol. VT-36, pp. 47 72, November 987. [] D. G. Brennan, Linear diversity combining techniques, in Proceedings of the IRE, vol. 47, pp. 75 2, June 959. [2] D. G. Brennan, Linear diversity combining techniques, in Proceedings of the IEEE, vol. 9, no. 2, pp. 33 356, February 23. [3] P. S. Kildal and K. Rosengren, Electromagnetic analysis of effective and apparent diversity gain of two parallel dipoles, IEEE Antennas and Wireless Propagation Letters, vol. 2, pp. 9 3, 23. [4] J. F. Valenzuela-Valdés, M. A. García-Fernández, A. M. Martínez-González, and D. Sánchez-Hernández, The role of polarization diversity for MIMO systems under Rayleighfading environments, IEEE Antennas and Wireless Propagation Letters, vol. 5, no., pp. 534 536, 26.

Rotating Machinery Engineering Volume 24 The Scientific World Journal Volume 24 Distributed Sensor Networks Sensors Volume 24 Volume 24 Volume 24 Control Science and Engineering Advances in Civil Engineering Volume 24 Volume 24 Submit your manuscripts at Electrical and Computer Engineering Robotics Volume 24 Volume 24 VLSI Design Advances in OptoElectronics Navigation and Observation Volume 24 Chemical Engineering Volume 24 Volume 24 Active and Passive Electronic Components Antennas and Propagation Aerospace Engineering Volume 24 Volume 2 Volume 24 Modelling & Simulation in Engineering Volume 24 Volume 24 Shock and Vibration Volume 24 Advances in Acoustics and Vibration Volume 24