INSTRUCTION SHEET WIDEBAND POWER SENSOR MODEL Copyright 2008 by Bird Electronic Corporation Instruction Book P/N Rev.

Similar documents
Bird Model 7022 Statistical Power Sensor Applications and Benefits

LB680A Pulse Profiling USB PowerSensor+ Data Sheet

LB480A Pulse Profiling USB PowerSensor+ Data Sheet

LB480A Pulse Profiling USB PowerSensor+ Data Sheet

RF and Microwave Power Sensors/Meters Tektronix PSM3000, PSM4000, and PSM5000 Series Data Sheet

Power Measurement Basics

Model Model Digital Power Meter. Digital Power Sensor Digital Display & Analog RF Systems

Model 865-M Wideband Synthesizer

Model 845-M Low Noise Synthesizer

CAA-100A Cable & Antenna Analyzer + Spectrum Analyzer

Understanding the Precision Antenna, Cable, and Power Measurements on the 3550 Radio Test System

SC5407A/SC5408A 100 khz to 6 GHz RF Upconverter. Datasheet. Rev SignalCore, Inc.

R&S NRT Power Reflection Meter Family R&S NRT2 and R&S NRT-Zxx

Technical Datasheet GT-8550B Series USB Power Sensor 10 MHz to 26.5 GHz

LB679A CW and Pulse (Modulation) USB PowerSensor+ Data Sheet

Laboratory Grade Instruments Series & 4021 Power Meter SERIES Power Sensor

CAA-100A Cable & Antenna Analyzer + Spectrum Analyzer

Data Sheet SC5317 & SC5318A. 6 GHz to 26.5 GHz RF Downconverter SignalCore, Inc. All Rights Reserved

Thruline RF Directional Wattmeters

Improving Amplitude Accuracy with Next-Generation Signal Generators

Model 865-M Wideband Synthesizer

LadyBug Technologies, LLC LB5918L True-RMS Power Sensor

Model 865 RF / Ultra Low Noise Microwave Signal Generator

R&S NRP-Zxx Power Sensors Specifications

Frequency range 100 khz to 3 GHz 100 khz to 6 GHz 10 MHz to 18 GHz Reference frequency. 2 ppm in addition 2 ppm/10 C. 0 Hz, 100 Hz to 3 GHz

1140LA Broadband Power Amplifier

LadyBug Technologies, LLC LB5926A True-RMS Power Sensor

Signal Sources. 2026A/B 10 khz to 2.05/2.51 GHz MultiSource Generator.

3100LA Broadband Power Amplifier

Model 745 Series. Berkeley Nucleonics Test, Measurement and Nuclear Instrumentation since Model 845-HP Datasheet BNC

Agilent 8902A Measuring Receiver

Data Sheet. Peak, CW & Average. Power Sensors. Taking performance to a new peak

Power Meter. Measurement Guide. for Anritsu RF and Microwave Handheld Instruments BTS Master Site Master Spectrum Master Cell Master

Appendix A: Specifications

MA24104A. Inline High Power Sensor. True-RMS, 600 MHz to 4 GHz

HP 8901B Modulation Analyzer. HP 11722A Sensor Module. 150 khz MHz. 100 khz MHz. Technical Specifications. Four Instruments In One

100W Wide Band Power Amplifier 6GHz~18GHz. Parameter Min. Typ. Max. Min. Typ. Max. Units. Frequency Range GHz Gain db

2026Q CDMA/GSM Interferer MultiSource Generator

Signal Sources. 2026Q CDMA Interferer Multisource Generator. Advanced Test Equipment Rentals ATEC (2832)

FREEDOM Communications System Analyzer R8100 DATA SHEET

Table of Contents TABLE OF CONTENTS Antenna and Cable Testing Site Analyzer 6000EX Site Analyzer 2500EX Site Analyzer 1700EX and 1700EXP..

SC5307A/SC5308A 100 khz to 6 GHz RF Downconverter. Datasheet SignalCore, Inc.

Amplifier HF MHz

MultiMaster. Base Station Test Tools. Multi Purpose Base Station Tester. Introduction. Feature

HILNA LS Low Noise Amplifier

R&S FSH4/8 Spectrum Analyzer Specifications

2100L Broadband Power Amplifier

FEATURES: Reduced Depth. Output RF Power Hold. Easily Accessible Diagnostic Port. Programmable Alarms. Event And Maintenance Logs. Ethernet Interface

MT3200A TRAVELING WAVE TUBE MEDIUM POWER AMPLIFIER

Signal Sources. 2026A/B 10 khz to 2.05/2.51 GHz MultiSource Generator

A 500 Broadband Power Amplifier

Localizer provides signal generation over the Localizer band of to MHz with 90 Hz and 150 Hz tones, amplitude modulated

Manual Supplement. This supplement contains information necessary to ensure the accuracy of the above manual.

SC5306B 1 MHz to 3.9 GHz RF Downconverter Core Module. Datasheet SignalCore, Inc.

2026A/B 10 khz to 2.05/2.51 GHz MultiSource Generator

Model 855 RF / Microwave Signal Generator

4W Ultra Wide Band Power Amplifier 0.1GHz~22GHz

IFR 4000 Portable Nav/Comm Test Set

Manual Supplement. This supplement contains information necessary to ensure the accuracy of the above manual.

FREEDOM Communications System Analyzer R8100 DATA SHEET

RF and Microwave Power Sensors/Meters Tektronix PSM3000, PSM4000, and PSM5000 Series Data Sheet

Agilent N1911A/N1912A P-Series Power Meters and N1921A/N1922A Wideband Power Sensors. Data sheet

TITANIUM SERIES R 51 PART NUMBER SELECTION. High Performance Multiport Switches. Our Most Important Connection is with You.

Signal Sources. 2026A/B 10 khz to 2.05/2.51 GHz MultiSource Generator

Digital HF Receiver WJ-8723

R&S SMB100N SIGNAL GENERATOR

COM-POWER OPERATION MANUAL ACS W

Model 745 Series. Berkeley Nucleonics Test, Measurement and Nuclear Instrumentation since Model 845-M Specification 1.8 BNC

Handheld Spectrum Analyzer R&S FSH 3

FREEDOM Communications System Analyzer R8100 DATA SHEET

Advanced Test Equipment Rentals ATEC (2832)

WTX-610 Illuminator 6 GHz Multi-Mode Test Transmitter User Manual

TECHNICAL SPECIFICATION FOR RF (TEST &MEASUREMENT) DEVICE

Ultra Wide Band Low Noise Amplifier GHz. Electrical Specifications, TA = +25⁰C, With Vg= -5V, Vcc = +4V ~ +7V, 50 Ohm System

Installation & Service Manual

Agilent N9923A FieldFox RF Vector Network Analyzer 2 MHz to 4/6 GHz. Data Sheet

JD723A/JD724B/JD726A Cable and Antenna Analyzers

WaveStation Function/Arbitrary Waveform Generators

FREQUENCY SYNTHESIZERS, SIGNAL GENERATORS

Voltage Sensors URV5-Z

12D05A L- & S-Band Solid State Power Amplifier

PI-10 Broadband Power Indicator

Multifunctional Microwave Analyzer

CALIBRATED IMPULSE GENERATOR MODEL CIG khz 1 GHz

User s Guide Series USB Power Sensor/Meter. Taking performance to a new peak

RF-LAMBDA LEADER OF RF BROADBAND SOLUTIONS

ICAM. Electronics & Software. Industrial Charge Amplifier for Applications in Manufacturing. Type 5073A...

Handheld Spectrum Analyzer R&S FSH khz to 3 GHz

C20R01 C-Band Solid State Power Amplifier

NA100 NA200 NA300. NA Series Frequency Agile Medium Wave Broadcast Transmitters

1 UAT Test Procedure and Report

RESISTIVE POWER SPLITTERS AND DIVIDERS

30W Solid State High Power Amplifier 2-6 GHz. Parameter Min. Typ. Max. Min. Typ. Max. Units

PI-150 Broadband Power Indicator

PAGE 1/12 ISSUE SERIES DP3T/SPDT PART NUMBER R595 XXX XXX

POWER-MEASUREMENT needs can vary greatly among different

XR kw AM Medium Wave Broadcast Transmitter

TMR6200 HF Naval Digital Transceivers

Handheld Spectrum Analyzer R&S FSH3

R&S FSWP Phase Noise Analyzer Specifications

Transcription:

INSTRUCTION SHEET WIDEBAND POWER SENSOR MODEL 5012 Copyright 2008 by Bird Electronic Corporation Instruction Book P/N 920-5012 Rev. C

Description The Bird 5012 Wideband Power Sensor (WPS) is a Thruline sensor that can measure average, peak, or burst power, VSWR, crest factor, and Complementary Cumulative Distribution Function (CCDF). It can be used with the Bird 5000-EX Digital Power Meter (DPM) and the Bird Virtual Power Meter Software (VPM). NOTE: Firmware upgrades extending the WPS s capabilities may be periodically released. For the latest firmware upgrade, contact Bird Customer Service at (440) 248-1200 or visit our website at http://www.bird-electronic.com Connections WARNING Never attempt to connect or disconnect RF equipment from the transmission line while RF power is being applied. Leaking RF energy is a potential health hazard. To connect the WPS to the Digital Power Meter, use the serial cable provided. Connect the male end of the cable to the DPM and the female end to the WPS. A separate power supply for the WPS is not required when using a DPM. There are two ways to connect the WPS to a PC running the Virtual Power Meter Software: To connect using the serial port, first connect a 12V DC power supply to the WPS. Once the STATUS LED turns on and begins blinking, use the serial cable provided and connect the female end of the cable to the computer and the male end to the WPS. The WPS must be powered up before connecting to the PC. To connect using the USB port, connect the USB cable to the computer and to the WPS. A separate power supply is not required when using the USB port. NOTE: When using the optional serial to USB adapter, connect the WPS serial port to the adapter s serial port, and the adapter s USB connector to the PC.

Zeroing Sensor Over time, the sensor s zero value (reading with no applied RF power) can drift, making all readings inaccurate by this value. For example, if the zero value is 0.02 W, measuring a 50 W signal will give a reading of 49.98 W, a 0.04% error. Measuring a 1 W signal will give a reading of 0.98 W, a 2% error. If the drift would be a significant error, rezero the sensor: Make sure the sensor has reached a stable operating temperature. Make sure no RF power is applied to the sensor. Press Zero. Calibration will begin. Calibration will take about 30 seconds. Do not interrupt the calibration! A bar on the screen will display calibration progress. After successful calibration, Cal Pass or Calibration Complete will be displayed. Press any key to return to normal operation. If calibration fails, Cal Fail will be displayed. Press a key to return to normal operation, then check that the WPS is properly connected, and that the RF is off. Rezero. Function Descriptions Figure 1 Average and Peak Envelope Power Square Wave Signal 100 W 50 W Peak Envelope Power Average Power 0 W Average Power Average power is a measure of the equivalent heating power of a signal, as measured with a calorimeter. It measures the total RF power in the system, and does not depend on number of carriers or modulation scheme. The WPS is a broadband sensor that measures power across its entire frequency range. Its diodes operate in their square law region so that the detector output is directly proportional to the average power, without any additional error correction. Average power is the most important measurement of any transmission system since the average power is normally specified on the operating license. It is also valuable as a maintenance tool, showing overall system health, and for calibration.

VSWR VSWR measures the relation between forward and reflected average power. The Bird Wideband Power Sensor calculates the VSWR from the Forward and Reflected Average Power measurements. Rho and Return Loss are also the same measurement, but in different units: Rho (µ) = P R P F,, and The health of the feedline and antenna systems can be monitored using VSWR measurement under full power operating conditions. High VSWR is an indicator of feed line damage, overtightened cable or feed line clamps, or antenna changes/damage due to weather conditions, icing, or structural damage to the tower. Video Filter Figure 2 Video Filter Settings, 300 khz Signal Filter Too Small Correct Filter Filter Too Wide Noise Except for average power and VSWR measurements, all WPS measurements rely on a variable video filter to improve accuracy. This filter can be set to either 4.5 khz, 400 khz, or full bandwidth. It should be as narrow as possible while still being larger than the demodulated signal bandwidth (video bandwidth). Narrowing the filter limits the noise contribution caused by interfering signals. Listed below are some common modulation schemes and the appropriate video filter. Video Filter Modulation Type 4.5 khz CW Burst (Burst width > 150 µs), Voice Band AM, FM, Phase Modulation, Tetra 400 khz CW Burst (b.w. > 3 µs), GSM, 50 khz AM, DQPSK Full Bandwidth Signal CW Burst (b.w. > 200 ns), CDMA, WCDMA, DQPSK, DAB/DVB-T

Peak Envelope Power Peak power measurements detect amplitude changes as a signal modulates the carrier envelope. The WPS operates in an asynchronous cycle: 300 ms of waveform sampling followed by a 50 ms reset period. The peak power is then displayed and the cycle repeats. The display therefore updates about three times per second. Transmitter overdrive can be detected with peak measurements. Common problems are overshoot at the beginning of burst packets, amplitude modulation, and excessive transients. These damage system components with excessive peak power and also cause data degradation, increasing the Bit Error Rate. For TDMA applications, Peak and Burst Power measurements are used to detect overshoot in single timeslots. Other timeslots must be turned off for this test. Burst Average Power Figure 3 Burst Average Power 100 W 50 W 0 W Peak Envelope Power Burst Average Power Average Power Burst Width Period Burst width (BW) is the duration of a pulse. Period (P) is the time from the start of one pulse to the start of the next pulse. Duty cycle (D) is the percentage of time that the transmitter is on. To calculate the duty cycle simply divide the burst width by the period (D = BW / P). Low duty cycles mean that the burst width is much less than the period; a large amount of dead time surrounds each burst. For low duty cycles, the burst average power will be much larger than the average power. After peak power is measured, a threshold of ½ the peak is set. The sampled power crosses that threshold at the beginning and end of each burst. The time between crossings is used to calculate the duty cycle. Burst Average Power is calculated by dividing the Average Power by the Duty Cycle. Burst power measurements provide accurate, stable measurements in bursting applications such as TDMA and radar. Accurately measuring the output signal strength is essential for optimizing radar coverage patterns. Actual transmitted power in a single timeslot can be determined in TDMA. The other timeslots must be off during this test.

Crest Factor Figure 4 Crest Factor 10 db CDMA Signal 100 W Peak 10 W Ave 100 W 50 W 0 W Peak Envelope Power Average Power Crest factor (CF) is the ratio of the peak and average powers, in db. The WPS calculates the Crest Factor from the Forward Peak and Average Power measurements. Crest factor is becoming one of the most important measurements as communication systems move into the digital age. For CDMA and similar modulation types the CF may reach 10 db. If the crest factor is too large, the transmitter will not be able to handle the peak powers and amplitude distortion will occur. Crest factor can also detect overdrive and overshoot problems. Knowing the CF allows end-users to more accurately set base station power and lower operating costs. Complementary Cumulative Distribution Function (CCDF) Figure 5 CCDF 100 W Signal 80 W Threshold 20% CCDF 100 W 50 W 0 W 80 W CCDF measures the amount of time the power is above a threshold. Equivalently, it is the probability that any single measurement will be above the threshold. The WPS samples the power over a 300 ms window and compares it to a user-specified threshold, in Watts. The time above the threshold relative to the total time is the CCDF. CCDF measurements are most useful for pseudo-random signals, such as WCDMA, where a high CCDF means that the transmitter is being overdriven. CCDF can also detect amplitude distortion within an envelope caused by unwanted modulating signals. In TDMA systems, CCDF indicates the health of power amplifier stages and their ability to sustain rated power over an appropriate timeframe. As a troubleshooting aid, CCDF allows tracking of trends such as amplifier overdrive (which can cause dropped calls and high bit error rates).

Specifications Sensor Characteristics Frequency Range 350 MHz to 4 GHz RF Power Range 0.15 W 150 W Average, 4 400 W Peak Maximum Power See Figure 7 on page 9 Impedance, Nominal 50 ohms Insertion Loss, Max: 0.35 1 GHz 1 4 GHz Input VSWR, Max: 0.35 2.5 GHz 2.5 4 GHz Directivity, Min: 0.35 3 GHz 3 4 GHz RF Connectors Interface: DPM Average Power PC Serial Port PC USB Port Power Supply: DPM USB Port DC Connector 0.05 db 0.1 db 1.05:1 1.10:1 30 db 28 db N Female Male DB-9, EIA-232, 9600 Baud, no parity, 8 data bits, 1 stop bit Female DB-9, EIA-232, 9600 Baud, no parity, 8 data bits, 1 stop bit USB 1.1 interface From host instrument via cable less than one low-power USB load 7 18 Vdc, < 100 ma RF Power Range 2 150 W RF Power Range 0.15 2 W Peak/Average Ratio, Max 12 db Measurement Uncert. ± (4% of reading) * Measurement Uncert. * Above 35 C or below 15 C add 3% ± (7% of reading ± 0.05 W)*

Match Measurement Measurement Range: Return Loss Rho (ρ) VSWR Forward Power, Min 0 to 23 db 0.07 to 1.0 1.15 to 99.9 0.5 W Measurement Uncert. See Figure 6 on page 8 Figure 6 Match Measure Uncertainty Uncertainty (db) 4 2 0 2 4 Match Measurement Uncertainty Above 3 GHz Below 3 GHz 6 Peak Envelope Power RF Power Range 4.0 400 W * Measurement Uncert.: burst width > 200 µs 1 µs < b.w. < 200 µs burst width < 1 µs burst width < 0.5 µs 0 5 10 15 20 25 Return Loss (db) ± (7% of reading + 0.2 W) ± (10% of reading + 0.4 W) ± (15% of reading + 0.4 W) ± (20% of reading + 0.4 W) * Max. power depends on frequency and system VSWR. See Figure 7 on page 9 Above 35 C or below 15 C add 3% For D < 0.1 add 0.1 W For period > 0.1s add (1.5% + 0.15 W)

Figure 7 Max. Peak Power 1000 Maximum Peak Power VSWR = 1 VSWR = 1.5 VSWR = 3 Peak Power (Watts) 400 Burst Average Power 100 0.3 1 Frequency (GHZ) 4 Power Range 10 150 W average Burst Width 1 µs 50 ms Repetition Rate, Min 15 Hz Duty Cycle (D) 0.001 1 (D = Burst Width / Period) Measurement Uncert. ± (6% of reading + 0.05/D W) * * Above 35 C or below 15 C add 3% Crest Factor RF Power Range Measurement Uncert. 4 150 W Linear sum of peak and average power uncertainty Complementary Cumulative Distribution Function (CCDF) Measurement Range 0.1 100% Measurement Uncert. ± 0.2% Threshold Level Range 4 400 W Level Set Accuracy As peak power uncert. + 2%

Physical and Environmental Specifications Temp, Operating 10 to +50 C (+14 to +122 F) Temp, Storage 40 to +80 C ( 40 to +176 F) Mechanical Shock and MIL-PRF-28800F class 3 Vibration Humidity, Max 95% (non-condensing) Altitude, Max 15,000 ft. (4,500 m) Dimensions, Nominal 4.75 x 4.6 x 1.3 (121 x 117 x 33 mm) Weight, Max 1.2 lb. (0.55 kg)

INPUT RF POWER OUTPUT WIDEBAND POWER SENSOR MODEL 5012 350 4000 MHz 4.6" (116 mm) STATUS 12VDC RS232 USB METER 1.3" (33 mm) RS-232 TO PC TO DPM 3.8" (96 mm)