Acoustic Emission Signal Associated to Fiber Break during a Single Fiber Fragmentation Test: Modeling and Experiment

Similar documents
Acoustic Emission For Damage Monitoring of Glass /Polyester Composites under Buckling Loading

EWGAE 2010 Vienna, 8th to 10th September

Finite element simulation of photoacoustic fiber optic sensors for surface rust detection on a steel rod

Acoustic Emission Signals versus Propagation Direction for Hybrid Composite Layup with Large Stiffness Differences versus Direction

EFFECTS OF LATERAL PLATE DIMENSIONS ON ACOUSTIC EMISSION SIGNALS FROM DIPOLE SOURCES. M. A. HAMSTAD*, A. O'GALLAGHER and J. GARY

AE Frequency analysis of Damage Mechanism in CFRP Laminates Based on Hilbert Huang Transform

Electronic Noise Effects on Fundamental Lamb-Mode Acoustic Emission Signal Arrival Times Determined Using Wavelet Transform Results

DETECTION AND SIZING OF SHORT FATIGUE CRACKS EMANATING FROM RIVET HOLES O. Kwon 1 and J.C. Kim 1 1 Inha University, Inchon, Korea

Quantitative Crack Depth Study in Homogeneous Plates Using Simulated Lamb Waves.

DAMAGE IN CARBON FIBRE COMPOSITES: THE DISCRIMINATION OF ACOUSTIC EMISSION SIGNALS USING FREQUENCY

Experimental Study on Feature Selection Using Artificial AE Sources

Research Collection. Acoustic signal discrimination in prestressed concrete elements based on statistical criteria. Conference Paper.

Theoretical and Experimental Investigation of Fiber Bragg Gratings With Different Lengths for Ultrasonic Detection

Remote Sensing ISSN

ON LAMB MODES AS A FUNCTION OF ACOUSTIC EMISSION SOURCE RISE TIME #

ULTRASONIC TECHNIQUES TO QUANTIFY MATERIAL DEGRADATION IN

DAMAGE-TYPE IDENTIFICATION IN A CFRP CROSS-PLY LAMINATE FROM ACOUSTIC EMISSION SIGNALS DETECTED BY A FIBER-OPTIC SENSOR IN A NEW REMOTE CONFIGURATION

Design of a Piezoelectric-based Structural Health Monitoring System for Damage Detection in Composite Materials

MONITORING THE EVOLUTION OF INDIVIDUAL AE SOURCES IN CYCLICALLY LOADED FRP COMPOSITES

ULTRASONIC GUIDED WAVES FOR AGING WIRE INSULATION ASSESSMENT

Quasi-Rayleigh Waves in Butt-Welded Thick Steel Plate

CONTINUOUS DAMAGE MONITORING TECHNIQUES FOR LAMINATED COMPOSITE MATERIALS

Proceedings A Comb-Based Capacitive MEMS Microphone with High Signal-to-Noise Ratio: Modeling and Noise-Level Analysis

Mathematical Model and Numerical Analysis of AE Wave Generated by Partial Discharges

Time Reversal FEM Modelling in Thin Aluminium Plates for Defects Detection

MEASUREMENT OF SURFACE DISPLACEMENT EXCITED BY EMAT TRANSDUCER

ACOUSTIC EMISSION SOURCE IDENTIFICATION IN LARGE SCALE FIBRE REINFORCED COMPOSITES

Rayleigh Wave Interaction and Mode Conversion in a Delamination

Guided Wave Travel Time Tomography for Bends

Abstract. 1 Introduction. 1.2 Concept. 1.1 Problematic. 1.3 Modelling

INTERNAL CONCRETE INSPECTION AND EVALUATION METHODS FOR STEEL PLATE-BONDED SLABS BY USING ELASTIC WAVES VIA ANCHOR BOLTS

Monitoring damage growth in composite materials by FBG sensors

ANALYSIS OF ACOUSTIC EMISSION FROM IMPACT AND FRACTURE OF CFRP LAMINATES

A GENERIC TECHNIQUE FOR ACOUSTIC EMISSION SOURCE LOCATION

BENDING FRACTURE BEHAVIOR OF 3D-WOVEN SiC/SiC COMPOSITES WITH TRANSPIRATION COOLING STRUCTURE CHARACTERIZED BY AE WAVELET ANALYSIS

Investigation on Sensor Fault Effects of Piezoelectric Transducers on Wave Propagation and Impedance Measurements

MATERIALS CHARACTERIZATION USING LASER ULTRASONIC GUIDED WAVES

NEURAL NETWORK FATIGUE LIFE PREDICTION IN NOTCHED BRIDGE STEEL I-BEAMS FROM ACOUSTIC EMISSION AMPLITUDE DATA

Absolute Calibration of Acoustic Emission Transducers as per CEN ISO/TR in Disuse of Mechanical Sound Sources or Reference Transducers

ULTRASOUND IN CFRP DETECTED BY ADVANCED OPTICAL FIBER SENSOR FOR COMPOSITE STRUCTURAL HEALTH MONITORING

Experimental Vibration-based Damage Detection in Aluminum Plates and Blocks Using Acoustic Emission Responses

DEFECT QUANTIFICATION IN 3D ANGLE INTERLOCK GLASS FIBRE COMPOSITES USING ACOUSTIC EMISSION

Aging Wire Insulation Assessment by Phase Spectrum Examination of Ultrasonic Guided Waves 1

NOVEL ACOUSTIC EMISSION SOURCE LOCATION

Acquisition and Analysis of Continuous Acoustic Emission Waveform for Classification of Damage Sources in Ceramic Fiber Mat

MODELLING AND EXPERIMENTS FOR THE DEVELOPMENT OF A GUIDED WAVE LIQUID LEVEL SENSOR

HEALTH MONITORING OF ROCK BOLTS USING ULTRASONIC GUIDED WAVES

NEW APPROACH TO ACOUSTIC EMISSION TESTING METALLIC PRESSURE VESSELS

Excitation and reception of pure shear horizontal waves by

Mode Dispersion Curves

MODAL ACOUSTIC EMISSION ANALYSIS OF MODE-I AND MODE-II FRACTURE OF ADHESIVELY-BONDED JOINTS

Acoustic-Laser Vibrometry for Standoff Detection of Defects in Materials

Frequency-Amplitude class of acoustic emission for different fracture mechanisms in C/SiC composite

FINITE ELEMENT SIMULATIONS OF THE EFFECT OF FRICTION COEFFICIENT IN FRETTING WEAR

A NEW MOTION COMPENSATION TECHNIQUE FOR INFRARED STRESS MEASUREMENT USING DIGITAL IMAGE CORRELATION

SOME OBSERVATIONS ON RAYLEIGH WAVES AND ACOUSTIC EMISSION IN THICK STEEL PLATES #

Thermo-mechanical Coupled Simulation Analysis of Solid End Mill on. Milling Process

ISO INTERNATIONAL STANDARD. Non-destructive testing Acoustic emission inspection Secondary calibration of acoustic emission sensors

A Study on Correlation of AE Signals from Different AE Sensors in Valve Leakage Rate Detection

Development of High Temperature Acoustic Emission Sensing System Using Fiber Bragg Grating

FATIGUE CRACK CHARACTERIZATION IN CONDUCTING SHEETS BY NON

Reliable Monitoring of Leak in Gas Pipelines Using Acoustic Emission Method

DEVELOPMENT OF MEASUREMENT SYSTEM USING OPTICAL FIBER AE SENSORS FOR ACTUAL PIPING

An experimental investigation of cavity noise control using mistuned Helmholtz resonators

RP 4.2. Summary. Introduction

Validation of the Experimental Setup for the Determination of Transmission Loss of Known Reactive Muffler Model by Using Finite Element Method

N. Papadakis, N. Reynolds, C.Ramirez-Jimenez, M.Pharaoh

Multiple crack detection of pipes using PZT-based guided waves

FIRST MEASUREMENTS FROM A NEW BROADBAND VIBROTHERMOGRAPHY MEASUREMENT SYSTEM

PREDICTION OF ATTENUATED GUIDED WAVE PROPAGATION IN CARBON FIBER COMPOSITES

Health monitoring in composite structures using piezoceramic sensors and fiber optic sensors

Proceedings Statistical Evaluation of the Positioning Error in Sequential Localization Techniques for Sensor Networks

Validation of a Lamb Wave-Based Structural Health Monitoring System for Aircraft Applications

Ultrasonic Guided Wave Testing of Cylindrical Bars

ACOUSTIC EMISSION MEASUREMENTS ON SHELL STRUCTURES WITH DIRECTLY ATTACHED PIEZO-CERAMIC

The Development of Laser Ultrasonic Visualization Equipment and its Application in Nondestructive Inspection

A Lamb Wave Based SHM of Repaired Composite Laminated Structures

ACOUSTIC AND ELECTROMAGNETIC EMISSION FROM CRACK CREATED IN ROCK SAMPLE UNDER DEFORMATION

Research Center for Advanced Science and Technology The University of Tokyo Tokyo 153, Japan

OPTIMAL EXCITATION FREQUENCY FOR DELAMINATION IDENTIFICATION OF LAMINATED BEAMS USING A 0 LAMB MODE

ELASTIC WAVE EMISSION DURING DELAMINATION GROWTH OF CARBON/EPOXY MONITORED WITH FIBER-OPTIC DEFEW STRAIN RATE SENSOR

PRIMARY LOOP ACOUSTIC EMISSION PROCEDURE: AN UPGRADED METHOD AND ITS CONSEQUENCES ON THE IN-SERVICE-INSPECTION

DETECTION OF TRANSVERSE CRACKS IN A COMPOSITE BEAM USING COMBINED FEATURES OF LAMB WAVE AND VIBRATION TECHNIQUES IN ANN ENVIRONMENT

Fatigue Crack Growth Monitoring of Idealized Gearbox Spline Component using Acoustic Emission

Piezoelectric-Based In-Situ Damage Detection in Composite Materials for Structural Health Monitoring Systems

On the application of wavelet transform of AE signals from composite materials. T.H. Loutas, G. Sotiriades and V. Kostopoulos *

Multi-spectral acoustical imaging

In-Situ Damage Detection of Composites Structures using Lamb Wave Methods

Intelligent location of simultaneously active acoustic emission sources: Part I

Proceedings Contactless Interrogation System for Capacitive Sensors with Time-Gated Technique

NUMERICAL MODELING OF AIR-COUPLED ULTRASOUND WITH EFIT. D. E. Chimenti Center of Nondestructive Evaluation Iowa State University Ames, Iowa, USA

JOURNAL OF ACOUSTIC EMISSION

OPTICAL FIBER-BASED SENSING OF STRAIN AND TEMPERATURE

CRACK SIZING USING A NEURAL NETWORK CLASSIFIER TRAINED WITH DATA OBTAINED FROM FINI1E ELEMENT MODELS

CONTACT LASER ULTRASONIC EVALUATION OF CONSTRUCTION MATERIALS

ABSTRACT 1. INTRODUCTION

Tool Condition Monitoring using Acoustic Emission and Vibration Signature in Turning

GUIDED WAVES FOR DAMAGE MONITORING IN PLATES FOR NOTCH DEFECTS

SHM BASED ON MODAL ANALYSIS: ACCELEROMETER AND PIEZOELECTRIC TRANSDUCERS INSTRUMENTATION FOR CIVIL ENGINEERING IN HETEROGENEOUS STRUCTURES

Detection of Protective Coating Disbonds in Pipe Using Circumferential Guided Waves

Transcription:

Proceedings Acoustic Emission Signal Associated to Fiber Break during a Single Fiber Fragmentation Test: Modeling and Experiment Zeina Hamam 1, *, Nathalie Godin 1, Claudio Fusco 1 and Thomas Monnier 2 1 MATEIS laboratory, INSA of Lyon, university of Lyon, 69100 Villeurbanne, France; nathalie.godin@insa-lyon.fr (N.G.); claudio.fusco@insa-lyon.fr (C.F.) 2 LVA laboratory, INSA of Lyon, university of Lyon, 69100 Villeurbanne, France; thomas.monnier@insa-lyon.fr * Correspondence: zeina.hamam@insa-lyon Presented at the 18th International Conference on Experimental Mechanics, Brussels, Belgium, 1 5 July 2018. Published: 14 May 2018 Abstract: The objective of this work is to build a quantitative relationship between the fiber break as source of Acoustic Emission (AE) and the detected signal by unravelling the effect of each stage of the AE acquisition chain. For this purpose, an AE modelling is carried out using the Finite Element Method and then the simulation is compared to experimental results of Single Fiber Fragmentation Test (SFFT). The SFFT is used in order to produce preferential fiber break. It is carried out on specimens made from a long carbon fiber embedded in epoxy/amine matrix. Two different types of sensor are used in order to gather information on a wider frequency bandwidth. For the modeling part, the entire geometry of the specimen is modelled using Finite Element Method. There is a good agreement between experiment and modeling results. Keywords: Acoustic Emission; Single Fiber Fragmentation Test; Finite Element Modeling; Sensor 1. Introduction The Acoustic Emission technique is widely used to detect failures in composite materials. This non-destructive technique detects real-time failure occurring during mechanical loading. When a microscopic crack occurs, it releases an elastic wave that propagates to the surface and that can be detected by suitable sensors. This wave is recorded by the acquisition system and is further analyzed. In polymer matrix composites, three different failure modes are mostly identified: fiber breakage, matrix cracking, and interfacial debonding. Because of the overlapping of these different failure modes, signal identification and classification through AE is not an easy task. Furthermore, many complexities are present in AE techniques. In fact, the wave originating from the AE source is altered during propagation, by the propagation medium and eventually by the recording system. All these transformations make the interpretation of the signals very difficult. It is important to discern the role of the source from the effect of the transformations due to the propagation medium and the recording system on the measured signal. Therefore, the aim of this work is to build a quantitative relationship between the fiber break as source of AE and the detected signal by unravelling the effect of each stage of the acquisition chain, namely the detection system and the propagation medium [1 3]. For this purpose, an AE modelling is carried out using the Finite Element Method (FEM) code ABAQUS, and then the simulation is compared to experimental results of Single Fiber Fragmentation Test (SFFT). From an experimental point of view, the SFFT is used in order to produce preferential fiber break. For the modeling part, the entire geometry of the specimen is modelled, and Proceedings 2018, 2, 394; doi:10.3390/icem18-05222 www.mdpi.com/journal/proceedings

Proceedings 2018, 2, 394 2 of 7 a dynamic calculation is performed. The model is then used to understand and to quantify the effects of the propagation medium and of the sensor on the signal waveform. 2. Materials and Methods 2.1. Experimental Setup The specimen is made of a single long carbon fiber T700 embedded in epoxy/amine matrix: 1,4- Butanedioldiglycidyl ether (DGEBD)/4,4 -Methylenebis(2-methylcyclohexylamine) (3DCM). The dimension of the specimen is shown in Figure 1. Concerning the AE system, two types of piezoelectric transducers were used as shown in Figure 1, namely the nano30 and the picohf from Euro Physical Acoustics. The distance between each couple of sensors is 40 mm. These sensors detect signals propagating on the surface of the specimen, and then recorded using a Physical Acoustic PCI-2 system at an acquisition rate of 5 MS/s. Figure 1. Dimension of specimen and sensors placement. The SFFT is a tensile test applied on single fiber composite in axial direction, in order to create fiber breakage. Usually the debonding occurs at the same time of the fiber breaks, but in our case, because of a high interfacial strength, debonding does not occur. The SFFT is carried out using the tensile test machine (type: MTS, capacity 5 kn), at room temperature and with a deformation rate of 0.5 mm/min. The post-treatment of the experimental results is based on the calculation of descriptors as defined in [4,5] and time frequency according to smoothed pseudo Vgner-Ville distribution. In our work, we calculated descriptors as signal amplitude, energy, frequency centroid (FC), peak frequency (PF) and partial powers (PP). 2.1. Numerical Setup The single fiber fragmentation is modeled using FEM by means of Abaqus software (6.14-5) with dynamic calculation. We modeled the entire geometry of the specimen: the boundary conditions are shown in Figure 2. The geometry is meshed using tetrahedral elements (type = C3D4), the element size varies between 0.01 mm for fiber and 0.2 mm elsewhere. Figure 2. Scheme of the numerical specimen with the boundary conditions.

Proceedings 2018, 2, 394 3 of 7 The main properties of the material are shown in Table 1. The viscoelasticity of the matrix is taken into account by the Rayleigh parameters (alpha = 50 and beta = 3 10 11 ). The fiber breakage is modelled by separating the nodes forming fracture faces and creating wave. The numerical signals are collected on the specimen surface. Table 1. mechanical properties of materials. Young Modulus (GPa) Poisson Ratio Density (kg/m 3 ) Carbon fiber 187 0.22 1800 DGEBD-3DCM 1.41 0.38 1034 The sensor is taken into account by its transfer function shown in Figure 3, which is experimentally determined by the reciprocity method [6]. Figure 3. Transfer function of nano30 and picohf, determined by reciprocity method. 3. Results and Discussion 3.1. Experimental Results 3.1.1. Localization of AE Sources After waveform acquisition during SFFT, the signals source position was determined. A good agreement has been found between the number of localized sources detected by AE and fiber breakage observed by means of transmission optical microscope (Figure 4). Figure 4. Fiber breaks as observed by optical microscopy. Therefore, in our tests, all located sources are assigned to fiber breaks. In Figure 5, the cumulative number of localized signals are presented for the types of sensors used in our tests. The sensors have localized exactly the same sources. So, both are suitable for this test.

Proceedings 2018, 2, 394 4 of 7 Figure 5. Cumulative localized signal during SFFT: sources located by nano30; by picohf. 3.1.2. Effect of Distance between Source and Sensor on AE Results The calculation of descriptors shows a clear dependency of distance between the source and the sensor on the results. Table 2 shows a summary of some descriptors: we compare descriptors mean values of the sources near and far for sensors, for two different tests (AF02 and AF03) and two types of sensors (nano30 and picohf). Figure 6 shows the evolution of temporal and frequency descriptors with the distance source/sensor, for two different tests and with nano30 sensor. The amplitude, calculate in db, varies linearly with distance and it loses 25 db between the nearest and the furthest fiber break. The energy decreases drastically with distance. The frequency also centroid decreases linearly from 300 khz to 140 khz and the peak frequency takes two main values, the higher is equivalent to the resonant frequency of the sensor. Table 2. Descriptors calculated for two SFFT. Descriptors nano30 picohf Near to Sensor Far from Sensor Near to Sensor Far from Sensor AF02 AF03 AF02 AF03 AF02 AF03 AF02 AF03 Amplitude (db) 66.4 64 53.7 48.6 60.8 57.2 43.7 41.2 Energy (attoj) 2332 320 260 15.8 107 55.1 8.4 5.2 PP [0 200] khz (%) 36.2 35.6 70.5 72.5 24.5 25.5 82.5 78.1 PP [200 400] khz (%) 53 55 25.8 21.8 10.9 11.4 7.4 7.5 PP [400 800] khz (%) 9.4 7.1 2.2 3.8 55.3 36.3 7.2 8.4 PP [800 1200] khz (%) 1.1 2.1 1.5 1.9 9.2 26.8 2.9 6 Frequency Centroid (khz) 253 259 162 168 455 536 157 189 Peak Frequency (khz) 251 260 70 53 351 256 50 40 (c) (d) Figure 6. Temporal descriptors vs. source/sensor distance: energy in attoj, amplitude in db, (c) frequency centroid in khz and (d) peak frequency in khz. The Figure 8 shows the time-frequency maps assigned to three fiber breaks for three positions on the specimen as shows in Figure 7. The sensor used here is nano30. For fiber breaks near to the sensors (Figure 8a) show a content of high frequency that progressively disappears when the sources become further.

Proceedings 2018, 2, 394 5 of 7 Figure 7. Position of the three fiber breaks in the specimen. (c) Figure 8. Time-frequency results calculated using smoothed pseudo Vigner-Ville distribution for 3 source positions for signals recorded on C1: P1 position, P2 position and (c) P3 position The frequency content of signals varies significantly with distance source/sensor. Some signals have only low frequency content. Due to this dependency, these results cannot allow to define an acoustic signature of fiber breakage. In some works (reference), the authors save only signal detected by the nearest sensor to obtain descriptors relatively stable in relation to position of sources. 3.1.3. Effect of Sensor Type: Comparison Results of PicoHF with Results of Nano30 The nano30 is very sensitive around 300 khz and does not detect high frequency as from 500 khz. The picohf is very responsive around 500 khz and detects high frequencies. Therefore, when sensors detect signals from the same source, they do not respond in the same way. In Figure 9, we compare two signals in the temporal and frequency domain, stemmed from the same source and detected by nano30 and picohf sensors. These two sensors are equidistant from the source. With a coefficient of correlation of 25% in the frequency domain, it is clear that those different sensors do not detect the same information; especially beyond 200 khz. Therefore, they give certainly complementary information about the source. Figure 9. Temporal signals and frequency spectra for two types of sensors. 3.2. Results of the Numerical Model In this part, three fiber breaks are modeled for three different positions as shown in the Figure 7. Each break is simulated for 150 µs, which is sufficient to attenuate the signal.

Proceedings 2018, 2, 394 6 of 7 3.2.1. Numerical Results without and with Sensor We have simulated fiber fragmentation for 2 cases: punctual non-resonant sensor where the outof-plane velocity is collected on one single point and cylindrical sensor taking into account its transfer function (nano30), where the velocity is collected on the surface contact. Then the average velocity is convoluted by the transfer function of the sensor. In Figure 10, we compared the velocity on C1 sensor for these three cases. High frequencies dominate for punctual sensor. For cylindrical sensor, those high frequencies are lost. We can see also the effect of nano30 sensor by amplifying frequencies around 300 khz. Figure 10. Comparison between simulated punctual sensors, surface contact sensors. Signals of simulated fiber break at P1 position at C1 sensor; at P3 position at C1 sensor. 3.2.2. Comparison Numerical and Experimental Results In order to compare experimental and numerical results, we perform a calculation in timefrequency domain. The maps of Figure 11 present the numerical results for the three points shown in Figure 7 taking into account the nano30 sensor. The velocity is calculated on C1. A good agreement is found between the experimental results show in Figure 8 and numerical results. The evolution of the signals is very similar. (c) Figure 11. Numerical results: time frequency calculated with smoothed pseudo Vigner-Ville distribution for three source positions: P1 position, P2 position and (c) P3 position 4. Conclusions The aim of this work is to define an acoustic signature of fiber breakage in composite materials. From an experimental point of view, the calculation of classical descriptors does not give steady characteristics of this mode of failure. They are very dependent on the distance between the AE source and sensor. Their dependency is due to the damping characteristic of material and the geometry. The use of second type of sensor allows gathering more information about the failure mode. These results cannot be generalized on other cases because they depend on the geometry, the material, the sensor and the distance between sensors.

Proceedings 2018, 2, 394 7 of 7 The modeling is an efficient tool that allows us to better understand the influence of different parameters on the results, such as the geometry, the location of source and the sensor effect. So far, the modeling helps us to understand the effect of sensors. References 1. Giordano, M.; Cndelli, L.; Nicolais, L. Acoustic Emission wave propagation in viscoelastic plate. Compos. Sci. Technol. 1999, 59, 1735 1743. 2. Sause, M.G.; Richler, S. Finite element modelling of cracks as acoustic emission sources. J. Nondestruct. Eval. 2015, 34, 4. 3. Le Gall, T.; Godin, N.; Monnier, T.; Fusco, C.; Hamam, Z. Acoustic Emission modeling from the source to the detected signal: Model validation and identification of relevant descriptors. J. Acoust. Emiss. 2017, 34, S59-S64. 4. Morizet, N.; Godin, N.; Tang, J.; Maillet, E.; Fregonese, M.; Normand, B. Classification of acoustic emission signals using wavelets and Random Forests: Application to localized corrosion. Mech. Syst. Signal Process. 2016, 70, 1026 1037. 5. Godin, N.; Reynaud, P.; Fantozzi, G. Acoustic Emission and Durability of Composite Materials; John Wiley & Sons: Hoboken, NJ, USA, 2018. 6. Monnier, T.; Seydou, D.; Godin, N.; Zhang, F. Primary calibration of acoustic emission sensors by the method of reciprocity, theoretical and experimental considerations. J. Acoust. Emiss. 2012, 30, 152 166. 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).