Comparing the Benefits of Using an Integrated Power Module versus a Discrete Regulator

Similar documents
How to Improve DC/DC Converter Performance with Phase Shifting Time Delay

Digital Power Module Enables Fast Load Transient POL with Simple Cooling Design

Scalable Digital Point-of-Load Solutions

Doing More with Buck Regulator ICs

Using a Rad Hard Switching Regulator as a VTT Terminator in DDR Applications

Simplifying Power Supply Design with a 15A, 42V Power Module

AP3403. General Description. Features. Applications. Typical Application Schematic. A Product Line of Diodes Incorporated

Powering Automotive Cockpit Electronics

Advantages of Using Gallium Nitride FETs in Satellite Applications

SMP LF: Surface Mount PIN Diode for High Power Switch Applications

AP3591. General Description. EV Board Schematic. Application Information. A Product Line of Diodes Incorporated

Analog Technologies. ATI2202 Step-Down DC/DC Converter ATI2202. Fixed Frequency: 340 khz

E Typical Application and Component Selection AN 0179 Jan 25, 2017

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

PAM2320. Description. Pin Assignments. Applications. Features. A Product Line of. Diodes Incorporated 3A LOW NOISE STEP-DOWN DC-DC CONVERTER PAM2320

Purpose. Table of Contents. Purpose...1. Introduction...2. General Product Information...2. Key Performance Summary Table...3

RT6207AHGQUF Evaluation Board

SMP LF: Surface Mount PIN Diode

Why VPEAK is the Most Critical Aperture Tuner Parameter

CLA LF: Surface Mount Limiter Diode

DEMO MANUAL DC2013A. LT3952EFE 60V LED Driver with Internal 4A Switch. Description

350mA High Efficiency Step Down LED Driver

DEMO MANUAL DC2020A LT3955EUHE 60V IN 80V OUT LED Driver. Description

DEMO MANUAL DC2079A LT V IN 40V OUT LED Driver. Description

DEMO MANUAL DC1771A LTC3867EUF Synchronous Buck Converter with Remote Sensing DESCRIPTION

ZLED7000 / ZLED7020 Application Note - Buck Converter LED Driver Applications

AN2333 Application note

SMP LF: Surface-Mount PIN Diode for Switch and Attenuator Applications

TIDA Test Report 1/4/2016. TIDA Test Report 1/4/2016

SMP LF: Surface Mount PIN Diode

A7221A DC-DC CONVERTER/BUCK (STEP-DOWN) 600KHz, 16V, 2A SYNCHRONOUS STEP-DOWN CONVERTER

AN TEA1892 GreenChip synchronous rectifier controller. Document information

Ultra-Low-Noise Amplifiers

SKY LF: MHz Low-Noise Power Amplifier Driver

DEMO MANUAL DC1392A LTM4604A 2.375V IN(MIN), 4A Step-Down µmodule Regulator DESCRIPTION

FEATURES. Efficiency (%)

Pulse-Width Modulated DC-DC Power Converters Second Edition

AN2243 Application note

Figure 1: AAT4712 Evaluation Board Picture.

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. 500KHz, 18V, 2A Synchronous Step-Down Converter

SKY LF: GHz High Linearity, Active Bias Low-Noise Amplifier

Efficiency (%) Package Temperature Part Number Transport Media SOP8-40 to 85 PT1102ESOH Tape and Reel

Low Voltage 0.5x Regulated Step Down Charge Pump VPA1000

CLA Series: Silicon Limiter Diodes and Ceramic Hermetic Packaged Devices

IX6611 Evaluation Board

EV188 EVALUATION BOARD DATA SHEET

UM mA, 600kHz Step-Up DC-DC Converter UM3433 SOT23-6. General Description. Rev.05 Dec /9

SKY LF: GHz High Linearity, Active Bias Low-Noise Amplifier

SKY LF: Low Noise Amplifier Operation

TS mA / 1.5MHz Synchronous Buck Converter

APPLICATION NOTE. ATA5279 Application Hints ATAN0003. Features. Description

OLH7000: Hermetic Linear Optocoupler

TS3552 2A/350kHz Synchronous Buck DC/DC Converter

AN Replacing HMC625 by NXP BGA7204. Document information

DEMO MANUAL DC1889A. LTM4624EY 4A Step-Down µmodule Regulator. Description. Performance Summary

ADP1829. Preliminary Technical Data FCDC FEATURES ADP1829 DESCRIPTION

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter

TS3410 1A / 1.4MHz Synchronous Buck Converter

SKY : 3400 to 3600 MHz Wide Instantaneous Bandwidth High-Efficiency Power Amplifier

DEMO MANUAL DC2171A-B LTM4625 5A Small Footprint Step-Down µmodule Regulator DESCRIPTION PERFORMANCE SUMMARY BOARD PHOTO

UM GreenChip TEA1995DB1295 synchronous rectifier controller demo board. Document information

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

DEMO MANUAL DC1319B-A/DC1319B-B LT3756-2/LT High Voltage LED Controller DESCRIPTION

SKY LF: MHz Low-Noise, Low-Current Amplifier

Evaluation Board for the AAT2784 Three-Channel Step-down DC/DC Converter

DEMO MANUAL DC2247A LT V 2A Synchronous 2MHz Boost LED Driver. Description

PTN5100 PCB layout guidelines

AN1489 Application note

4 Maintaining Accuracy of External Diode Connections

Sheet Metal Design Guidelines

Application Guidelines for Non-Isolated Converters AN Input Filtering for Austin Lynx Series POL Modules

OLI500: Miniature High CMR, High-Speed Logic Gate Optocoupler for Hybrid Assembly

Is Now Part of To learn more about ON Semiconductor, please visit our website at

idesyn id8802 2A, 23V, Synchronous Step-Down DC/DC

DT V 1A Output 400KHz Boost DC-DC Converter FEATURES GENERAL DESCRIPTION APPLICATIONS ORDER INFORMATION

LM3102 Demonstration Board Reference Design

Positive to Negative Buck-Boost Converter Using LM267X SIMPLE SWITCHER Regulators

MP9447 High-Efficiency, Fast-Transient, 5A, 36V Synchronous, Step-Down Converter

IS31LT3953_IS32LT3953 DEMO BOARD GUIDE

LX MHz, 1A Synchronous Buck Converter. Description. Features. Applications LX7188

DEMO MANUAL DC1181B LTM4608: Low V IN, 8A DC/DC µmodule with Tracking, Margining and Frequency Synchronization DESCRIPTION

DEMO MANUAL DC2568A LTM4622A Ultrathin Dual 2A Step-Down µmodule Regulator DESCRIPTION BOARD PHOTO

SMS : 0201 Surface Mount Low Barrier Silicon Schottky Diode Anti-Parallel Pair

A8133 HIGH EFFICIENCY, HIGH POWER WHITE LED DRIVER 1MHz FREQUENCY, INTERNAL 2A MOSFET SWITCH

CLA LF: Surface Mount Limiter Diode

APPLICATION NOTE. ATA6629/ATA6631 Development Board V2.2 ATA6629/ATA6631. Introduction

Texas Instruments. PMP4435 REVA Test Procedure. China Power Reference Design REVA

DEMO MANUAL DC1307B LTM8027: 60V, 4A DC/DC µmodule Regulator Description

DEMO MANUAL DC1453A LTM4619EV: 4.5V-28V, Dual 4A Step-Down µmodule Regulator DESCRIPTION

AAT4910 PRODUCT DATASHEET. 28V Half-Bridge Dual N-Channel MOSFET Driver. General Description. Features. Applications. Typical Application

Sheet Metal Design Guidelines

OLS500: Hermetic Surface Mount High CMR, High-Speed Logic Gate Optocoupler

1. The current-doubler rectifier can be used to double the load capability of isolated dc dc converters with bipolar secondaryside

The analysis and layout of a Switching Mode

DIO6305 High-Efficiency 1.2MHz, 1.1A Synchronous Step-Up Converter

Dual Channel, 1.5MHz 800mA, Synchronous Step-Down Regulator. Features. Applications

AN5258. Extending output performance of ST ultrasound pulsers. Application note. Introduction

AN3302 Application note

SMV LF and SMV LF: Surface Mount, 0402 Hyperabrupt Tuning Varactor Diodes

UM TEA1721 universal mains white goods flyback SMPS demo board. Document information

Transcription:

White Paper Comparing the Benefits of Using an Integrated Power Module versus a Discrete Regulator Introduction Today's power systems for communications and computing infrastructure support high current loads from increasingly power hungry FPGAs, ASICs and microprocessors. To supply these high current circuits, equipment makers often rely on discrete power solutions that are complicated, take up valuable real-estate and may have significant power output limitations. Step-down (buck) regulators are used to convert power from a distributed power bus to the individual pointof-loads (POLs) in infrastructure systems. Step-down converters convert a voltage from an input source to a lower output voltage and are capable of converting a voltage source (typically 5V to 25V or higher) into a lower regulated voltage (typically 0.5V to 5V). More recent infrastructure systems may utilize 20-40 point-ofload (step-down) converters in one system, each with different output voltage and output current needs, creating a challenge for system power supply design engineers. To meet the challenge of designing the power sub-system for these systems, many designers are considering using power modules instead of traditional discrete POL designs, with time to market, size constraints, reliability and design capabilities being motivating factors. In this paper, we will compare the benefits of using an integrated power module vs. a discrete step-down switching regulator. Design of a Discrete Non-Isolated Step-Down Regulator The building blocks of a non-isolated switching power supply are shown in Figure 1. Figure 1: Discrete Power Supply Block Diagram A discrete power supply requires a number of external components to build: a PWM controller, switching power MOSFETs, input capacitors, output capacitors and a power inductor. All of these components vary for each design. For example, if a system has 20 different power supply rails, the selection of these components must be done for each design, which makes the job of designing a power sub-system very challenging. Let s look at an example of a non-isolated buck regulator. All of the components for the non-isolated buck regulator design in Figure 2 should be carefully selected to meet the design requirements. Calculating the inductor value is most critical in designing a step-down switching converter. First, assume the converter is in continuous conduction mode (CCM), which is usually the case. CCM implies that the inductor White Paper Using a Power Module vs. Discrete Regulator Page 1 of 5

does not fully discharge during the switch-off time. Peak current through the inductor determines the inductor's required saturation-current rating, which in turn dictates the approximate size of the inductor. Saturating the inductor core decreases the converter efficiency, while increasing the temperatures of the inductor, the MOSFET and the diode. Figure 2: Basics of a Synchronous Buck Converter The output capacitor selection is also a critical part of the design. The output capacitance determines the load transient performance of the power supply. Output capacitance is required to minimize the voltage overshoot and ripple present at the output of a step-down converter. Poor load transient performance or instability is caused by insufficient output capacitance, and large voltage ripple is caused by insufficient capacitance as well as a high equivalent-series resistance (ESR) in the output capacitor. The maximum allowed output voltage overshoot and ripple are usually specified at the time of design. Thus, to meet the ripple specification for a step-down converter circuit, you must include an output capacitor with ample capacitance and low ESR. The input capacitor is used to suppress noise at the input of the power supply and reduce the ripple voltage seen at the input. Load current, duty cycle and switching frequency are some of the factors used to determine the magnitude of the input ripple voltage. Ceramic capacitors placed directly at the input of the regulator reduce ripple voltage amplitude. Only ceramics have the extremely low ESR that is needed to reduce the ripple voltage amplitude. These capacitors must be placed close to the regulator input pins to be effective. Careful selection of the upper and lower MOSFETs will determine the overall efficiency of the buck converter. The on-resistance of the power MOSFETs and switching losses will affect the overall efficiency. The compensation components must be selected to ensure that the design meet the stability criteria over the required operating conditions. Placement of the external components can also affect the performance of the power supply. Designers must use an optimal layout to minimize noise and maximize system efficiency. This entire process must be repeated for each power rail. If there are 20 point-of-load power rails in the system, the process must be repeated 20 times, which can quickly become a daunting task for a power subsystem designer. Use of a Power Module System designers will make tradeoffs between cost, design effort and performance when selecting a power module. For systems with 1-5 power rails, designers may opt to use a discrete regulator to save cost and meet the time to market schedule. However, as the number of power rails increases and the current rating increases, the design of the power sub-system becomes challenging and requires significantly more design White Paper Using a Power Module vs. Discrete Regulator Page 2 of 5

effort. To meet this challenge, designers may opt to use a power module solution. Designers will also consider the cost of ownership of a discrete design. The cost of ownership is the bill of materials (BOM) cost in addition to the power designer s time required to design and test the design. Potential re-design changes, manufacturing and assembly costs are additional expenses for discrete designs. Figure 3 shows how a power module can integrate many of the blocks of the discrete design shown in Figure 1. A power module integrates the PWM controller, power MOSFETs, inductor and compensation network into the package. The designer typically only needs to select the input and output capacitors to complete a design. Figure 3: Power Module Implementation Intersil offers a comprehensive portfolio of digital and analog point-of-load power modules to address the needs of infrastructure systems. Intersil power modules are complete DC/DC power sub-systems as shown in Figure 3. With industry-leading power technology, these modules reduce design time, lower cost and save board space. Intersil s optimized thermal packaging technology provides excellent thermal performance, providing high current operation and high power density without the need for an external heat sink or fan, reducing system cost. Figure 4 shows the ISL8216M, Intersil s first high voltage power module. The ISL8216M supports a wide 10V to 80V input voltage range with an adjustable 2.5V to 30V output range, and delivers 4A of output current. The ISL8216M is an ideal choice for systems with a 12V, 24V, 36V or 48V input rail, making it well suited for infrastructure and industrial systems. Figure 4: ISL8216M Application Circuit Intersil offers two pin-to-pin compatible step-down power modules for maximum design flexibility. The popular ISL8225M dual 15A/single 30A step-down power module delivers up to 100W output power from a tiny 17mm x 17mm thermally enhanced QFN package. The two 15A outputs may be used independently or combined to deliver a 30A output. White Paper Using a Power Module vs. Discrete Regulator Page 3 of 5

If you need high voltage or more headroom, you can move to the ISL8240M dual 20A/single 40A step-down power module, which is well suited for power hungry ASIC, FPGA and microprocessor loads in infrastructure systems. Current sharing and phase interleaving allow up to 6 modules to be paralleled for up to 240A of current. Both power modules offer excellent efficiency and low thermal resistance to permit full power operation without heat sinks or fans. Conclusion Figure 5. ISL8240M Single 1V/40A Output Application Diagram The initial cost of implementing a discrete design may be cheaper than using a power module, but when considering time to market and long-term engineering and maintenance costs, a power module shows significant advantages, particularly for systems with 10 or more power rails. The cost of ownership, reduced design complexity, and a simplified and more flexible PCB layout are all important factors to consider. Intersil offers a rich portfolio of digital and analog power modules to address the wide input voltage range and load current range of infrastructure systems. Next Steps Learn more about Renesas' power module solutions Generate a board-level power module design with isim Search for power module parts using our parametric search # # # 2018 Renesas Electronics America Inc. (REA). All rights reserved. All trademarks and trade names are those of their respective owners. REA believes the information herein was accurate when given but assumes no risk as to its quality or use. All information is provided as-is without warranties of any kind, whether express, implied, statutory, or arising from course of dealing, usage, or trade practice, including without limitation as to merchantability, fitness for a particular purpose, or non-infringement. REA shall not be liable for any direct, indirect, special, consequential, incidental, or other damages whatsoever, arising from use of or reliance on the information herein, even if advised of the possibility of such damages. REA reserves the right, without notice, to discontinue products or make changes to the design or specifications of its products or other information herein. All contents are protected by U.S. and international copyright laws. Except as specifically permitted herein, no portion of this material may be reproduced in any form, or by any means, without prior written permission from Renesas Electronics America Inc. Visitors or users are not permitted to modify, distribute, publish, transmit or create derivative works of any of this material for any public or commercial purposes. White Paper Using a Power Module vs. Discrete Regulator Page 4 of 5

White Paper Using a Power Module vs. Discrete Regulator Page 5 of 5