CAD Tool for the optimization of Power Converters on Chip

Similar documents
Deliverable 2.3 Analysis and optimisation of selected architectures

CAD tool to optimize the design of a PowerSoC converter: Powerswipe design case

Coupled inductors on silicon for PwrSoC in the frame of PowerSwipe project

GaAs PowerStages for Very High Frequency Power Supplies. Greg Miller Sr. VP - Engineering Sarda Technologies

Analysis and optimization with improved models

Forward with Active Clamp for space applications: clamp capacitor, dynamic specifications and EMI filter impact on the power stage design

Optimization and implementation of a multi-level buck converter for standard CMOS on-chip integration

Impact of the Flying Capacitor on the Boost converter

Deliverable 3.1 Passive Components Fabrication

FAN2013 2A Low-Voltage, Current-Mode Synchronous PWM Buck Regulator

ANP012. Contents. Application Note AP2004 Buck Controller

Designing a 99% Efficient Totem Pole PFC with GaN. Serkan Dusmez, Systems and applications engineer

Achieving High Power Density Designs in DC-DC Converters

High Power Density Power Management IC Module with On-Chip Inductors

GaN in Practical Applications

Two-output Class E Isolated dc-dc Converter at 5 MHz Switching Frequency 1 Z. Pavlović, J.A. Oliver, P. Alou, O. Garcia, R.Prieto, J.A.

Getting the Most From Your Portable DC/DC Converter: How To Maximize Output Current For Buck And Boost Circuits

Challenges to Improving the Accuracy of High Frequency (120MHz) Test Systems

Hybrid Behavioral-Analytical Loss Model for a High Frequency and Low Load DC-DC Buck Converter

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS

DIO6970 High-Efficiency 2A, 24V Input Synchronous Step Down Converter

PS7516. Description. Features. Applications. Pin Assignments. Functional Pin Description

GaN Power ICs: Integration Drives Performance

A7130. AiT Semiconductor Inc. APPLICATION ORDERING INFORMATION TYPICAL APPLICATION

MPM V-5.5V, 4A, Power Module, Synchronous Step-Down Converter with Integrated Inductor

Techcode. High Efficiency 1MHz, 2A Step Up Regulator TD8208. General Description. Features. Applications. Package Types DATASHEET

1.5MHz 800mA, Synchronous Step-Down Regulator. Features. Applications. 2.2 uh. Cout 10uF CER. Cin 4.7 uf CER 2 GND FIG.1

Core-less Multiphase Converter with Transformer Coupling

Thermally enhanced Low V FB Step-Down LED Driver ADT6780

Application Note 53. General Description. Schematic. 180 Watt Boost Converter. By Mark Ziegenfuss

MP mA, 1.2MHz, Synchronous, Step-up Converter with Output Disconnect FEATURES DESCRIPTION

ThinPAK 8x8. New High Voltage SMD-Package. April 2010 Version 1.0

Analog and Telecommunication Electronics

Depletion-Mode Power MOSFETs and Applications

HCD80R1K4E 800V N-Channel Super Junction MOSFET

A More-Efficient Half-Bridge LLC Resonant Converter: Four Methods For Controlling The MOSFET

2MHz, High-Brightness LED Drivers with Integrated MOSFET and High-Side Current Sense

Non-linear Control for very fast dynamics:

400 ma nano-quiescent synchronous step-down converter with digital voltage selection and Power Good

1.5MHz 1A, Synchronous Step-Down Regulator. Features. Applications. Fig. 1

WD3122EC. Descriptions. Features. Applications. Order information. High Efficiency, 28 LEDS White LED Driver. Product specification

Understanding, measuring, and reducing output noise in DC/DC switching regulators

Using Coupled Inductors to Enhance Transient Performance of Multi-Phase Buck Converters

UM1660. Low Power DC/DC Boost Converter UM1660S SOT23-5 UM1660DA DFN AAG PHO. General Description

N-Channel Synchronous MOSFETs With Break-Before-Make

Lecture-44. EE5325 Power Management Integrated Circuits

HCA60R080FT (Fast Recovery Diode Type) 600V N-Channel Super Junction MOSFET

HCA80R250T 800V N-Channel Super Junction MOSFET

The Quest for High Power Density

HCI70R500E 700V N-Channel Super Junction MOSFET

340KHz, 3A, Asynchronous Step-Down Regulator

A Flying-Domain DC-DC Converter Powering a Cortex-M0 Processor with 90.8% Efficiency

TFT-LCD DC/DC Converter with Integrated Backlight LED Driver

1.5MHz 600mA, Synchronous Step-Down Regulator. Features

ACT111A. 4.8V to 30V Input, 1.5A LED Driver with Dimming Control GENERAL DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION CIRCUIT

Maximizing efficiency of your LLC power stage: design, magnetics and component selection. Ramkumar S

HCD80R600R 800V N-Channel Super Junction MOSFET

SIMULATION WITH THE CUK TOPOLOGY ECE562: Power Electronics I COLORADO STATE UNIVERSITY. Modified in Fall 2011

HCS70R1K6 700V N-Channel Super Junction MOSFET

A8133 HIGH EFFICIENCY, HIGH POWER WHITE LED DRIVER 1MHz FREQUENCY, INTERNAL 2A MOSFET SWITCH

18 N Amps, 500 Volts N-CHANNEL MOSFET. Power MOSFET DESCRIPTION FEATURES SYMBOL

SUN MHz, 800mA Synchronous Step-Down Converter GENERAL DESCRIPTION EVALUATION BOARD APPLICATIONS. Typical Application

LX12973 V 800mV, 1.5A, 1.1MHZ PWM

SGM6132 3A, 28.5V, 1.4MHz Step-Down Converter

AND8291/D. >85% Efficient 12 to 5 VDC Buck Converter

AIC mA, 1.2MHz Synchronous Step-Up Converter

SGM6232 2A, 38V, 1.4MHz Step-Down Converter

Background (What Do Line and Load Transients Tell Us about a Power Supply?)

GaN is Crushing Silicon. EPC - The Leader in GaN Technology IEEE PELS

EEL 646 POWER ELECTRONICS II. Issa Batarseh. January 13, 2015

Announcements. Outline. Power Electronics Circuits. malfunctioning, for report. Experiment 1 Report Due Tuesday

Dual Channel, 1.5MHz 800mA, Synchronous Step-Down Regulator. Features. Applications

HCS80R1K4E 800V N-Channel Super Junction MOSFET

HCD80R650E 800V N-Channel Super Junction MOSFET

WLED Backlighting Solution for Medium LCD Panel Designed with AP3608E+AP3039

Chapter 2 Buck PWM DC DC Converter

Portable Media Players GPS Receivers Hard Disk Drives

MP3115 High-Efficiency, Single-Cell Alkaline, 1.3MHz Synchronous Step-up Converter with Output Disconnect

7.2 SEPIC Buck-Boost Converters

DIO6010 High-Efficiency 1.5MHz, 1A Continuous, 1.5A Peak Output Synchronous Step Down Converter

EUP kHz/1.25MHz Step-up DC/DC Converter

Power of GaN. Enabling designers to create smaller, more efficient and higher-performing AC/DC power supplies

Deliverable Final Management Report

HCS80R380R 800V N-Channel Super Junction MOSFET

AIC2858 F. 3A 23V Synchronous Step-Down Converter

Power Electronics Circuits. Prof. Daniel Costinett. ECE 482 Lecture 3 January 26, 2017

VRPower Integrated Power Stage Solution

T C =25 unless otherwise specified. Symbol Parameter Value Units V DSS Drain-Source Voltage 40 V

Positive to Negative Buck-Boost Converter Using LM267X SIMPLE SWITCHER Regulators

Ferrochip Design Studio: A New Design Tool for Integrated Magnetics

PAM W High Power White LED Driver. Features. General Description. Applications. Typical Application. Block Diagram GND

Drive and Layout Requirements for Fast Switching High Voltage MOSFETs

WD3119 WD3119. High Efficiency, 40V Step-Up White LED Driver. Descriptions. Features. Applications. Order information 3119 FCYW 3119 YYWW

Constant Current Switching Regulator for White LED

1.5MHz, 3A Synchronous Step-Down Regulator

MP A, 30V, 420kHz Step-Down Converter

Power MOSFET, 72 A FEATURES DESCRIPTION

Application Notes: AN_SY8208A

MP A,1MHz, Synchronous, Step-up Converter with Output Disconnect

Design and implementation of a LLC-ZCS Converter for Hybrid/Electric Vehicles

Transcription:

CAD Tool for the optimization of Power Converters on Chip Jesús A. Oliver, Pedro Alou and José A. Cobos Universidad Politécnica de Madrid

2 The need of an integrated multi-domain tool μc 3.4mm 16V-6V CHVin PMIC HV DC-DC 130nm BCD-CMOS L1 CHVout IFAT Automotive Specifications (ISO pulses, temperature, 101V VINT= 5V-3.3V CLVin System IC LV DC-DC SC DC-DC Dummy Load 1 HF DC-DC Load 2 L2 CLVout Vcore=1.2V C3out Vdd2=1.2V IFAT 40nm Flash CMOS Ampere 40nm Flash CMOS C IN Cout SC 2.6mm x 0.4mm 260nF S 1 Cin LV+SC+LDO 665nF 1.4mm x 1.9mm Chip: 1.8mm x 1.39mm Cf Cf flying cap Cf: 30nF PCMC REGULATION S 2 Cf Cf Cf Cf Cf Cf L Lout LV 400nF 1.6mm x 1.6mm Cout LV 400nF 1.6mm x 1mm i L COUT + v OUT - 2.6mm 40V 4V/ms 14V 6ms 400 ms 2

3 State of the art CAD Tools Circuit Level Simulators Magnetic Component Optimization Tools PEXprt-Pemag developed by UPM Lack of integrated design environment for Power Systems on Chip Finite Element Analysis Tools General Purpose Math Tools 3

System Level Analysis and Optimization Tool Total Area Static Spec Dynamic Spec 5 V 1.2V I o Capacitors 280mA v o Δv o Topology Regulator Constraints Inductor Optional V RAMP + V REF + - H V (s) - v OUT Rippled signal + Power Stage Semiconductors v OUT Operating Mode Continuous Conduction Mode Converter efficiency (%) Frequency Sweep of the solutions 100 95 90 85 80 75 ηrm-il ηim-rl ηrm-cul ηrm-rl 70 2 4 6 8 10 12 14 16 18 20 PWRSoC fsw (MHz) 2016 Madrid Analysis of the system i L v OUT i L v OUT i L Discontinuous Conduction Mode BURST Mode 4

Built-in Simulator Steady-state and transient waveforms Optimal Control Design System level performance Open loop vs closed loop Zout Time domain waveforms Loop Gain 5

Turn-Off Transient Energy of PMOS Example: HI-Side (LV-DC-DC) PMOS Switching Losses 1.2 E DRIVER E TurnON E TurnOFF 2 1 E turnoff [nj] 1.5 1 0.5 0 30 25 20 15 10 w [mm] f SW = 10 MHz 5 0 200 400 I DS [ma] 600 800 E LOSSES [nj] 0.8 0.6 0.4 0.2 0.62 nj 0.78 nj 0.16 nj 0 I 0 I 1-0.2 0 100 200 300 400 500 600 700 800 I DS [ma] 700 I 1 600 500 P TurnOFF P TurnON P Driver = 7.86 mw = 1.6 mw = 6.25 mw i PMOS [ma] 400 300 200 100 I 0 I PMOSrms = 186.2 ma R PMOSon P COND = 410 mω = 14.2 mw 0-100 0 0.2 0.4 0.6 0.8 1 t/t SW 6

7 LV DC-DC Optimization Results Geometry Parameters Name Value Total area A T 3.2 mm 2 Number of turns N 4 Core thickness T core 5.15 μm Core width W core 292.79 μm Core height H core 75.3 μm Core length L core 2993.84 μm Copper width W cu 45.62 μm Copper thickness T cu 35 µm Vertical spacing H air 15 µm Horizontal spacing W air 20 µm Distance between cores D core 0.35 mm Electrical Parameters Value L (analytical) 270 nh L (FEA tool) 268 nh Cap ESR area C IN 300 nf 17.5 mω 1.5 mm 2 C OUT 200 nf 11.7 mω 1 mm 2 R ON R ON Width Length (V GS =5V) (V GS =3.3V) PMOS 12 mm 650 nm 406.7 mω 530.9 mω 80 ma NMOS 12.08 mm 560 nm 114.5 mω 142.4 mω 80 ma 7 I Drive

8 LV DC-DC Optimization Results IN S 1 PCMC S 2 L REGULATION i L C OUT + v OUT - V IN 3.3 V 5 V f SW 11.86 MHz 11.75 MHz I OUT = 280 ma Efficiency 78.71% 75.53 % P Total 90.88 mw 108.88 mw I OUT = 500 ma Efficiency 73.75% 73.59% P Total 213.56 mw 215.29 mw 140 120 100 Losses Breakdown Total P TOTAL [mw] P MOSFET s [mw] P C [mw] P L [mw] 80 Inductor loss 60 40 CMOS loss 20 0 2 4 6 8 10 12 14 16 18 20 f PWRSoC 2016 SW [MHz] Madrid 8

Evaluation of the Impact of technology 100 Efficiency of the system FOM = R Q DSON G 95 2x actual Si 90 Actual Si 2% η [%] 85 80 Actual L 75 70 2 4 6 8 10 12 14 16 18 20 f SW [MHz] Improvement of Si technology has stronger influence at high f sw A technology two times better, provides 2 % improvement in the efficiency (@ f sw >12MHz) η (tech, 12MHz) = 89% η (2xtech, 12MHz) = 91% 40% switching losses and 60% conduction losses 9

10 Efficiency: 77.21% Lout 1% < 1% 20% 27% PMOS System Level Optimization electrical performance 2% Losses breakdown 6% NMOS 3% 3% 9% 4% 1% < 1% 5% 500 400 300 200 100 18% Lout hf: (1.67 %) Lout dc: (20.38 %) Lout PAR (1.47 %) Cout ESR (0.03 %) Cout PAR (0.05 %) Cin ESR (0.15 %) Cin PAR (0.30 %) PMOS conduction (26.73 %) PMOS turn-on (3.16 %) PMOS turn-off (8.69 %) PMOS gate-drive (4.60 %) NMOS conduction (18.23 %) NMOS turn-off (0.00 %) NMOS reverse-recovery (1.43 %) NMOS gate-drive (4.17 %) dead-time:pmos2nmos (6.29 %) dead-time:nmos2pmos (2.65 %) 0.85 0.80 0.75 0.70 0.65 CCM DCM Burst Dynamic behavior CCM 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Efficiency vs load CCM DCM Burst 50 100 150 200 250 300 350 400 450 500 I OUT [ma] i L [ma] i REF [ma] i REF -ramp [ma] 1350 1300 v OUT [mv] 1250 1200 1150 1100 1050 0 200 400 600 800 1000 1200 1400 1600 1800 2000 t [ns] 10

FEA Modeling/Validation of Coupled Inductors PARAMETERS Option A: Maxwell 3D simulations Geometry Parameters Name Value Total area A T xx mm 2 Number of turns N 4 Core thickness T core 6 µm Core width (Inductor) W corei 157 µm Core width (Transformer) W corei 187 µm Core height H core 127 µm Core length L core 1.00 mm Copper width W cu 50 µm Copper thickness T cu 35 µm Vertical spacing H air 15 µm Horizontal spacing W air 15 µm Distance between cores D core 264 µm Material parameters Value Resistivity core 45 μω*cm Relative Permeability core 280 Resistivity copper 1.71 μω*cm L Analytical (simple) L Analytical L M = 21.14 nh(complex) L K = 31.34 nhl M = 21.82 nh L K = 41.03 L FEA L M = 22.18 nh L K = 43.47 nh 11

PowerSWIPE ITVs L (nh) 200 MHz Single Inductor (33nH) Core Thickness Simulation Results Core Length Copper width Copper Thickness DCR (Ohm) Device Footprint ITV 2A 33 1.2 µm 1.22 mm 72.2 μm 35 μm 0.084 2 mm 2 87,4% 33nH 95,5 % 200 MHz Total converter efficiency 83% 12

100 MHz Coupled Inductors (47nH) Simulation Results PowerSWIPE ITVs ITV 2B L (nh) 47 Coupled (k=0.4) Core Thickness Core Length Copper width Copper Thickness DCR (Ohm) Device Footprint 1.6 µm 1.78 mm 50.62 15 μm 0.3425 2 mm 2 90.25% 90,4% Total converter efficiency 81% 13

PowerSWIPE ITVs ITV 2C L (nh) 35 nh Coupled k=0.8 100 MHz Coupled Inductors (35nH) + Single Inductor (20nH) Core Thickness Simulation Results Core Length Copper width Copper Thickness DCR (Ohm) Device Footprint 1.6 µm 1.83 mm 75.71 μm 15 μm 0.155 2 mm 2 20 nh 1.6 µm 0.78 mm 97 μm 35 μm 0.053 2 mm 2 85.6% 90.25% 94.8% 90,4% Total converter efficiency 77% 14

Coupled Inductor Comparison Comparison single-phase and two-phase dc/dc converter Inductor design Freq. (MHz) L (nh) Coupling factor Efficiency (magnetics) Efficiency (IC) Total efficiency ITV2a Single phase 200 33 -- 95,5 % 87,4% 83% ITV2b Coupled 100 45 ~0.4 90% 90,4% 81% ITV2c Coupled +Lout 100 35+21 >0.8 85.6% (90.25% 94.8%) 90,4% 77% 15

16 Conclusions 1 st Integrated multi-domain optimization tool for PwrSoC Physical Design Topologies and Control Minimim LC requirements Technologies E turnoff [nj] Turn-Off Transient Energy of PMOS 2 1.5 1 0.5 0 30 25 800 20 15 600 10 400 5 200 0 w [mm] I DS [ma] Accurate Models 16

17 17