Newsletter 3.1. Antenna Magus version 3.1 released! New antennas in the database. Square pin-fed septum horn. July 2011

Similar documents
Newsletter 2.0. Antenna Magus version 2.0 released! New Array synthesis tool. April 2010

Newsletter 4.4. Antenna Magus version 4.4 released! Array synthesis reflective ground plane addition. July 2013

Newsletter 2.3. Antenna Magus version 2.3 released! New antennas in Version 2.3. Potter horn. Circularly polarised rectangular-biquad antenna

Newsletter 5.4. New Antennas. The profiled horns. Antenna Magus Version 5.4 released! May 2015

Resonant Antennas: Wires and Patches

Introducing Antenna Magus. Presenter Location Date

BROADBAND SERIES-FED DIPOLE PAIR ANTENNA WITH PARASITIC STRIP PAIR DIRECTOR

Compact Microstrip Magnetic Yagi Antenna and Array with Vertical Polarization Based on Substrate Integrated Waveguide

EMG4066:Antennas and Propagation Exp 1:ANTENNAS MMU:FOE. To study the radiation pattern characteristics of various types of antennas.

Design and Development of a 2 1 Array of Slotted Microstrip Line Fed Shorted Patch Antenna for DCS Mobile Communication System

PLANAR BEAM-FORMING ARRAY FOR BROADBAND COMMUNICATION IN THE 60 GHZ BAND

Design of a Wideband Planar Microstrip-Fed Quasi-Yagi Antenna

Radiation Analysis of Phased Antenna Arrays with Differentially Feeding Networks towards Better Directivity

UNIVERSITI MALAYSIA PERLIS

Design and analysis of antennas for an Automotive Collision Avoidance System using Antenna Magus and CST Microwave Studio

CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION

A Wideband Dual-polarized Modified Bowtie Antenna for 2G/3G/LTE Base-station Applications

ANALYSIS OF ELECTRICALLY SMALL SIZE CONICAL ANTENNAS. Y. K. Yu and J. Li Temasek Laboratories National University of Singapore Singapore

Antenna Design: Simulation and Methods

Chapter 6 Broadband Antenna. 1. Loops antenna 2. Heliksantenna 3. Yagi uda antenna

CIRCULARLY POLARIZED SLOTTED APERTURE ANTENNA WITH COPLANAR WAVEGUIDE FED FOR BROADBAND APPLICATIONS

Novel Design of Microstrip Patch Antenna based on Two-Shape Structure. Halgurd Awl 1, Rashad Mahmud 2&3. doi: /icasee2018.

Wideband Horn Antennas. John Kot, Christophe Granet BAE Systems Australia Ltd

Half-Wave Dipole. Radiation Resistance. Antenna Efficiency

An Introduction to Antennas

Chapter 2. Modified Rectangular Patch Antenna with Truncated Corners. 2.1 Introduction of rectangular microstrip antenna

Design and Simulation of Compact UWB Bow-tie Antenna with Reduced End-fire Reflections for GPR Applications

RADIATION PATTERNS. The half-power (-3 db) beamwidth is a measure of the directivity of the antenna.

THROUGHOUT the last several years, many contributions

Low-Profile Wideband Circularly Polarized Patch Antenna Using Asymmetric Feeding

Antenna Theory and Design

Broadband Circular Polarized Antenna Loaded with AMC Structure

TRANSMITTING ANTENNA WITH DUAL CIRCULAR POLARISATION FOR INDOOR ANTENNA MEASUREMENT RANGE

Antennas Prof. Girish Kumar Department of Electrical Engineering Indian Institute of Technology, Bombay. Module 2 Lecture - 10 Dipole Antennas-III

EC ANTENNA AND WAVE PROPAGATION

Design of center-fed printed planar slot arrays

Compact Triple-Band Monopole Antenna with Inverted-L Slots and SRR for WLAN/WiMAX Applications

Practical Antennas and. Tuesday, March 4, 14

Broadband Antenna. Broadband Antenna. Chapter 4

ANTENNA THEORY. Analysis and Design. CONSTANTINE A. BALANIS Arizona State University. JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore

Proximity fed gap-coupled half E-shaped microstrip antenna array

STUDY ON THE PLANAR CIRCULARLY POLARIZED ANTENNAS WITH SWASTIKA SLOT

Series Micro Strip Patch Antenna Array For Wireless Communication

You will need the following pieces of equipment to complete this experiment: Wilkinson power divider (3-port board with oval-shaped trace on it)

A Broadband Omnidirectional Antenna Array for Base Station

Design and Development of Tapered Slot Vivaldi Antenna for Ultra Wideband Applications

DESIGNING A PATCH ANTENNA FOR DOPPLER SYSTEMS

Planar Radiators 1.1 INTRODUCTION

New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications

Research Article Cross-Slot Antenna with U-Shaped Tuning Stub for Ultra-Wideband Applications

CHAPTER 8 ANTENNAS 1

Rectangular Patch Antenna to Operate in Flame Retardant 4 Using Coaxial Feeding Technique

The Basics of Patch Antennas, Updated

1. Explain the basic geometry and elements of Yagi-Uda antenna.

A Compact Wideband Slot Antenna for Universal UHF RFID Reader

Circularly Polarized Square Patch Microstrip Antenna with Y- Shaped Slot for Wi-Max Application

Chapter 7 Design of the UWB Fractal Antenna

Micro-strip line feed I shaped slot Antenna with finite slotted ground plane for Return Loss enhancement

An Annular-Ring Microstrip Patch Antenna for Multiband Applications

DESIGN AND TESTING OF HIGH-PERFORMANCE ANTENNA ARRAY WITH A NOVEL FEED NETWORK

R. Zhang, G. Fu, Z.-Y. Zhang, and Q.-X. Wang Key Laboratory of Antennas and Microwave Technology Xidian University, Xi an, Shaanxi , China

A Broadband Planar Quasi-Yagi Antenna with a Modified Bow-Tie Driver for Multi-Band 3G/4G Applications

Antennas and Propagation. Chapter 4: Antenna Types

Broadband Dual Polarized Space-Fed Antenna Arrays with High Isolation

BHARATHIDASAN ENGINEERING COLLEGE NATTARAMPALLI Frequently Asked Questions (FAQ) Unit 1

Design & Simulation of Circular Patch Antennafor Multiband application of X Band UsingVaractor Diodes

HHTEHHH THEORY ANALYSIS AND DESIGN. CONSTANTINE A. BALANIS Arizona State University

Wideband Bow-Tie Slot Antennas with Tapered Tuning Stubs

High Gain and Wideband Stacked Patch Antenna for S-Band Applications

DESIGN OF WIDEBAND TRIANGLE SLOT ANTENNAS WITH TUNING STUB

6464(Print), ISSN (Online) ENGINEERING Volume & 3, Issue TECHNOLOGY 3, October- December (IJECET) (2012), IAEME

COMPACT FRACTAL MONOPOLE ANTENNA WITH DEFECTED GROUND STRUCTURE FOR WIDE BAND APPLICATIONS

COMPACT TRIPLE-BAND MONOPOLE ANTENNA WITH C-SHAPED AND S-SHAPED MEANDER STRIPS FOR WLAN/WIMAX APPLICATIONS

HYBRID ARRAY ANTENNA FOR BROADBAND MILLIMETER-WAVE APPLICATIONS

NOVEL DESIGN BROADBAND CPW-FED MONOPOLE ANTENNA WITH TRAPEZIUM SHAPED-STUB FOR COMMUNICATION SYSTEM

A CPW-fed Microstrip Fork-shaped Antenna with Dual-band Circular Polarization

DESIGN AND IMPLEMENTATION OF RECONFIGURABLE PATCH ANTENNAS FOR WIRELESS COMMUNICATIONS

High gain W-shaped microstrip patch antenna

CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA

Broadband and High Efficiency Single-Layer Reflectarray Using Circular Ring Attached Two Sets of Phase-Delay Lines

Microstrip and Printed. Antenna Design. Second Edition. Randy Bancroft. PUBLISHlNeCl SHXNeriNC.

Microstrip Antennas Integrated with Horn Antennas

Design of Microstrip Array Antenna for WiMAX and Ultra-Wideband Applications

A New Fractal Based PIFA Antenna Design for MIMO Dual Band WLAN Applications

Monopole Antennas. Prof. Girish Kumar Electrical Engineering Department, IIT Bombay. (022)

DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS

Design of Substrate-Integrated Waveguide Slot Antenna with AZIM Coating

Designing of Rectangular Microstrip Patch Antenna for C-Band Application

RECTANGULAR SLOT ANTENNA WITH PATCH STUB FOR ULTRA WIDEBAND APPLICATIONS AND PHASED ARRAY SYSTEMS

A Fan-Shaped Circularly Polarized Patch Antenna for UMTS Band

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

Ultrawideband Elliptical Microstrip Antenna Using Different Taper Lines for Feeding

WIDE BEAMWIDTH QUADIFILAR HELIX ANTENNA WITH CROSS DIPOLES

A BROADBAND BICONICAL ANTENNA FOR WIDE ANGLE RECEPTION

Antenna Theory and Design

Design of a Novel Compact Cup Feed for Parabolic Reflector Antennas

Department of Technology and Built Environment

Department of Electrical Engineering University of North Texas

"(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/

Improvement of Antenna Radiation Efficiency by the Suppression of Surface Waves

Transcription:

Newsletter 3.1 July 2011 Antenna Magus version 3.1 released! Antenna Magus 3.0 was such a feature laden release that not all of the new features could be mentioned in the newsletter, so we decided to rather announce them in this newsletter. Users who have upgraded to version 3.0 would have noticed these features in addition to the add your own antenna feature, chart tracing tool and additional libraries. The first of these features aids in the qualitative assessment of radiation patterns by showing 3D gain patterns as part of the performance estimation of most antennas. The second of these features is the addition of a collection of thumbnails at the top of each information document to provide an indication of the electrical size of the an- tenna, and its radiation pattern. Lastly, user interface improvements were made, primarily on the palette and in the array synthesis tool. These feature additions increase the ease of using Antenna Magus, but the unwavering development focus is to supply reliable antenna designs and models. The huge database of antennas is still the most valuable contribution of Antenna Magus and with the release of version 3.1 the database now boasts 6 new antennas and 2 transitions, expanding the total to 154 antennas and 9 transitions. New antennas in the database Square pin-fed septum horn Typical gain and S11 vs normalised frequency with a reference impedance of 100 Ω. The standard rectangular horn antenna is one of the simplest and probably the most widely used microwave antenna and its existence and early use dates back to the late 1800s. A simple and effective way of exciting high purity left- or right-hand circular polarisation using a single feed, is by the addition of a septum polariser into the square feed waveguide. The pin-fed square septum horn may be designed for an input impedance range from 50 to 150 Ω, while the gain can vary between approximately 10 and 24 dbi. The following graphs show typical S11, gain and radiation performance for a left-hand circular 14 dbi design. Total normalised left and right- hand circular gain patterns.

Printed Yagi-Uda Dipole Array with quarter-wave balun power applications where the option of manufacturing on copper clad substrate is attractive. A balun is needed to feed the driven element of a Yagi- Uda Antenna. This design already includes the design of an integrated quarter wave balun into the structure. This antenna is a printed version of the classical Yagi -Uda antenna. Compared to the Classical Yagi, the printed Yagi Uda antenna has similar performance with the advantage that no supporting booms are required. This antenna is particularly useful in low Although the antenna can be optimised for a variety of requirements such as gain, impedance or bandwidth there is a trade-off between the performance characteristics. Antenna Magus designs this antenna for optimal gain and the parametric simulation model can be exported and optimised for other objectives, using CST MICROWAVE STUDIO or FEKO. Resonant Rectangular Series-Fed Patch Series-fed patch arrays fall into one of two categories, namely resonant and travelling-wave arrays. The resonant rectangular patch array has better efficiency than the traveling-wave array. Series-fed microstrip patch arrays are typically used for communication and microwave sensing applications. This light weight, low profile antenna can achieve high gain of up to 20 dbi at a specified squint angle, but due to its resonant nature it typically has a narrow (~2%) bandwidth. Typical fan beam gain pattern for a 12 element array with a Dolph-Chebychev distribution. Grid corner reflector The grid corner reflector is mostly used for physically large antennas at lower frequencies, in order to reduce the weight and wind resistance of the structure. This antenna is a variation on the popular dipole-fed corner reflector antenna, but the solid reflector is replaced by a grid of parallel wires spaced ~1/10 lambda apart. Both of these antennas have similar peak gain characteristics with the main difference in the side and back lobes as illustrated in the next image. As the spacing between the grid elements increases, the gain and front-to-back ratio decreases as the effectiveness of the gridded reflector decreases. Comparative radiation patterns for grid and solid corner reflectors. 2

Wideband Monocone Antenna with shaped cap The Wideband Capped Monocone Antenna is a variation of the standard monocone where a cap-like structure has been placed on top of the conical base. This antenna provides ultra-wide impedance bandwidth and an omnidirectional radiation pattern. The feed is positioned between the truncated bottom cone section and the ground plane. Precise construction of the area near the feed is very important since this region determines the high frequency performance. Typical S11 vs frequency for finite and infinite ground planes. The plots shown compare the performance a 50 Ω design on a 1λ by 1λ rectangular ground plane (where λ is wavelength at fmin) with the same design on an infinite ground. Frequency is normalised to fmin - the low end performance cut-off frequency. The addition of the cap results in a more stable radiation pattern across the band when compared with the standard Monocone. The last image illustrates this showing total gain patterns at various frequencies. Typical 3D radiation patterns vs frequency. Dualband LPDA antenna dual-band LPDA has a single linearly polarized main lobe with gains ranging between 6 and 12 dbi. Out of band performance typically results in increased backlobe levels and sidelobe levels are generally more than 10 db down from the main lobe for a well-designed structure. The performance graphs shown below are for an LPDA designed to work in the normalised frequency range from 0.5 to 1.5 and then from 3.5 to 4.5. It is designed for a gain of 8 dbi and a resistance of 150 Ω. The single-band LPDA antenna is one of the most popular broadband antennas due to its simple, lightweight, construction and low-cost. The dual-band LPDA consists of two single-band LPDA antennas in a cascade arrangement facilitating dual-wide-band operation with a single feed. This configuration is specifically useful where the desired upper and lower operating bands are far apart, and the dualband configuration results in a structure that it physically shorter than a single band LPDA that covers both required bands. Within the bands of operation, the Typical radiation pattern at the two centre frequencies. (Continue on the next page.) 3

(Dualband LPDA continued) Typical gain pattern at lower centre frequency. Typical gain vs frequency. Typical gain pattern at upper centre frequency. Typical S11 vs frequency Transitions Microstrip shorted and open stub matching transitions and better match. The results shown below are for open-circuit shunt stub (1) and shorted shunt stub (2) transitions designed at 10 GHz on a 1 mm thick substrate with a relative permittivity of 2, and transform a 100 + j100 Ω impedance for connection to a 50 Ω system. Open- and shorted shunt- stub matching transitions are very useful when matching antennas with complex input impedances. By improving the impedance match between the antenna and the system, power transfer can be improved resulting in more efficient system performance and higher effective antenna gain. Antenna Magus offers two different design approaches for the transitions. The standard approach provides a physically longer transition than that of the more compact shortened design but the standard design has a wider operational bandwidth 1. Open shunt stub transition S11. 2.Shorted shunt stub transition S11. 4

3D radiation pattern added to Estimated Performance When running a performance estimation on any antenna, Antenna Magus 3 now also calculates and displays the full 3D radiation pattern of a design as shown in the screen capture of the estimated performance of the Septum horn. The pattern can be rotated interactively and exported as a *.ffe (FEKO farfield format), *.ffs (CST MICROWAVE STUDIO far-field format) or *.tsv (general tab-seperated values) files. These can then be imported and used outside of Antenna Magus, or applied as far field sources in FEKO and CST MICROWAVE STUDIO. Changes to the info documents With the increase in the number of antennas in the antenna magus database, it has become more important to be able to quickly find a selection of antennas which are feasible solutions for a design. To speed up this process, a row of three images has been placed at the top of each information document in the info browser (shown to the right). The first image is the thumbnail of the antenna, showing geometric complexity. The second is an indicator of electrical size. For many antennas, the electrical size depends on the design objectives, and a typical range is shown. This information can be used to very quickly determine whether or not an antenna will fit into the space requirements of the design. The last image is an indication of the expected radiation pattern. The indicator shows typical attributes, such as general shape of the pattern, planes of symmetry and changes in pattern over frequency. User interface reworked For the release of Antenna Magus 3.0, several smaller improvements were made to the user interface. Most notably, the array synthesis tool was modified by adding thumbnail-cards as shown in the above image. This helps the user to easily select the right array layout. Specific information as shown in the next image was added to aid the setup of an array layout. These improvements will help users to design and synthesise arrays more efficiently. More exciting antennas planned for future releases! 5