An Equivalent Circuit Model for On-chip Inductors with Gradual Changed Structure

Similar documents
Chapter 2. Inductor Design for RFIC Applications

On-Chip Passive Devices Embedded in Wafer-Level Package

SINCE ITS introduction, the integrated circuit (IC) has pervaded

Performance Enhancement For Spiral Indcutors, Design And Modeling

Characteristic Variation of 3-D Solenoid Embedded Inductors for Wireless Communication Systems

High Performance Silicon-Based Inductors for RF Integrated Passive Devices

Single-Objective Optimization Methodology for the Design of RF Integrated Inductors

Miniature 3-D Inductors in Standard CMOS Process

Extraction of Transmission Line Parameters and Effect of Conductive Substrates on their Characteristics

Improvement of the Quality Factor of RF Integrated Inductors by Layout Optimization

Simulation and design of an integrated planar inductor using fabrication technology

A BROADBAND QUADRATURE HYBRID USING IM- PROVED WIDEBAND SCHIFFMAN PHASE SHIFTER

Equivalent Circuit Model Overview of Chip Spiral Inductors

Efficient Electromagnetic Analysis of Spiral Inductor Patterned Ground Shields

Streamlined Design of SiGe Based Power Amplifiers

A COMPACT DUAL-BAND POWER DIVIDER USING PLANAR ARTIFICIAL TRANSMISSION LINES FOR GSM/DCS APPLICATIONS

Analysis of On-Chip Spiral Inductors Using the Distributed Capacitance Model

Kiat T. Ng, Behzad Rejaei, # Mehmet Soyuer and Joachim N. Burghartz

Optimization of Symmetric Spiral Inductors On Silicon Substrate

Design Strategy of On-Chip Inductors for Highly Integrated RF Systems

A Novel WL-Integrated Low-Insertion-Loss Filter with Suspended High-Q Spiral Inductor and Patterned Ground Shields

Good Performance RF-MEMS SP2T Switches in CPW Configuration for Space Applications

On-chip Spiral Inductor/transformer Design And Modeling For Rf Applications

RECENTLY, interest in on-chip spiral inductors has surged

Subminiature Multi-stage Band-Pass Filter Based on LTCC Technology Research

MICROSTRIP PHASE INVERTER USING INTERDIGI- TAL STRIP LINES AND DEFECTED GROUND

Inductor Modeling of Integrated Passive Device for RF Applications

Design and Analysis of Novel Compact Inductor Resonator Filter

A TUNABLE GHz BANDPASS FILTER BASED ON SINGLE MODE

Through-Silicon-Via Inductor: Is it Real or Just A Fantasy?

Wafer-scale 3D integration of silicon-on-insulator RF amplifiers

A Modified Gysel Power Divider With Arbitrary Power Dividing Ratio

OPTIMIZED FRACTAL INDUCTOR FOR RF APPLICATIONS

A CAD-Oriented Modeling Approach of Frequency-Dependent Behavior of Substrate Noise Coupling for Mixed-Signal IC Design

A 2 4 GHz Octave Bandwidth GaN HEMT Power Amplifier with High Efficiency

Electronic Science and Technology of China, Chengdu , China

Design of Efficient Filter on Liquid Crystal Polymer Substrate for 5 GHz Wireless LAN Applications

Broadband Substrate to Substrate Interconnection

Introduction: Planar Transmission Lines

DESIGN OF SEVERAL POWER DIVIDERS USING CPW- TO-MICROSTRIP TRANSITION

Synthesis of Optimal On-Chip Baluns

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

Wideband Bow-Tie Slot Antennas with Tapered Tuning Stubs

A NOVEL BIASED ANTI-PARALLEL SCHOTTKY DIODE STRUCTURE FOR SUBHARMONIC

Design of a Rectangular Spiral Antenna for Wi-Fi Application

DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR

REFERENCES. [1] P. J. van Wijnen, H. R. Claessen, and E. A. Wolsheimer, A new straightforward

Broadband transition between substrate integrated waveguide and rectangular waveguide based on ridged steps

Design of the New Wideband Circular Dipole Antenna Bin Lin 1, Xian Chen 1, a, Hongjian Lin 1, Jiawei Zheng 1, Zijian Chen 1, Zijian Lin 1

White Rose Research Online URL for this paper: Version: Accepted Version

A Compact Quad-Band Bandpass Filter Using Multi-Mode Stub-Loaded Resonator

MODELING AND LAYOUT OPTIMIZATION TECH- NIQUES FOR SILICON-BASED SYMMETRICAL SPIRAL INDUCTORS. Aries, Singapore Science Park II, , Singapore

Broadband Rectangular Waveguide to GCPW Transition

Compact Microstrip UWB Power Divider with Dual Notched Bands Using Dual-Mode Resonator

DC~18GHz Wideband SPDT Switch Chengpeng Liu 1, a, Zhihua Huang 1,b

DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS

Cell size and box size in Sonnet RFIC inductor analysis

An On-Chip Differential Inductor and Its Use to RF VCO for 2 GHz Applications

Bandpass-Response Power Divider with High Isolation

A New Model for Thermal Channel Noise of Deep-Submicron MOSFETS and its Application in RF-CMOS Design

2.2 INTERCONNECTS AND TRANSMISSION LINE MODELS

MP 4.3 Monolithic CMOS Distributed Amplifier and Oscillator

ON-CHIP TECHNOLOGY INDEPENDENT 3-D MOD- ELS FOR MILLIMETER-WAVE TRANSMISSION LINES WITH BEND AND GAP DISCONTINUITY

Compact Eight-Band Frequency Reconfigurable Antenna for LTE/WWAN Tablet Computer Applications

Accurate Simulation of RF Designs Requires Consistent Modeling Techniques

Hot Topics and Cool Ideas in Scaled CMOS Analog Design

QUADRI-FOLDED SUBSTRATE INTEGRATED WAVEG- UIDE CAVITY AND ITS MINIATURIZED BANDPASS FILTER APPLICATIONS

Broadband analog phase shifter based on multi-stage all-pass networks

ANALYSIS OF ELECTRICALLY SMALL SIZE CONICAL ANTENNAS. Y. K. Yu and J. Li Temasek Laboratories National University of Singapore Singapore

Metamaterial Inspired CPW Fed Compact Low-Pass Filter

Low-Profile Wideband Circularly Polarized Patch Antenna Using Asymmetric Feeding

DISTRIBUTED amplification is a popular technique for

Aspemyr, Lars; Jacobsson, Harald; Bao, Mingquan; Sjöland, Henrik; Ferndal, Mattias; Carchon, G

Physical Modeling of Spiral Inductors on Silicon

RCS Reduction of Patch Array Antenna by Complementary Split-Ring Resonators Structure

Measurement of Laddering Wave in Lossy Serpentine Delay Line

Compact Wideband Quadrature Hybrid based on Microstrip Technique

A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier

A Dual-Band Two Order Filtering Antenna

A Passive X-Band Double Balanced Mixer Utilizing Diode Connected SiGe HBTs

DESIGN OF COMPACT COUPLED LINE WIDE BAND POWER DIVIDER WITH OPEN STUB

DESIGN OF A NOVEL WIDEBAND LOOP ANTENNA WITH PARASITIC RESONATORS. Microwaves, Xidian University, Xi an, Shaanxi, China

Size Reduction of Octa-Band WWAN/LTE Antenna using Slotted Spirals with Non Uniform Width for Tablets

Gain Enhancement and Wideband RCS Reduction of a Microstrip Antenna Using Triple-Band Planar Electromagnetic Band-Gap Structure

DESIGN OF COMPACT MICROSTRIP LOW-PASS FIL- TER WITH ULTRA-WIDE STOPBAND USING SIRS

Broadband low cross-polarization patch antenna

A Broadband Rectifying Circuit with High Efficiency for Microwave Power Transmission

Analysis and design of lumped element Marchand baluns

NOVEL DESIGN OF DUAL-MODE DUAL-BAND BANDPASS FILTER WITH TRIANGULAR RESONATORS

Methodology for MMIC Layout Design

An Area efficient structure for a Dual band Wilkinson power divider with flexible frequency ratios

Fully-Integrated Low Phase Noise Bipolar Differential VCOs at 2.9 and 4.4 GHz

Efficient Electromagnetic Analysis of Spiral Inductor Patterned Ground Shields. James C. Rautio CEO, Founder Sonnet Software

Signal Integrity Design of TSV-Based 3D IC

Research on Broadband Microwave Temperature Compensation Attenuator

Transformation of Generalized Chebyshev Lowpass Filter Prototype to Suspended Stripline Structure Highpass Filter for Wideband Communication Systems

Design of a CMOS Distributed Power Amplifier with Gradual Changed Gain Cells

FDTD SPICE Analysis of High-Speed Cells in Silicon Integrated Circuits

Progress In Electromagnetics Research C, Vol. 32, 43 52, 2012

3 GHz Wide Frequency Model of Surface Mount Technology (SMT) Ferrite Bead for Power/Ground and I/O Line Noise Simulation of High-speed PCB

Transcription:

An Equivalent Circuit Model for On-chip Inductors with Gradual Changed Structure Xi Li 1, Zheng Ren 2, Yanling Shi 1 1 East China Normal University Shanghai 200241 People s Republic of China 2 Shanghai IC Research and Development Center Shanghai 201203 People s Republic of China {ximeir@hotmail.com, alancatrz@icrd.com.cn, ylshi@ee.ecnu.edu.cn} Journal of Digital Information Management ABSTRACT: Inductor with gradual changed metal width and space by good design can get better Q factor than the inductor with fixed metal width and space. In this paper, a simple wide-band inductor model is presented considering both the increase of resistance and the decrease of inductance due to the skin and proximity effects. This model has been verified with simulation and the experimental results of spiral inductors with various geometrical configurations on high-resistivity silicon substrate. Good agreements have been achieved under the selfresonance frequency, which indicates its accuracy. This model has also been proved to be suitable for both the conventional inductor with fixed structure and the inductor with gradual changed structure. Categories and Subject Descriptors: B.3.1 [Semiconductor Memories] General Terms: Semicondutors, Circuits, Sprial inductors Keywords: Inductor, Model, Gradually Changed Structure, Eequivalent Circuit Received: 2 November 2011, Revised 8 January 2012, Accepted 12 January 2012 1. Introduction With the rapid development of wireless technology, RF ICs have played a vital role in wireless circuits. On-chip spiral inductors are widely used in RF IC design as systemon-chip solution, such as filters, low-noise amplifiers, and voltage-controlled oscillators. To increase the Q factor, inductors with changed metal width or space structure have been presented [1, 2]. In [1], a single gradually changed structure with fixed space but gradually reduced metal width from outside to inside has been proposed. The Q factor of a 20-nH inductor with this structure is up to 60% better than the result of a single strip-width inductor at 3.5GHz. In [2], the sum of metal width and space of inductor s each coil is fixed while the ratio of the metal width to space is gradually reduced from outside to inside. With this design, the Q factor of a 7-nH inductor on highresistivity silicon is 23.5% higher than the conventional inductor with fixed metal width and space at 2.1GHz. All of these show that the gradually changed structure inductor is attracting for RF ICs. Various models of spiral inductors on silicon substrate have been reported in resent years [3-4]. The model in [3] can well modify the eddy-current loss in the silicon substrate, while the T-model in [4] has been proposed to accurately simulate the broadband characteristics of spiral inductors. As mentioned above, gradually changed inductors can gain good performance, but the models of these inductors have not been reported. Therefore, a lumped element model applied to gradually changed inductor is necessary. Comprehensively considering the achievements of skin and proximity effects and substrate coupling effect, a model of on-chip spiral inductor with gradually changed structure has been discussed. The model in this paper shows the performance of the inductor with gradually changed structure by taking ohmic losses and magnetic field distribution into account. The experimental results show that the model is both suitable for the fixed inductor and the gradually changed inductor. So it s very useful for the on-chip inductor simulation and optimization design. 2. Proposed Inductor Model In [2], the paper presents a novel gradually changed structure. The sum of the metal width and space is fixed Journal of Digital Information Management Volume 10 Number 2 April 2012 99

while the ratio of the metal width to space is gradually reduced from outside to inside. It is shown in Figure 1. n D out S wsi R DC and L DC are series resistance and inductance in low frequency. R HF and L HF are series resistance and inductance in high frequency. It means that the proposed model can represent the frequency characteristics of spiral inductors. The series resistance R s will increase and the series inductance L s will decrease with increasing frequency. Cs M2 D in M1 R1 Lo Ro L1 Cox 1 Rsub Cox 2 S i Wi Figure 1. Top View of a Spiral Inductor with Gradually Changed Structure Rsi l Csi 1 Csub Rsi 2 Cox 2 The Structure parameters of the inductor include number of turns (N), inner opening diameter (D in ), outer opening diameter (D out ), metal line width of the nth turn (W n ), conductor inter-turn space (S n ) and two metal layers (M1 and M2). According to skin and proximity effects, current does not flow uniformly in wiring and resistance increases with increasing frequency. Inductance decreases when the current flowing in wiring becomes less uniform with increasing frequency [5, 6]. So the addition of a combination of resistance Ro and inductor Lo in parallel has been added in the model to simulate the increase in resistance and the decrease in inductance due to the skin and proximity effects [7]. It has been reported that in order to represent the lateral substrate coupling, R sub are introduced in the inductor model [8]. A parallel combination of R sub is placed under the silicon dioxide layer, similar to the equivalent-circuit model for substrate coupling [9] and onchip interconnects [10]. Comprehensively covering the research achievements in inductor models such as the skin and proximity effect and substrate coupling effect, the model for gradually changed spiral inductor is presented in Figure 2. According to this model, the series resistance R s and the series inductance L s of equivalent circuit can be extracted as ω 2 2 (2) L R s + 0 2 (1) + ω 2 2 2 L s + 2 + ω 2 2 When ω 0. R DC, L DC + ; When ω. R HF +, L HF. Figure 2. Proposed equivalent circuit model of an inductor based on substrate coupling and skin and proximity effects Compared with fixed structure inductor with the same outer opening diameter and number of turns, gradually changed structure inductor has wider metal strip in outer turns. Ohmic losses are inversely proportional to the metal strip width and a wide metal strip width is expected to decrease the ohmic losses. So R s of gradually changed structure inductor is smaller than that of fixed structure inductor. In the other case, magnetically induced losses mainly influence the center of the inductor. Increasing the distance between inner turns can decrease magnetically induced losses. Due to using wider distance in the inner turns, L s of the gradually changed structure inductor is smaller than that of the fixed structure inductor. Hence, besides validating the model s availability, we also pay much attention on the validity of R s in inductors with different geometrical configuration. 3. Model validation and Discussion To verify the validity and accuracy of the model above, square spiral inductors with various geometrical configuration have been designed first by HFSS and then fabricated on high-resistivity silicon substrate ( ρ =10 3 Ω cm) in the following processes. Firstly, Ti/Au metals approximately 0.6µm are electroplated and patterned to form the underpass of the inductors. Secondly, a PECVD SiO 2 layer about 0.8µm is deposited for isolation. Subsequently, 1.5µm thick Ti/Au layer is evaporated and electroplated for patterning spiral coil of inductor. The physical dimensions of the inductors are summarized in Table 1. The parameters of the inductor include number of turns (N), outer opening diameter (D out ), metal width (W ), conductor inter-turn space (S ). Q1, Q4, Q7 are the conventional inductor with fixed metal width and space. 100 Journal of Digital Information Management Volume 10 Number 2 April 2012

Q2, Q5, Q8 are the inductors with fixed space and gradually reduced metal width from outside to inside, we call them single gradually changed inductors. And Q3, Q6, Q9 are gradually changed structure inductors with the sum of metal width and space of each coil fixed while the ratio of the metal width to space is gradually reduced from outside to inside. Measurements are carried out at frequencies ranging from 100MHz to 10GHz by E8363B network analyzer and Cascade on-wafer probe. Accurate measurements for the inductors alone can be obtained, by measuring S parameters of both the device under test (DUT), probe pads and ground planes (PAD), and subtracting the effects of PAD from DUT. After inductors have been measured, the equivalent circuit parameters for the proposed model can be extracted. Each parameter in equivalent circuit model should be extracted accurately by using gradient algorithm in ADS,. R si and C si in two branches should be in the same value. Considering the asymmetry of the two ports, C ox1 and C ox2 should be different. The Q factor, the equivalent series resistance R s and the equivalent series inductance L s are added to the aim function. For the spiral inductor always works under the self-resonance frequency, the equivalent circuit model should meet the practical requirement accurately under the self-resonance frequency. According to the data measured, all parameters in Figure 2 model have been extracted and shown in Table 2. It is shown that the model extracted parameters in Table 2 can be well fitted the inductor parameters and the changes of the extracted parameters are consistent with the change of geometrical configuration. Parts of validated results are listed below. Figure 3 shows the model validation results for Inductor Q7 and Q9. Figure 3a gives the Q factor comparison. As being seen, Q factor of the proposed model shows the good agreement with not only the conventional structure Q7 but also the gradually changed structure Q9. Q factor of Q9 is higher than that of Q7, which is also identical with the design. Figure 3b and 3c show the equivalent series resistance R s and series inductance L s curves for Q7 and Q9. In Figure 3b and 3c, R s of Q9 are smaller than the R s of Q7, which consists with the analysis above. Figure 4 shows the Q factor comparison of experimental results and model simulations for Inductor Q6 and Q9, Q6 with 3.5 turns and Q9 with 4.5 turns. It is found that the proposed model shows good agreement with the gradually changed structure of different numbers of turns. Sample D out (µm) N W+S (µm) W(µm) S(µm) Inductor Type Number Q1 3.5 30 15 15 conventional Q2 24.23.20.15 10 single gradually changed Q3 24,23,20,15 6,7,10,15 gradually changed Q4 3.5 40 20 20 conventional Q5 400 32.30.27.20 10 single gradually changed Q6 32.30.27.20 8.10.13.20 gradually changed Q7 4.5 30 15 15 conventional Q8 25.24.23.20.15 10 single gradually changed Q9 25.24.23.20.15 5.6.7.10.15 gradually changed Table 1. Various physical dimensions of the inductors (a) Q factor comparison (b) R s factor comparison Journal of Digital Information Management Volume 10 Number 2 April 2012 101

(c) L s factor comparison Figure 3. Comparison of experimental results and model simulations for Q7 and Q9 L 1 R 1 C ox1 C ox2 R si1 R si2 C si1 C si2 C s R sub C sub (nh) (nh) (Ω) (Ω) (ff) (ff) (Ω) (Ω) (ff) (ff) (ff) (Ω) (ff) Q1 5.83 0.28 5.11 4.27 126.5 128.3 887.1 887.1 183.1 183.1 30.1 753.9 9.77 Q2 5.44 0.23 4.51 3.67 151.4 153.5 864.4 864.4 191.2 191.2 37.2 717.7 15.6 Q3 4.93 0.16 3.71 3.07 134.7 136.9 877.6 877.6 188.6 188.6 35.6 733.9 12.7 Q4 6.13 0.26 5.41 4.17 148.5 149.8 874.3 874.3 173.2 173.2 36.1 736.8 20.8 Q5 5.92 0.23 4.81 3.86 152.8 153.4 854.1 854.1 183.1 183.1 41.6 706.3 30.4 Q6 5.58 0.16 4.38 2.86 142.5 143.8 861.2 861.2 191.0 191.0 53.1 726.4 25.7 Q7 4.43 0.23 4.11 3.86 138.6 139.7 897.8 897.8 173.1 173.1 32.1 683.5 35.7 Q8 4.53 0.18 4.05 3.57 155.8 155.8 879.3 879.3 181.5 181.5 38.4 668.9 41.3 Q9 3.93 0.16 3.15 2.56 136.5 137.1 885.1 885.1 158.2 158.2 36.5 679.2 37.7 Table 2. Model Parameters Extracted from Measurement Data Figure 4. Comparison of Q factor between experimental results and simulations of Q3 and Q9 4. Conclusion A simple wide-band inductor has been presented considering the skin, proximity effects and substrate coupling. A combination of resistance Ro and inductor Lo in parallel in the proposed model model the skin and 102 Journal of Digital Information Management Volume 10 Number 2 April 2012

proximity effects with increasing frequency. A parallel combination of R sub captures the substrate coupling. The experimental data indicates that the model can be used in both conventional and gradual changed inductor and the model extracted parameters are consistent with the physical effects in different geometrical configuration. These all show the model s value in inductor design. 5. Acknowledgment This work is supported by Natural Science Foundation of China (No. 60676047, 60606010), Foundation of Shanghai Science&Technology Committee (04QMX1419) and Shanghai-Applied Materials Research and Development Fund (No.0522). References [1] López, Villegas, J. M,Samitier, J., Cané, C. (2000). Improvement of the quality factor of RF integrated inductors by layout optimization. IEEE Transactions on Microwave Theory and Techniques, 48(1) 76 83. [2] Liu, J., Shi, Y. L., Wen, X. Z., Chen, D. W. (2008). Onchip spiral inductor with novel gradually changed structure. Microwave and Optical Technology Letters, 50(8) 2210-2213. [3] Melendy, D., Francis, P., Pichler, C., Hwang, K., Srinivasan, G., Weisshaar, A. (2002). A new wideband compact model for spiral inductors in RFICs. IEEE Electron Device Letter, 23 (5) 273 275. [4] Guo, J. C., Tan, T. Y. (2006). A broadband and scalable model for on-chip inductors incorporating substrate and conductor loss effects, IEEE Trans. Electron Devices, 53 (3) 413 421. [5] Kuhn, W. B., Ibrahim, N. M. (2001). Analysis of Current Crowding Effects in Multitrun Spiral Inductors. IEEE Transactions on Microwave Theory and Techniques, 49(1). [6] Ooi, B. L., Xu, D. X., Kooi, P. S., Lin, F. J. (2002). An Improved Prediction of Series Resistance in Spiral Inductor Modeling With Eddy-Current Effect. IEEE Transaction on Microwave Theory and Techniques, 50,2202-2206. [7] Watson, A.C., Melendy, D., Francis, P., Kyuwoon Hwang, Weisshaar, A. (2004). A comprehensive compactmodeling methodology for spiral inductors in silicon-based RFICs. IEEE Transactions on Microwave Theory and Techniques, 52 (3) 849 857. [8] Joonho Gil, Hyungcheol Shin, (2003). A Simple Wide- Band On-Chip Inductor Model for Silicon-Based RF ICs. IEEE Transaction on Microwave Theory and Techniques, 51, 2023 2028. [9] Jin, W., Eo, Y., Shim, J. I., Eisenstadt, W. R., Park, M. Y., Yu, H. K. (2001). Silicon substrate coupling noise modeling, analysis, and experimental verification for mixed signal integrated circuit design. IEEE MTT-S Int. Microwave Symp. Dig:1727 1730. [10] Zheng, J., Hahm, Y.-C., Tripathi, V. K., Weisshaar, A. (2000). CAD-oriented equivalent-circuit modeling of onchip interconnects on lossy silicon substrate. IEEE Trans. Microwave Theory Tech., 48, 1443 1451. Journal of Digital Information Management Volume 10 Number 2 April 2012 103