MIC Features. General Description. Applications. Ordering Information. 3A Fast-Response LDO Regulator for USB

Similar documents
MIC29510/ General Description. Features. Applications. Typical Application. 5A Fast-Response LDO Regulator

Features. Applications. Adjustable Regulator Application. (*See Minimum Load Current Section)

Features. Applications

MIC Features. General Description. Applications. Typical Application. 1.5A, Low-Voltage µcap LDO Regulator

MIC37150/51/52/53. General Description. Features. Applications. Typical Application. 1.5A, Low Voltage µcap LDO Regulator

Features MIC ERROR FLAG OUTPUT V IN 3.3V IN V OUT 2.5V 3.3V OUT GND

MIC3975. General Description. Features. Applications. Ordering Information. Typical Applications. 750mA µcap Low-Voltage Low-Dropout Regulator

MIC General Description. Features. Applications. Typical Application. 5A, Low V IN, Low V OUT µcap LDO Regulator

MIC29150/29300/29500/29750 Series

Features. 100k MIC39101 IN OUT GND. 2.5V/1A Regulator with Error Flag

Features. Applications V IN C IN

MIC37501/ General Description. Features. Applications. Typical Applications. 5A, Low Voltage μcap LDO Regulator

Description. Features. Application TYPICAL APPLICATION CIRCUITS

Features. Applications

MIC69101/103. General Description. Features. Applications. Typical Application. Single Supply V IN, LOW V IN, LOW V OUT, 1A LDO

MIC General Description. Features. Applications. Typical Application. 1.5A Low Voltage LDO Regulator w/dual Input Voltages

MIC37100/37101/ General Description. Features. Applications. Typical Applications. 1A Low-Voltage µcap LDO Regulator

MIC General Description. Features. Applications. Typical Application. 3A Low Voltage LDO Regulator with Dual Input Voltages

MIC5216. General Description. Features. Applications. Typical Application. 500mA-Peak Output LDO Regulator

Features. Applications. Figure 1. Typical Application Circuit

MIC69151/153. General Description. Features. Applications. Typical Application. Single Supply V IN, Low V IN, Low V OUT, 1.5A LDO

TS39300/1/2/3 3A Ultra Low Dropout Voltage Regulator with Multi-Function

1A Low-Voltage Low-Dropout Regulator

Features. Applications. V OUT Enable Shutdown

TS A Ultra Low Dropout Voltage Regulator with Multi-Function

MIC5248. Features. General Description. Applications. Typical Application. 150mA µcap CMOS LDO Regulator w/power Good VIN VOUT C OUT GND

1A Ultra Low Dropout Voltage Regulator with Multi-Functions

MIC5206. General Description. Features. Applications. Typical Application. 150mA Low-Noise LDO Regulator

Features. Applications

Features MIC5236 GND. Regulator with Adjustable Output

MIC General Description. Features. Applications: Typical Application. 1A High Speed Low VIN LDO

MIC5238. General Description. Features. Applications. Typical Application. Ultra-Low Quiescent Current, 150mA µcap LDO Regulator

MIC5225. General Description. Features. Applications. Typical Application. Ultra-Low Quiescent Current 150mA µcap Low Dropout Regulator

MIC5385. Features. General Description. Applications. Typical Application. Ultra Small Triple 150mA Output LDO

FEATURES APPLICATION DESCRIPSION. Absolute Maximum Ratings

Features. Applications V IN ENABLE SHUTDOWN. C IN = 1.0µF

MIC5271. Applications. Low. output current). Zero-current off mode. and reduce power. GaAsFET bias Portable cameras. le enable pin, allowing the user

GM6615X Series V2.04. Features. Description. Application. Typical Application Circuits 1.5A ULTRA LOW DROPOUT VOLTAGE REGULATORS 2016/3/29

Features. Applications

MIC5524. Features. General Description. Applications. Typical Application. High-Performance 500mA LDO in Thin DFN Package

MIC5396/7/8/9. General Description. Features. Applications. Typical Application. Low-Power Dual 300mA LDO in 1.2mm x 1.

MIC5387. Features. General Description. Applications. Typical Application. Ultra-Small Triple 150mA Output LDO

Features. MIC5253-x.xBC5 V IN. Ultra-Low-Noise Regulator Application

500mA Ultra Low Dropout Voltage Regulator With Inhibit Function

MIC5333. General Description. Features. Applications. Typical Application. Micro-Power High Performance Dual 300mA ULDO with Dual POR

MIC5316. General Description. Features. Applications. Typical Application. Low Voltage Dual 300mA LDO with Power on Reset and Voltage Select

MIC5309. Features. General Description. Applications. Typical Application. Low V IN /V OUT 300mA High PSRR ULDO with Ultra-Low IQ

Features. Applications. V OUT

MIC5331. General Description. Features. Applications. Typical Application. Micro-Power High Performance Dual 300mA ULDO

MIC5317. Features. General Description. Applications. Typical Application. High-Performance Single 150mA LDO

MIC37110/MIC37112 MIC37120/MIC37122

MIC5207. General Description. Features. Applications. Typical Application. 180mA Low-Noise LDO Regulator

Features. MIC5301-x.xYMT EN BYP GND. Portable Application

Features. Enable Shutdown 2. LAx. Regulator Circuit

MIC5332. Features. General Description. Applications. Typical Application. Micro-Power, High-Performance Dual 300mA ULDO

MIC5235. General Description. Features. Applications. Typical Application. Ultra-Low Quiescent Current, 150mA µcap LDO Regulator

MIC5380/1. General Description. Features. Applications. Typical Application. High Performance Dual 150mA LDO 1mm x 1mm Thin MLF

MIC5018. General Description. Features. Applications. Typical Applications. IttyBitty High-Side MOSFET Driver

MIC2215. Features. General Description. Applications. Typical Application. Triple High PSRR, Low Noise µcap LDO

MIC5365/6. General Description. Features. Applications. Typical Application. High-Performance Single 150mA LDO

Features. Applications

MIC5375/6/7/8. General Description. Features. Applications. Typical Application. High Performance Low Dropout 150mA LDO

MIC5501/2/3/4. General Description. Features. Applications. Typical Application. Single 300mA LDO in 1.0mm 1.0mm DFN Package

Features. MIC5318-x.xYMT EN BYP GND. Portable Application

MIC5388/9. Features. General Description. Applications. Typical Application. Dual 200mA Peak LDO in Wafer Level Chip Scale Package

MIC4575. Features. General Description. Applications. Typical Application. 200kHz Simple 1A Buck Regulator

Features. Applications

Features. Applications

MIC Features. General Description. Applications. Typical Application. Dual High Side Power Switches

TS A Ultra Low Dropout Voltage Regulator

MIC5202. Dual 100mA Low-Dropout Voltage Regulator. Features. General Description. Pin Configuration. Ordering Information. Typical Application

1A Ultra Low Dropout Voltage Regulator

Features. Applications. Battery-Powered Regulator Application

Features V OUT C BYP. Ultra-Low-Noise Regulator Application

MIC5370/1. Features. General Description. Applications. Typical Application. High-Performance Dual 150mA LDO 1.6mm x 1.

MIC2296. General Description. Features. Applications. High Power Density 1.2A Boost Regulator

Features MIC BN FB. Fixed Regulator

LM2935 Low Dropout Dual Regulator

1A Low-Voltage Low-Dropout Regulator

MIC94040/1/2/3. Features. General Description. Applications. Typical Application. 28mΩ R DSON 3A High Side Load Switch in 1.2mm x 1.

MIC94161/2/3/4/5. Features. General Description. Applications. Typical Application. 3A High-Side Load Switch with Reverse Blocking

Features. Memory power OUT GND. Lithium Coin Cell

Features. Applications

Features. 7V 40V Unregulated DC Input 1 +V IN + C IN

Features OUT 34 VDD OUTPUT BUFFERS 35 LATCHES 35-BIT SHIFT REGISTER. Note 1: Pin 23 is Data Enable in MM5450 Pin 23 is Output 35 in MM5451

MIC94090/1/2/3/4/5. Features. General Description. Applications. Typical Application. High Side Load Switches for Consumer Applications

Features MIC WT FB GND. Fixed Regulator MIC4576WT FB GND. Adjustable Regulator

Features. Applications. RF Power Supply Circuit

Features. Applications

Features. Applications

MIC2290. General Description. Features. Applications. Typical Application. 2mm 2mm PWM Boost Regulator with Internal Schotty Diode

Features. Applications. RF Transceiver

MIC5374/84. Features. General Description. Applications. Typical Application. Triple 200mA µcap LDO and 1mA RTC LDO in 2.5mm x 2.

EUP A Ultra Low-Dropout Linear Regulator DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

Features. Applications

MIC5373/83. Features. General Description. Applications. Typical Application. Triple 200mA µcap LDO in 2.5mm x 2.5mm Thin MLF

Features. *Siliconix. Load voltage limited only by MOSFET drain-to-source rating +12V MIC4416 CTL GND. Low-Side Power Switch

RT9728A. 120mΩ, 1.3A Power Switch with Programmable Current Limit. General Description. Features. Applications. Pin Configurations

RT9728C. 120mΩ, 1.3A Power Switch with Programmable Current Limit. General Description. Features. Applications. Pin Configurations

Features. MIC2212-xxBML VOUT2 POR CBYP SET GND. MIC2212 Typical Cell Phone Application

Transcription:

3A Fast-Response LDO Regulator for USB General Description The is a 3A, fast response, low-dropout (LDO) voltage regulator. Using Micrel s proprietary Super βeta PNP process, the offers exceptional dropout (600mV at 3A) and low ground current (60mA at 3A). Fast transient response allows it to recover quickly from large load changes while maintaining a steady output. The device can be sent into a zero-current off mode when the TTL compatible enable is brought low. Designed specifically for Universal Serial Bus (USB) applications, the works with USB power switches to provide an economical solution for selfpowered hubs. The 5.1V output voltage is optimized to work with lower-cost high on-resistance USB power switches (300mΩ) to provide a minimum of 4.75V at 500mA to downstream ports. Used with MIC2527 quad USB power switches, the can power up to 6 downstream ports. Features of the include thermal shutdown, current limit, reversed-battery and reversed-lead insertion protection. An overvoltage clamp is available to maintain a safe output when the input voltage exceeds 8V. An error flag is also available to indicate of the output falls out of regulation, or when an overcurrent condition occurs. The is available in a 5-pin TO-220 or TO-263 package with a fixed 5.1V output voltage. For other high current, low-dropout voltage regulators, please see the MIC29150/300/500/750 and the MIC29310, MIC29510, MIC29710. Data sheets and support documentation can be found on Micrel s web site at: www.micrel.com. Features Fast transient response 3A output current over full temperature range 600mV dropout voltage at full load Low ground current 3% total accuracy Zero off-mode current Thermal Shutdown Current Limiting Reversed battery protection Fixed 5.1V Output Applications Self-powered USB hubs USB power switching High-efficiency linear power supplies High-efficiency switching supply post-regulator Ordering Information Part Number Voltage Temperature Range Package Standard RoHS Compliant* -5.1BT -5.1WT 5.1V 0 to +125 C TO-220-5 * RoHs compliant with high-melting solder exemption. Super ßeta PNP is a trademarks of Micrel Inc. 2180 Fortune Drive San Jose, CA 95131 USA tel +1 (408) 944-0800 fax + 1 (408) 474-1000 http://www.micrel.com September 2007 M9999-090507

Typical Application Simple USB Stand-Alone 6-Port Self-Powered Hub Pin Configuration TO-220-5 (T) Pin Description Pin Number Pin Name Pin Function 1 EN Enable (Input): Logic-level high enable/logic-level low shutdown control. 2 IN Unregulated Input: +16V maximum supply. 3, TAB GND Ground: Ground pin and TAB are internally connected. 4 OUT Regulator Output 5 ERR Error Flag (Output): Open-collector (active-low) output. Active low indicates overcurrent or undervoltage output conditions. September 2007 2 M9999-090507

Absolute Maximum Ratings (1) Input Voltage (V IN )... 20V to +12V Enable Voltage (V EN )... 20V to +12V Error Output Voltage (V ERR )... 0V to +12V Lead Temperature (soldering, 5 sec.)... 260 C EDS Rating (3) Operating Ratings (2) Input voltage (V IN )...+8V Maximum Power Dissipation (P D(max) ) (4) Junction Temperature (T J )... 0 C to +125 C Package Thermal Resistance TO-220-5 (θ JA )...55 C/W TO-220-5 (θ JC )...2 C/W Electrical Characteristics T A = 25 C, bold values indicate 0 C < T J < +125 C, unless noted. Parameter Condition Min Typ Max Units Output Tolerance 10mA I OUT < 3A, (V OUT + 1V) V IN 8V 3 +3 % Line Regulation I OUT = 10mA, (V OUT + 1V V IN 8V 0.06 0.5 % Load Regulation V IN = V OUT + 1V, 10mA I OUT 3A 0.2 1 % Output Voltage Note 5 20 100 ppm/ C Temperature Coefficient Dropout Voltage, Note 6 I OUT = 100mA 80 200 mv I OUT = 750mA 220 mv I OUT = 1.5A 330 mv I OUT = 3A 600 1000 mv Ground Current, Note 7 V IN = 6.1V, I OUT = 750mA 5 20 ma V IN = 6.1V, I OUT = 1.5A 15 ma V IN = 6.1V, I OUT = 3A 60 150 ma Dropout Ground Current V IN = 6.1V, I OUT = 10mA 2 3 ma Current Limit V IN = 3V, V OUT + 0V 3.0 3.8 A Minimum Load Current 7 10 ma Output Noise Voltage C LOAD = 10µF 400 µv(rms) C LOAD = 33µF 260 µv(rms) Error Flag Output Output Leakage Current V IN = 6.1V, V ERR = 8V 0.1 1 2 µa µa Output Low Voltage V IN = 4.1V, I ERR = 250µA 220 300 400 mv mv September 2007 3 M9999-090507

Parameter Condition Min Typ Max Units Enable Input Logic Low Voltage Regulator shutdown 0.8 V Logic High Voltage Regulator enable 2.4 Enable Input Current V EN = V IN 15 30 µa 75 µa V EN = 0.8V 2 4 µa µa Regulator Output Current V IN = 8V, V EN 0.8V (shutdown), V OUT = 0, Note 8 10 20 µa Notes: 1. Exceeding the absolute maximum rating may damage the device. 2. The device is not guaranteed to function outside its operating rating. 3. Devices are ESD sensitive. Handling precautions recommended. 4. P D(max) = T J(max) T A ) / θ JA, where θ JA depends upon the pointed circuit board layout. See Applications Information. 5. Output voltage temperature coefficient is defined as the V OUT(worst case) / (T J(max) T J(min) ) where T J(max) is +125 C and T J(min) is 0 C. 6. V DO = V IN V OUT when V OUT decreases to 99% of its nominal output voltage with V IN = V OUT + 1V. 7. I GND is the quiescent current. I IN = I GND + I OUT. 8. V EN 0.8V and V IN 8V, V OUT = 0. September 2007 4 M9999-090507

Typical Characteristics 200 150 Ground Current vs. Input Voltage I OUT = 3A 100 50 0 0 2 4 6 8 10 INPUT VOLTAGE (V) 20 Ground Current vs. Temperature 100 Ground Current vs. Temperature 15 10 I OUT = 1.5A 80 60 40 I OUT = 3A 5 20 0 0 30 60 90 120 150 TEMPERATURE ( C) 0 0 30 60 90 120 150 TEMPERATURE ( C) Ground Current vs. Output Current 40 35 30 25 20 15 10 5 0 Enable Current vs. Temperaure V EN = 5V V EN = 2V 0 30 60 90 120 150 TEMPERATURE ( C) September 2007 5 M9999-090507

Functional Characteristics Load Transcient Response Test Circuit September 2007 6 M9999-090507

Functional Diagram September 2007 7 M9999-090507

Application Information The is a high-performance low-dropout voltage regulator suitable for all moderate to high-current voltage regulator applications. The 600mV dropout voltage at full load makes it especially valuable in battery-powered systems and as high-efficiency noise filters in post-regulator applications. Its unique output voltage makes the MIC39311 ideal for Universal Serial Bus (USB) power switching applications. Unlike older NPN-pass transistor designs, where the minimum dropout voltage is limited by the base-emitter voltage drop and collector-emitter saturation voltage, dropout performance of the PNP output of these devices is limited merely by the low VCE saturation voltage. A trade-off for the low dropout voltage is a varying base drive requirement. But Micrel s Super βeta PNP process reduces this drive requirement to merely 1% to 5% of the load current. The regulator is fully protected from damage due to fault conditions. Current limiting is provided. This limiting is linear; output current under overload conditions is constant. Thermal shutdown disables the device when the die temperature exceeds the maximum safe operating temperature. Transient protection allows device (and load) survival even when the input voltage spikes above and below nominal. The output structure of these regulators allows voltages in excess of the desired output voltage to be applied without reverse current flow. The version offers a logic level on-off control: when disabled, the device draws nearly zero current. Figure 1. Input and Output Capacitors Thermal Design Linear regulators are simple to use. The most complicated design parameters to consider are thermal characteristics. Thermal design requires the following application-specific parameters: Maximum ambient temperature, T A Output Current, I OUT Output Voltage, V OUT Input Voltage, V IN First, calculate the power dissipation of the regulator from these numbers and the device parameters from this datasheet. P D = I OUT (1.02V IN V OUT ) Where the ground current is approximated by 2% of I OUT. Then the heat sink thermal resistance is determined by: TJ(max) TA θ SA = θ JC + θcs PD Where T J(max) 125 C and θ CS is between 0 and 2 C/W. The heat sink may be significantly reduced in applications where the minimum input voltage is known and is large compared with the dropout voltage. Use a series input resistor to drop excessive voltage and distribute the heat between this resistor and the regulator. The low dropout properties of Micrel Super ßeta PNP regulators allow very significant reductions in regulator power dissipation and the associated heat sink without compromising performance. When this technique is employed, a capacitor of at least 1µF is needed directly between the input and regulator ground. Please refer to Application Note 9 for further details and examples on thermal design and heat sink specification. Capacitor Requirements For stability and minimum output noise, a capacitor on the regulator output is necessary. The value of this capacitor is dependent upon the output current; lower currents allow smaller capacitors. The regulator is stable with a minimum capacitor value of 10µF at full load. This capacitor need not be an expensive low ESR type: aluminum electrolytics are adequate. In fact, extremely low ESR capacitors may contribute to instability. Tantalum capacitors are recommended for systems where fast load transient response is important. Where the regulator is powered from a source with high AC impedance, a 0.1µF capacitor connected between Input and GND is recommended. This capacitor should have good characteristics to above 250kHz. When the regulator is located more than 3 inches from the ac bulk supply capacitors, a 1µF or greater input capacitor is recommended. Minimum Load Current The regulator is specified between finite loads. If the output current is too small, leakage currents dominate and the output voltage rises. A 10mA minimum load current is necessary for proper regulation. September 2007 8 M9999-090507

Enable Input The version features an enable (EN) input that allows on-off control of the device. Special design allows zero current drain when the device is disabled only micro-amperes of leakage current flows. The EN input has TTL/CMOS compatible thresholds for simple interfacing with logic, or may be directly tied to V IN. Enabling the regulator requires approximately 20µA of current into the EN pin. Error Flag The features an error flag which looks at the output voltage and signals an error condition when this voltage drops 5% below its expected value. The error flag is an open-collector output that pulls low under fault conditions. It may sink 10mA. Low output voltage signifies a number of possible problems, including an overcurrent fault (the device is incurrent limit) and low input voltage. The flag output is inoperative during overtemperature shutdown conditions. USB Applications The main application of the is to control power distribution in a self-powered Universal Serial Bus hub. For self-powered hubs, the provides 5.1V ±3% to downstream ports from an unregulated supply voltage (see Typical Application ). USB requires that the downstream voltage supplied to peripherals from a self-powered hub is between 4.75V and 5.25V. The provides regulation with this requirement. The enable pin input controls ganged power for up to seven downstream ports, each drawing up to 500mA. The device has an output current limiting circuit that linearly decreases the output voltage as the output current exceeds 3A. When the part is out of regulation by 5%, the error flag goes low and signals a fault condition to the microcontroller, allowing the system to be disabled. This provides the overcurrent protection that is required by USB. In Figure 2, the provides power to the MIC2527 quad power switches. The MIC2527 provides power switching to four independently controlled downstream ports. Two MIC2527 s can be used to provide a 6-port, self-powered hub in conjunction with the. The 5.1V output of the is optimized to ensure that under maximum load condition, the output voltage of each channel of the MIC2527 remains above 4.75V. This is the minimum voltage requirement for self-powered USB hubs. The output voltage is a function of the minimum output voltage of the power supply, the PCB trace resistance and the onresistance of the switch. Table 1 shows the maximum allowable on-resistance for a 5.1V power supply in a self-powered hub, assuming 30mV of voltage drop due to PCB trace resistance. The 5.1V of the and the 300mΩ on-resistance of each MIC2527 switch provide an economical solution to power management of self-powered hubs. Nominal Voltage 5.10V Supply Tolerance Minimum Voltage Maximum Voltage Maximum R ON 1% 5.05V 5.15V 540mΩ 2% 5V 5.2V 440 mω 3% 4.95V 5.25V 340 mω 4% 4.9V 5.3V 5% 4.85V 5.38V Table 1. Max. Allowable On-Resistance For further information concerning USB power management, refer to Application Note 17 and Application Hint 30. September 2007 9 M9999-090507

Figure 2. 4-Port Self-Powered Hub September 2007 10 M9999-090507

Package Information 5-Pin TO-220 (T) MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http:/www.micrel.com The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser s own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. 1998 Micrel, Incorporated. September 2007 11 M9999-090507