Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Similar documents
Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Lecture 3: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline

Waves & Oscillations

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Optical Design with Zemax

Performance Factors. Technical Assistance. Fundamental Optics

OPTICAL IMAGING AND ABERRATIONS

GEOMETRICAL OPTICS AND OPTICAL DESIGN

Geometric optics & aberrations

Ch 24. Geometric Optics

Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson

Advanced Lens Design

Sequential Ray Tracing. Lecture 2

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term

Applied Optics. , Physics Department (Room #36-401) , ,


Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Opti 415/515. Introduction to Optical Systems. Copyright 2009, William P. Kuhn

OPAC 202 Optical Design and Inst.

Chapter 36. Image Formation

Magnification, stops, mirrors More geometric optics

Converging and Diverging Surfaces. Lenses. Converging Surface

Lens Design I Seminar 1

CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35

Chapter 36. Image Formation

Optical Systems: Pinhole Camera Pinhole camera: simple hole in a box: Called Camera Obscura Aristotle discussed, Al-Hazen analyzed in Book of Optics

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term

3.0 Alignment Equipment and Diagnostic Tools:

Exam Preparation Guide Geometrical optics (TN3313)

Optical Design with Zemax for PhD

Why is There a Black Dot when Defocus = 1λ?

ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008

Big League Cryogenics and Vacuum The LHC at CERN

Long Wave Infrared Scan Lens Design And Distortion Correction

Introduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong

PHYSICS FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS

Introduction to Optical Modeling. Friedrich-Schiller-University Jena Institute of Applied Physics. Lecturer: Prof. U.D. Zeitner

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

CHAPTER 1 Optical Aberrations

Waves & Oscillations

Optical Design with Zemax

Astronomical Observing Techniques Lecture 6: Op:cs

Chapters 1 & 2. Definitions and applications Conceptual basis of photogrammetric processing

Chapter 23. Light Geometric Optics

Cardinal Points of an Optical System--and Other Basic Facts

Chapter 18 Optical Elements

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu

Introductions to aberrations OPTI 517

Phys 531 Lecture 9 30 September 2004 Ray Optics II. + 1 s i. = 1 f

Geometrical Optics for AO Claire Max UC Santa Cruz CfAO 2009 Summer School

Optics Practice. Version #: 0. Name: Date: 07/01/2010

Chapter 34: Geometric Optics

INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS

Optical System Design

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses.

OPTICAL SYSTEMS OBJECTIVES

ECEN 4606, UNDERGRADUATE OPTICS LAB

Laboratory experiment aberrations

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

Chapter Ray and Wave Optics

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Chapter 23. Mirrors and Lenses

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.

Study on Imaging Quality of Water Ball Lens

Lens Design II. Lecture 2: Structural modifications Herbert Gross. Winter term

Supplemental Materials. Section 25. Aberrations

Optimisation. Lecture 3

Geometrical Optics. Have you ever entered an unfamiliar room in which one wall was covered with a

Introduction to Light Microscopy. (Image: T. Wittman, Scripps)

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS

Light sources can be natural or artificial (man-made)

Notation for Mirrors and Lenses. Chapter 23. Types of Images for Mirrors and Lenses. More About Images

Astro 500 A500/L-8! 1!

Physics II. Chapter 23. Spring 2018

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term

AST Lab exercise: aberrations

Heisenberg) relation applied to space and transverse wavevector

COURSE NAME: PHOTOGRAPHY AND AUDIO VISUAL PRODUCTION (VOCATIONAL) FOR UNDER GRADUATE (FIRST YEAR)

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

Solution of Exercises Lecture Optical design with Zemax Part 6

Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses

Image Formation Fundamentals

Chapter 23. Mirrors and Lenses

25 cm. 60 cm. 50 cm. 40 cm.

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments

Tutorial Zemax 8: Correction II

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Average: Standard Deviation: Max: 99 Min: 40

1.1 Singlet. Solution. a) Starting setup: The two radii and the image distance is chosen as variable.

Reflection! Reflection and Virtual Image!

EE119 Introduction to Optical Engineering Spring 2002 Final Exam. Name:

Geometric Optics. Ray Model. assume light travels in straight line uses rays to understand and predict reflection & refraction

Warren J. Smith Chief Scientist, Consultant Rockwell Collins Optronics Carlsbad, California

Lenses. Overview. Terminology. The pinhole camera. Pinhole camera Lenses Principles of operation Limitations

28 Thin Lenses: Ray Tracing

Lens Design II. Lecture 3: Aspheres Herbert Gross. Winter term

Transcription:

Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 1

Ideal Optics ideal optics: spherical waves from any point in object space are imaged into points in image space corresponding points are called conjugate points focal point: center of converging or diverging spherical wavefront object space and image space are reversible Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 2

Geometrical Optics rays are normal to locally flat wave (locations of constant phase) rays are reflected and refracted according to Fresnel equations phase is neglected incoherent sum rays can carry polarization information optical system is finite diffraction geometrical optics neglects diffraction effects: λ 0 physical optics λ > 0 simplicity of geometrical optics mostly outweighs limitations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 3

Lenses Surface Shape of Perfect Lens lens material has index of refraction n o z(r) n + z(r) f = constant n z(r) + r 2 + (f z(r)) 2 = constant solution z(r) is hyperbola with eccentricity e = n > 1 Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 4

Paraxial Optics Assumptions: 1 assumption 1: Snell s law for small angles of incidence (sin φ φ) 2 assumption 2: ray hight h small so that optics curvature can be neglected (plane optics, (cos x 1)) 3 assumption 3: tanφ φ = h/f 4 decent until about 10 degrees Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 5

Spherical Lenses en.wikipedia.org/wiki/file:lens2.svg if two spherical surfaces have same radius, can fit them together surface error requirement less than λ/10 grinding spherical surfaces is easy most optical surfaces are spherical Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 6

Positive/Converging Spherical Lens Parameters commons.wikimedia.org/wiki/file:lens1.svg center of curvature and radii with signs: R 1 > 0, R 2 < 0 center thickness: d positive focal length f > 0 Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 7

Negative/Diverging Spherical Lens Parameters commons.wikimedia.org/wiki/file:lens1b.svg note different signs of radii: R 1 < 0, R 2 > 0 virtual focal point negative focal length (f < 0) Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 8

General Lens Setup: Real Image commons.wikimedia.org/wiki/file:lens3.svg object distance S 1, object height h 1 image distance S 2, image height h 2 axis through two centers of curvature is optical axis surface point on optical axis is the vertex chief ray through center maintains direction Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 9

General Lens Setup: Virtual Image commons.wikimedia.org/wiki/file:lens3b.svg note object closer than focal length of lens virtual image Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 10

Thin Lens Approximation thin-lens equation: 1 + 1 ( 1 = (n 1) 1 ) S 1 S 2 R 1 R 2 Gaussian lens formula: Finite Imaging 1 S 1 + 1 S 2 = 1 f rarely image point sources, but extended object object and image size are proportional orientation of object and image are inverted (transverse) magnification perpendicular to optical axis: M = h 2 /h 1 = S 2 /S 1 Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 11

Thick Lenses www.newport.com/servicesupport/tutorials/default.aspx?id=169 ( ) basic thick lens equation 1 f = (n 1) 1 1 + (n 1)d R1 R2 nr 1 R 2 thin means d << R 1 R 2 focal lengths measured from principal planes distance between vertices and principal planes given by f (n 1)d H 1,2 = R 2,1 n Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 12

Chromatic Aberration due to wavelength dependence of index of refraction higher index in the blue shorter focal length in blue Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 13

Achromatic Lens combination of 2 lenses, different glass dispersion also less spherical aberration Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 14

Mirrors Mirrors vs. Lenses mirrors are completely achromatic reflective over very large wavelength range (UV to radio) can be supported from the back can be segmented wavefront error is twice that of surface, lens is (n-1) times surface only one surface to play with Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 15

Plane Mirrors: Fold Mirrors and Beamsplitters Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 16

Spherical Mirrors easy to manufacture focuses light from center of curvature onto itself focal length is half of curvature: f = R/2 tip-tilt misalignment does not matter has no optical axis does not image light from infinity correctly (spherical aberration) Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 17

Parabolic Mirrors want to make flat wavefront into spherical wavefront distance az(r) + z(r)f = const. z(r) = r 2 /2R perfect image of objects at infinity has clear optical axis Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 18

Conic Sections circle and ellipses: cuts angle < cone angle parabola: angle = cone angle hyperbola: cut along axis Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 19

en.wikipedia.org/wiki/conic_constant Conic Constant K r 2 2Rz + (1 + K )z 2 = 0 for z(r = 0) = 0 z = r 2 R 1+ 1 1 (1+K ) r2 R 2 R radius of curvature K = e 2, e eccentricity prolate ellipsoid (K > 0) sphere (K = 0) oblate ellipsoid (0 > K > 1) parabola (K = 1) hyperbola (K < 1) all conics are almost spherical close to origin analytical ray intersections Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 20

Foci of Conic Sections sphere has single focus ellipse has two foci parabola (ellipse with e = 1) has one focus (and another one at infinity) hyperbola (e > 1) has two focal points en.wikipedia.org/wiki/file:eccentricity.svg Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 21

Elliptical Mirrors have two foci at finite distances perfectly reimage one focal point into another Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 22

Hyperbolic Mirrors have a real focus and a virtual focus (behind mirror) perfectly reimage one focal point into another Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 23

Optical Systems Overview combinations of several optical elements (lenses, mirrors, stops) examples: camera lens, microscope, telescopes, instruments thin-lens combinations can be treated analytically effective focal length: 1 f = 1 f 1 + 1 f 2 Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 24

Simple Thin-Lens Combinations distance > sum of focal lengths real image between lenses apply single-lens equation successively Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 25

Second Lens Adds Convergence or Divergence Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 26

F-number and Numerical Aperture Aperture all optical systems have a place where aperture is limited main mirror of telescopes aperture stop in photographic lenses aperture typically has a maximum diameter aperture size is important for diffraction effects Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 27

F-number f/2: f/4: describes the light-gathering ability of the lens f-number given by F = f /D also called focal ratio or f-ratio, written as: f /F the bigger F, the better the paraxial approximation works fast system for F < 2, slow system for F > 2 Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 28

Numerical Aperture en.wikipedia.org/wiki/file:numerical_aperture.svg numerical aperture (NA): n sin θ n index of refraction of working medium θ half-angle of maximum cone of light that can enter or exit lens important for microscope objectives (n often not 1) Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 29

Numerical Aperture in Fibers en.wikipedia.org/wiki/file:of-na.svg acceptance cone of the fiber determined by materials NA = n sin θ = n1 2 n2 2 n index of refraction of working medium Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 30

Images and Pupils Images and Pupils image every object point comes to a focus in an image plane light in one image point comes from pupil positions object information is encoded in position, not in angle pupil all object rays are smeared out over complete aperture light in one pupil point comes from different object positions object information is encoded in angle, not in position Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 31

Aperture and Field Stops aperture stop limits the amount of light reaching the image aperture stop determines light-gathering ability of optical system field stop limits the image size or angle Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 32

Vignetting effective aperture stop depends on position in object image fades toward its edges Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 33

Telecentric Arrangement as seen from image, pupil is at infininity easy: lens is its focal length away from pupil (image) magnification does not change with focus positions ray cones for all image points have the same orientation Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 34

Aberrations Spot Diagrams and Wavefronts plane of least confusion is location where image of point source has smallest diameter spot diagram: shows ray locations in plane of least confusion spot diagrams are closely connected with wavefronts aberrations are deviations from spherical wavefront Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 35

Spherical Aberration of Spherical Lens different focal lengths of paraxial and marginal rays longitudinal spherical aberration along optical axis transverse (or lateral) spherical aberration in image plane much more pronounced for short focal ratios Made with Touch Optical Design foci from paraxial beams are further away than marginal rays spot diagram shows central area with fainter disk around it Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 36

Minimizing Spherical Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 37

Spherical Aberration Spots and Waves spot diagram shows central area with fainter disk around it wavefront has peak and turned-up edges Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 38

Aspheric Lens conic constant K = 1 n makes perfect lens difficult to manufacture but possible these days Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 39

HST Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 40

Coma typically seen for object points away from optical axis leads to tails on stars Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 41

Coma Spots and Waves parabolic mirror with perfect on-axis performance spots and wavefront for off-axis image points wavefront is tilted in inner part Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 42

Astigmatism due to Tilted Glass Plate in Converging Beam astigmatism: focus in two orthogonal directions, but not in both at the same time tilted glass-plate: astigmatism, spherical aberration, beam shift tilted plates: beam shifters, filters, beamsplitters difference of two parabolae with different curvatures Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 43

Field Curvature field (Petzval) curvature: image lies on curved surface curvature comes from lens thickness variation across aperture problems with flat detectors (e.g. CCDs) potential solution: field flattening lens close to focus Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 44

Petzval Field Flattening Petzval curvature only depends on index of refraction and focal length of lenses Petzval curvature is independent of lens position! field flattener also makes image much more telecentric Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 45

Distortion image is sharp but geometrically distorted (a) object (b) positive (or pincushion) distortion (c) negative (or barrel) distortion Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 46

Aberration Descriptions Seidel Aberrations Ludwig von Seidel (1857) Taylor expansion of sin φ sin φ = φ φ3 3! + φ5 5!... paraxial: first-order optics Seidel optics: third-order optics Seidel aberrations: spherical, astigmatism, coma, field curvature, distortion Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 47

Zernike Polynomials tip tilt focus astigmatism (45 deg) astigmatism 0 deg coma (0 deg) coma (90 deg) trefoil (0 deg) trefoil (30 deg) third-order spherical low orders equal Seidel aberrations form orthonormal basis on unit circle Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 2: Geometrical Optics 48