Fibratus tactile sensor using reflection image

Similar documents
Selective Stimulation to Skin Receptors by Suction Pressure Control

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

ISMCR2004. Abstract. 2. The mechanism of the master-slave arm of Telesar II. 1. Introduction. D21-Page 1

Sensing the Texture of Surfaces by Anthropomorphic Soft Fingertips with Multi-Modal Sensors

Proceedings of the 33rd ISR (International Symposium on Robotics) October 7 11,

Response of SAI Afferents May Play a Role in the Perception of Velvet Hand Illusion

Tactile Illusion Caused by Tangential Skin Srain and Analysis In Terms of Skin Deformation

CONSTRUCTING AN ELASTIC TOUCH PANEL WITH EMBEDDED IR-LEDS USING SILICONE RUBBER

Biomimetic Design of Actuators, Sensors and Robots

Wearable Haptic Display to Present Gravity Sensation

Tactile Sensation Imaging for Artificial Palpation

Speech, Hearing and Language: work in progress. Volume 12

Sensing Ability of Anthropomorphic Fingertip with Multi-Modal Sensors

3D Form Display with Shape Memory Alloy

Remote Tactile Transmission with Time Delay for Robotic Master Slave Systems

Evaluation of Five-finger Haptic Communication with Network Delay

Proposal for the Object Oriented Display : The Design and Implementation of the MEDIA 3

Ultrasound Tactile Display for Stress Field Reproduction -Examination of Non-Vibratory Tactile Apparent Movement-

Sensor system of a small biped entertainment robot

SOP for Micro Mechanical Analyzer

UWB 2D Communication Tiles

Acquisition of Multi-Modal Expression of Slip through Pick-Up Experiences

SmartTouch: Electric Skin to Touch the Untouchable

HRP-2W: A Humanoid Platform for Research on Support Behavior in Daily life Environments

SUPPLEMENTARY INFORMATION

HamsaTouch: Tactile Vision Substitution with Smartphone and Electro-Tactile Display

Objective Evaluation of Tactile Sensation for Tactile Communication

Robotics and Artificial Intelligence. Rodney Brooks Director, MIT Computer Science and Artificial Intelligence Laboratory CTO, irobot Corp

Ungrounded Kinesthetic Pen for Haptic Interaction with Virtual Environments

Development of Micro-manipulation System for Operation in Scanning Electron Microscope

Combination of Cathodic Electrical Stimulation and Mechanical Damped Sinusoidal Vibration to Express Tactile Softness in the Tapping Process *

Spatial Sounds (100dB at 100km/h) in the Context of Human Robot Personal Relationships

Ensuring the Safety of an Autonomous Robot in Interaction with Children

Touch. Touch & the somatic senses. Josh McDermott May 13,

Haptic Interface using Sensory Illusion Tomohiro Amemiya

HAND-SHAPED INTERFACE FOR INTUITIVE HUMAN- ROBOT COMMUNICATION THROUGH HAPTIC MEDIA

Development of Shock Acceleration Calibration Machine in NMIJ

A Musculoskeletal Flexible-Spine Humanoid Kotaro Aiming at the Future in 15 years time

Lecture 7: Human haptics

5HDO 7LPH 6XUJLFDO 6LPXODWLRQ ZLWK +DSWLF 6HQVDWLRQ DV &ROODERUDWHG :RUNV EHWZHHQ -DSDQ DQG *HUPDQ\

The Tele-operation of the Humanoid Robot -Whole Body Operation for Humanoid Robots in Contact with Environment-

REBO: A LIFE-LIKE UNIVERSAL REMOTE CONTROL

2B34 DEVELOPMENT OF A HYDRAULIC PARALLEL LINK TYPE OF FORCE DISPLAY

Design of Cylindrical Whole-hand Haptic Interface using Electrocutaneous Display

An Emotional Tactile Interface Completing with Extremely High Temporal Bandwidth

EMBEDDED FBG SENSORS AND AWG-BASED WAVELENGTH INTERROGATOR FOR HEALTH MONITORING OF COMPOSITE MATERIALS

The Design of Internet-Based RobotPHONE

SmartTouch - Augmentation of Skin Sensation with Electrocutaneous Display

Touch & Haptics. Touch & High Information Transfer Rate. Modern Haptics. Human. Haptics

Digital Photographic Imaging Using MOEMS

Measurement of Microscopic Three-dimensional Profiles with High Accuracy and Simple Operation

Robot Sensors Introduction to Robotics Lecture Handout September 20, H. Harry Asada Massachusetts Institute of Technology

Haptic Rendering CPSC / Sonny Chan University of Calgary

Digital inertial algorithm for recording track geometry on commercial shinkansen trains

Investigation of the piezoelectric thimble tactile device operating modes

Module 2 WAVE PROPAGATION (Lectures 7 to 9)

High-Level Programming for Industrial Robotics: using Gestures, Speech and Force Control

these systems has increased, regardless of the environmental conditions of the systems.

A Pilot Study: Introduction of Time-domain Segment to Intensity-based Perception Model of High-frequency Vibration

iwindow Concept of an intelligent window for machine tools using augmented reality

702. Investigation of attraction force and vibration of a slipper in a tactile device with electromagnet

Analysis of the dynamic transmission behaviour of piezoelectric film sensors. Andre Zander 1 and Rolf Kumme 2

Tactile Vision Substitution with Tablet and Electro-Tactile Display

Touch Perception and Emotional Appraisal for a Virtual Agent

Haptic Invitation of Textures: An Estimation of Human Touch Motions

BIONIC EYE. Author 2 : Author 1: P.Jagadish Babu. K.Dinakar. (2 nd B.Tech,ECE)

A New Concept Touch-Sensitive Display Enabling Vibro-Tactile Feedback

648. Measurement of trajectories of piezoelectric actuators with laser Doppler vibrometer

Vertex Detector Mechanics

Evaluation of a Soft-Surfaced Multi-touch Interface

A Tactile Display using Ultrasound Linear Phased Array

INFLUENCE OF PILES ON LOAD- SETTLEMENT BEHAVIOUR OF RAFT FOUNDATION

Necessary Spatial Resolution for Realistic Tactile Feeling Display

Modelling and Simulation of Tactile Sensing System of Fingers for Intelligent Robotic Manipulation Control

Texture recognition using force sensitive resistors

Haptic-Emoticon: Haptic Content Creation and Sharing System To Enhancing Text-Based Communication

Tactile Presentation to the Back of a Smartphone with Simultaneous Screen Operation

Introduction to Embedded Systems

Sensors & Applications Glass Industry. More Precision

Integration of Hand Gesture and Multi Touch Gesture with Glove Type Device

Development of Hybrid Flight Simulator with Multi Degree-of-Freedom Robot

FORCE LIMITATION WITH AUTOMATIC RETURN MECHANISM FOR RISK REDUCTION OF REHABILITATION ROBOTS. Noriyuki TEJIMA Ritsumeikan University, Kusatsu, Japan

Tactile Actuators Using SMA Micro-wires and the Generation of Texture Sensation from Images

QUANTUM CALCU-FLASH-S OPERATING INSTRUCTIONS

A Method of Selective Stimulation to Epidermal Skin Receptors for Realistic Touch Feedback

General catalog. BESMAK Servo-hydraulic Medium-Capacity fatigue test System with Furnace. 1 BESMAK Material Testing Machines

Graphical User Interfaces for Blind Users: An Overview of Haptic Devices

Test Review # 8. Physics R: Form TR8.17A. Primary colors of light

Expression of 2DOF Fingertip Traction with 1DOF Lateral Skin Stretch

CONTROLLING METHODS AND CHALLENGES OF ROBOTIC ARM

Benefits of using haptic devices in textile architecture

2 About Pressure Sensing Pressure sensing is a mechanism which detects input in the interface of which inputs are sense of touch. Although the example

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses

Telecommunication and remote-controlled

Autonomous Cooperative Robots for Space Structure Assembly and Maintenance

OPTICAL CAMOUFLAGE. ¾ B.Tech E.C.E Shri Vishnu engineering college for women. Abstract

Design and simulation of a membranes-based acoustic sensors array for cochlear implant applications

2D Asymmetric Silicon Micro-Mirrors for Ranging Measurements

New Arc-welding Robots

Intent Imitation using Wearable Motion Capturing System with On-line Teaching of Task Attention

Transcription:

Fibratus tactile sensor using reflection image The requirements of fibratus tactile sensor Satoshi Saga Tohoku University Shinobu Kuroki Univ. of Tokyo Susumu Tachi Univ. of Tokyo Abstract In recent years, many tactile sensors have been developed with the advancement in robotics. For example, there are sensors that measure the distribution of the contact state or the force distribution. Among the several tactile sensors in use currently, none can evaluate the sense of gentle touch. We have developed a fibratus tactile sensor that uses the property of reflection. Using this sensor, it is possible to evaluate the feeling of gentle stroking that has never been evaluated. We propose a new interface device by utilizing this fibratus tactile sensor. We have developed a tactile sensor that utilizes the resolution of a camera to the maximum by using transparent silicone rubber as a deformable mirror surface. In this study, we examine the requirements of the hardness distribution of fibers and the base silicone rubber for fibratus sensors. Keywords: tactile sensor, fiber image sensor, optical measurement, optical lever 1 Introduction In recent years, with the advancement in robotics, many tactile sensors have been developed in order to improve force sensation in robots. Several tactile sensors are commercially available in the market, for example, the 6-axis force/torque sensor that can measure the force at one point. There exists another sensor that can measure the distribution of the contact state or the force distribution. e-mail: saga@rm.is.tohoku.ac.jp e-mail: Shinobu Kuroki@ipc.i.u-tokyo.ac.jp e-mail: tachi@star.t.u-tokyo.ac.jp 1

The disadvantage of these distribution-type force sensors is their excessive wirings. Each sensor unit is arranged in close proximity of the measurement surface in order to allow a small sensor to be individually distributed, and the wiring that gathers information from a unit is also individually wired. Therefore, a sensor itself cannot prevent deterioration due to the stress of repeated measurements; further, the wiring assembly is complicated. Some optical sensors [1, 3] such as the distribution-type optical tactile sensor have already been studied. In these sensors, the sensing units and the corresponding wiring from the measurement surface can be eliminated by using a camera. However, as these sensors measure the motion of the markers embedded in an elastic body, the sensor resolution is determined by the resolution of the markers rather than the camera resolution. Therefore, the resolution of the camera is not completely utilized. We have proposed a new type of optical tactile sensor that can detect the surface deformation with high precision by using the principle of an optical lever[5]. In the optical lever technique, the displacement is magnified by using reflection characteristics. Due to the reflection image we can utilize the full resolution of the camera. Transparent silicone rubber is used as the flexible mirror surface. Thus far, there exist some tangible interfaces that employ position sensors such as buttons, dials, joysticks, and touch panels; force sensors; and acceleration sensors. Many of these interfaces are input devices that derive information from only one point, and the acquired values are linked to symbolic information. In recent years, some gaming interfaces have been using conventional sensors to obtain information on natural movements. However if we need to employ interfaces, the development of sensors using innovative concepts becomes imperative. In addition, in the field of sensing researches many distribution-type tactile sensors have been developed however, these sensors cannot measure small and fine details such as gentle touch. Figure 1: Stroking a teddy bear gently& stroked by mother gently: Left: A girl is stroking her teddy bear gently. Right: A girl s mother strokes her daughter gently One tends to be kind when gently stroking teddy bears or pets; in the same manner, one feels 2

the tenderness of another s gentle stroking. Therefore, the sensations detected by the fibratus tactile sensor are capable of stimulating one s intuition (Fig. 1). If we use these fibratus tactile feelings as interfaces, we can use the fibratus sensor as an input device in computers and evaluate its intuitional sense. Additionally, realizing the fibratus tactile sensors can be used to develop an interface that can input spatial flows and at the same time can return some kinds of tactile sensation to the operator. For example, by stroking fibers gently, one can create distributed vector fields such as those created during the blowing of wind or the flowing of water with one s fingers, and intuitional senses may be used as inputs for computers. In the near future by employing this sensor in a robot, it will be possible to evaluate softer contact information than that detected by existing tactile sensors, thereby resulting in an increase in the use of robots in daily life. If we can evaluate touch sensation information with respect to fibratus salience, the acquired information can be very useful for interactive devices. We can then implant fibratus salience into the flexible mirror surface. From this salience, the end of the fibratus is considered to be the contact surface and the reflection property remains unchanged. 2 Fibratus tactile sensor We propose a new type of tactile sensor that combines the principle of an optical lever and a fibratus salience. To amplify the resolution of deformation, this sensor utilizes the principle of an optical lever and to employ the full resolution of the camera we utilize reflection images. Furthermore, to capture small forces, we use a fibratus salience at the same time. By arranging the image pattern, camera, and the transparent silicone rubber as shown in Fig. 2, the light diffused from the image pattern is reflected from the silicone rubber boundary and captured by the camera. In additional this sensor employs silicone rubber layers and fibers. The fibers draw the silicone layer when they are moved. Therefore the distribution of the angle on the silicone rubber surface is changed by the movement of the fibers. In other words, the movement of the fibratus salience can be evaluated on the basis of the distribution of the silicone rubber surface. 2.1 Comparison with other sensors A tactile sensor with fibratus saliences has been developed [2]. This sensor uses plastic fibers as fibratus saliences and by utilizing microphones it measures the vibration of the polyethylene film that is connected to the fibers. The structure of human skin is shown in Fig. 3. The free 3

Silicone rubber hard soft Flexible fibers Reflective surface ( based on Snell' s law) Image pattern Camera Figure 2: Section of a sensor: Cross-section of the sensor. The surface of the sensor contains some fibers nerve endings detect each displacement of the fibers. The structure of the salience and the sensor resemble those of the previous sensor. However the distributed multiple sensors such as hairy skin receptors require microphones beneath the saliences. The number of the sensor units and the wiring can be drawbacks. This is a common problem for in distributed force sensors. Figure 3: Section of human hairy skin 2.2 Requirements of fibratus tactile sensor Here we consider about the requirements of sensors that detect the deformation of fibratus saliences like the hairy skin receptors of humans. The fibratus salience is projected at an angle almost perpendicular to the implanting surface. The salience is sustained by the contact between the implanted part of the salience and the implanting surface. Taking the structure into account, to transmit the deformation of the salience the hardness of the salience should be harder than that 4

Table 1: Young s modulus on hairy skin [4, 6] Tissue Young s modulus Dermis 0.136 [MPa] Epidermis 0.08 [MPa] Subcutaneous tissue 0.034 [MPa] Beard hair 3.50 [GPa] of the implanting surface. Otherwise the deformation of the salience cause the folding of the salience at the implanting point, and the deformation cannot be transmitted under the surface (Fig. 4). In fact, the distribution of Young s modulus on hairy skin is as follows (Table 1)[4, 6]. Because of the distribution of the hardness the salience can work as a lever whose supporting point is near the implantation point, therefore the deformation of the implanted part becomes smaller and the stress change of the implanted part becomes larger (Fig. 5). In human skin the free nerve ending is wrapping around the end of the salience. Taking the lever movement into account, it is possible that the nerve ending detects this large stress change. Based on the previous discussion, we should detect the stress caused by each salience individually. However employing the sensor in order to detect each stress individually is a complex procedure. This is why we do not detect the stress but the deformation itself. To not only avoid Figure 4: Reaction of a salience with small Young s modulus Figure 5: Reaction of a salience with large Young s modulus the complexity of the sensor units and wirings, but also to enlarge the deformation we use our sensing method a method of flexible distribution-type tactile sensing [5]. 2.3 Detecting the deformation This tactile sensor utilizes the principle of an optical lever and a flexible reflection surface. We have designed a tactile sensor that takes advantage of the reflection image whose deformation 5

was detected with high precision using an optical lever; the sensor also takes sufficient advantage of the resolution of a camera by using transparent silicone rubber as a flexible mirror surface. In this sensor, transparent silicone rubber is employed as the flexible mirror surface. With regard to the boundary between silicone rubber and air (Fig. 6), the refractive indices are denoted by n r and n a and the refraction angles by φ r and φ a. The notations r and a denote rubber and air, respectively. Based on Snell s law, when the distribution of the refractive index at the boundary of silicone rubber and air satisfies Eq. 3, total internal reflection occurs; further, this boundary surface assumes the reflection property of a mirror surface. Figure 6: Snell s law: Based on Snell s law, total internal reflection is achieved n r sinφ r = n a sinφ a (1) φ r = arcsin( n a n r sinφ a ) (2) φ r > arcsin( n a n r ) (3) Further, we implant a fibratus salience, the hardness of which is a little greater than that of silicone rubber, into the flexible mirror surface. From this salience, the end of the fibratus is considered to be the contact surface and the reflection property remains unchanged. Thus, the sensor functions as a fibratus tactile sensor. 3 Simulations To detect the deformation of the fibratus salience, we need a method to detect the small displacement of the surface angle. The sensor used is made of transparent silicone rubber and a 6

fibratus salience. In order to utilize the principle of an optical lever, the construction of silicone rubber developed should be sensitive to the deformation of the surface which is induced by the movement of the fibratus salience. Then we compare the development of single-layered silicone rubber and multi-layered silicone rubber by simulation. The simulator is Femlab 3.0. Cond. 1: Silicone rubber with softer single layer A A : Young s modulus, 0.08 [MPa]; Poisson s ratio, 0.33 Cond. 2: Silicone rubber with softer layer A (downside) and harder layer B (upper side) A : Young s modulus, 0.08 [MPa]; Poisson s ratio, 0.33 B : Young s modulus, 1.6 [MPa]; Poisson s ratio, 0.33 Cond. 3: Silicone rubber with harder single layer B B : Young s modulus, 1.6 [MPa]; Poisson s ratio, 0.33 In each condition we have simulated a situation in which a fiber with a Young s modulus of 1.0 [MPa], width of 0.5 [mm], and length of 50 [mm], is implanted into the surface with a depth of 10 [mm], and a force in the right direction force is applied to the upper-endpoint of the fiber. Each Young s modulus is based on the actual measurement value of the the two types of silicone rubber. The results are shown in Figs. 7,8, and 9. The color bar shows vertical stress in the x-direction. Figure 7: Stress distribution & change of surface shape (Cond. 1) Figure 8: Stress distribution & change of surface shape (Cond. 2) Compared with Figs. 7 and 8 Fig. 9 shows little deformation of the surface in the case of a harder single layer. Comparing Fig. 7 with Fig. 8, although the vertical deformation of the surface is almost the same, the deformation of the surface is widely distributed in Cond. 1. With our sensor using an optical lever, the displacement of the surface angle is greater than the 7

Figure 9: Stress distribution & change of surface shape (Cond. 3) deformation. As a consequence, the construction of Cond. 2 is more suitable for the sensing method. Therefore we develop a silicone rubber that has two layers similar to Cond. 2. 4 Implementation Based on the discussion in the previous section, we use two-layered silicone rubber (Fig. 10). Figure 10: Two-layered base & reaction of a fiber Figure 11: Sensor Overview Using this prototype sensor (Fig. 11) we validate the behavior of the sensor. By applying a force to the endpoint of the fiber we acquire the deformed reflection image. Fig. 12 and 13 show the acquired images. These figures show that the sensor can detect a small deformation by using a deformed reflection image. By using this reflection image we can reconstruct the deformation of the surface [5]. Based on the assumption that the fibratus salience stands almost vertical to the 8

surface, we can reconstruct the posture of the fibratus salience after reconstruction of the shape of the surface. Figure 13: After deformation Figure 12: Before deformation 5 Conclusions In this paper, we have proposed a tactile sensor that employs the principle of an optical lever, a flexible reflection surface, and fibratus salience. We have discussed about the structural property that is needed for the fibratus tactile sensor and have clarified that our proposed reflection sensing method is suitable for the fibratus sensing. In addition, we have also discussed about the surface condition required to achieve the deformation caused by the fibratus salience with this reflection sensor. We found that, the two-layered sensor can enlarge the displacement of the surface angle to a greater externt than a single-layered sensor. Based on the simulation of the design of the sensor, we have created a prototype fibratus tactile sensor, and have confirmed that the deformation of the surface can be acquired from the deformation of the reflection image. As a future work we are planning to compare the reconstruction of the surface shape from the acquired reflection image and the simulated shape, and validate the error between the real deformation of the fibratus sensor and the simulated one. Additionally, we will discuss about the reconstruction of the surface shape using sensors with multiple fibratus saliences and determine the method to estimate the applied force toward the saliences; further we aim to establish the usage of the sensor as an interface device. 9

References [1] Stefan Begej. An optical tactile array sensor. SPIE Intelligent Robotics and Computer Vision, 521:271 280, 1984. [2] Yui Ishizaka, Marika Hayashi, Shigeru Kanzaki, Kei Okada, Ikuo Mizuuchi, Tetsunari Inamura, and Masayuki Inaba:. Development of touchy-feely friendly robot and animal suits embedded fibratus tactile sensor,. In Proceedings of ROBOMEC06, 2006. 1P1-E05. [3] Kazuto Kamiyama, Kevin Vlack, Hiroyuki Kajimoto, Naoki Kawakami, and Susumu Tachi. Vision-based sensor for real-time measuring of surface traction fields. IEEE Computer Graphics & Applications Magazine, 25(1):68 75, 2005. [4] Takashi Maeno, Kazumi Kobayashi, and Nobutoshi Yamazaki. Relationship between structure of finger tissue and location of tactile receptors. JSME International Journal, 63(607- C):881 888, 1997. [5] Satoshi Saga, Hiroyuki Kajimoto, and Susumu Tachi. High-resolution tactile sensor using the deformation of a reflection image. Sensor Review, 27:35 42, 2006. [6] S. M. Thozhur, A. D. Crocombe, and P. A. Smith. Structural characteristics and mechanical behaviour of beard hair. Journal of Materials Science, 41:1090 1121, 2006. 10