Series Circuits. Chapter

Similar documents
Series Circuits. Chapter

Objective of the Lecture

EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING

12-1: Introduction to Batteries

2007 The McGraw-Hill Companies, Inc. All rights reserved.

3. Voltage and Current laws

Fundamentals of Electric Circuits Chapter 2. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Exercise 3: Voltage in a Series Resistive Circuit

AP Physics - Problem Drill 14: Electric Circuits

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

Electronic Principles Eighth Edition

University of Misan College of Engineering Dep. of Electrical First Stage Fundamental of Elect. Eng. Dr. Malik

Electric Circuits Notes 1 Circuits

Chapter 26: Direct current circuit

Source Transformations

electronics fundamentals

In this lecture, we will learn about some more basic laws governing the behaviour of electronic circuits beyond that of Ohm s law.

Forces and Electrical Charges

Unit 7 Parallel Circuits

Laboratory 2 (drawn from lab text by Alciatore)

Lecture # 4 Network Analysis

Branch Current Method

Kirchhoff s laws. Objectives. Assessment. Assessment. Assessment. Assessment 5/27/14. Apply Kirchhoff s first and second laws.

30V 30 R1 120V R V 30 R1 120V. Analysis of a single-loop circuit using the KVL method

Unit 8 Combination Circuits

EE301 - SERIES CIRCUITS, KIRCHHOFF S VOLTAGE LAW

3.4 The Single-Loop Circuit Single-loop circuits

Chapter 28. Direct Current Circuits

Electric Circuits I. Simple Resistive Circuit. Dr. Firas Obeidat

Prelab 4 Millman s and Reciprocity Theorems

Direct Current Circuits

CK-12 Physics Concepts - Intermediate Answer Key

Resistance and Ohm s Law

Survival Skills for Circuit Analysis

AC/DC ELECTRICAL SYSTEMS

Chapter 20 Electric Circuits

Chapter 23 Circuits. Chapter Goal: To understand the fundamental physical principles that govern electric circuits. Slide 23-1

Stepper Motors and Control Part I - Unipolar Stepper Motor and Control (c) 1999 by Rustle Laidman, All Rights Reserved

Unit-1(A) Circuit Analysis Techniques

Revision: April 16, E Main Suite D Pullman, WA (509) Voice and Fax

An electronic unit that behaves like a voltagecontrolled

I = q/ t units are C/s = A (ampere)

Electric Circuits. Physics 6 th Six Weeks

Chapter 8. Constant Current Sources

Electrical Circuits I (ENGR 2405) Chapter 2 Ohm s Law, KCL, KVL, Resistors in Series/Parallel

PH213 Chapter 26 solutions

Lab Experiment No. 4

Circuit Analysis-II. Circuit Analysis-II Lecture # 2 Wednesday 28 th Mar, 18

13 th Asian Physics Olympiad India Experimental Competition Wednesday, 2 nd May 2012

CONSTRUCTION ELECTRICIAN APPRENTICESHIP PROGRAM Line D: Apply Circuit Concepts D-2 LEARNING GUIDE D-2 ANALYZE DC CIRCUITS

SCRIPT. Voltage Dividers

Date Period Name. For each description on the left, write the letter of the matching item.

Solving Series Circuits and Kirchhoff s Voltage Law

ECE215 Lecture 7 Date:

18-3 Circuit Analogies, and Kirchoff s Rules

ELECTRIC CIRCUIT PROBLEMS 12 AUGUST 2014

Electric Circuits. Part One: Electric Circuits

Transistor Configuration

University f P rtland Sch l f Engineering

Experiment #3 Kirchhoff's Laws

Ohm s Law and Electrical Circuits

EE 201 Lab 1. Meters, DC sources, and DC circuits with resistors

Single-Phase Transformation Review

EE2003 Circuit Theory Chapter 13 Magnetically Coupled Circuits

21.1 Resistors in Series and Parallel

Series, Parallel, and Series-Parallel Speaker Wiring

DC Bias. Graphical Analysis. Script

Solution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1.

Real Analog Chapter 3: Nodal & Mesh Analysis. 3 Introduction and Chapter Objectives. 3.1 Introduction and Terminology

Combined Series and Parallel Circuits

An amplifier increases the power (amplitude) of an

Closed circuit complete path for electrons follow. Open circuit no charge flow and no current.

Lab 2: DC Circuits Lab Assignment

A piece of wire of resistance R is cut into five equal parts. These parts are then connected in

Chapter 20. Circuits. q I = t. (a) (b) (c) Energy Charge

Laboratory 2. Lab 2. Instrument Familiarization and Basic Electrical Relations. Required Components: 2 1k resistors 2 1M resistors 1 2k resistor

hing/fall16/electric_circuits.html

Electronics I. Midterm #1

Contemporary Electronics: Fundamentals. Experiments in. Fundamentals First Edition

Chapter 23: Circuits Solutions

Series and Parallel Resistors

Electronics I. Midterm #1

Ohm's Law and DC Circuits

Unit 3. Electrical Circuits

Lab #2 Voltage and Current Division

The sum of the currents entering a circuit junction is equal to the sum of the currents leaving the junction.

UNIT-2 CURRENT ELECTRICITY

Električni krugovi. Copyright 2015 John Wiley & Sons, Inc. All rights reserved.

ELECTRIC Circuits Test

10Vdc. Figure 1. Schematics for verifying Kirchhoff's Laws

UNIVERSITY OF TECHNOLOGY, JAMAICA School of Engineering -

Unit 2. Circuit Analysis Techniques. 2.1 The Node-Voltage Method

AC/DC ELECTRICAL SYSTEMS

Chapter 11. Alternating Current

Operational Amplifiers

1.1 Overview of Electrical Engineering

Series Circuits and Kirchoff s Voltage Law

InstrumentationTools.com

Revision: April 16, E Main Suite D Pullman, WA (509) Voice and Fax

Lecture Week 5. Quiz #2 Ohm s Law Homework Power Review Shorthand Notation Active Components Ideal Op-amps

Transcription:

Chapter 4 Series Circuits Topics Covered in Chapter 4 4-1: Why I Is the Same in All Parts of a Series Circuit 4-2: Total R Equals the Sum of All Series Resistances 4-3: Series IR Voltage Drops 4-4: Kirchhoff s Voltage Law (KVL) 4-5: Polarity of IR Voltage Drops 2007 The McGraw-Hill Companies, Inc. All rights reserved.

Topics Covered in Chapter 4 4-6: Total Power in a Series Circuit 4-8: Analyzing Series Circuits with Random Unknowns 4-10: Troubleshooting: Opens and Shorts in Series Circuits McGraw-Hill 2007 The McGraw-Hill Companies, Inc. All rights reserved.

4-1: Why I Is the Same in All Parts of a Series Circuit Characteristics of a Series Circuit The current is the same everywhere in a series circuit. The total resistance is equal to the sum of the individual resistance values. The total voltage is equal to the sum of the IR voltage drops across the individual resistances. The total power is equal to the sum of the power dissipated by each resistance.

4-1: Why I Is the Same in All Parts of a Series Circuit Current is the movement of electric charge between two points, produced by the applied voltage. The free electrons moving away from one point are continuously replaced by free electrons flowing from an adjacent point in the series circuit. All electrons have the same speed as those leaving the voltage source. Therefore, I is the same in all parts of a series circuit.

4-1: Why I Is the Same in All Parts of a Series Circuit Fig. 4-2: There is only one current through R 1, R 2, and R 3 in series. (a) Electron drift is the same in all parts of a series circuit. (b) Current I is the same at all points in a series circuit. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4-1: Why I Is the Same in All Parts of Series Current Formulas a Series Circuit Total current is the same as the individual currents in the series string: I T = I 1 = I 2 = I 3 =... = etc. Total current is equal to total voltage divided by total resistance: I T V R T T

4-2: Total R Equals the Sum of All Series Resistances When a series circuit is connected across a voltage source, the free electrons must drift through all the series resistances. There is only one path for free electrons to follow. If there are two or more resistances in the same current path, the total resistance across the voltage source is the sum of all the resistances.

4-2: Total R Equals the Sum of All Series Resistances Fig. 4-4: Series resistances are added for the total R T. (a) R 1 alone is 3 Ω. (b) R 1 and R 2 in series together total 5 Ω. (c) The R T of 5 Ω is the same as one resistance of 5 Ω between points A and B. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4-2: Total R Equals the Sum of All Series Resistances Series Resistance Formulas The total resistance is the sum of the individual resistances. R 1 R 2 R 3 R 5 R 4 R T = R 1 + R 2 + R 3 + R 4 + R 5

4-2: Total R Equals the Sum of All Series Resistances Series Resistance Formulas Total resistance is equal to total voltage divided by the circuit current: R T V I T T

4-2: Total R Equals the Sum of All Series Resistances Determining the Total Resistance R 1 = 10 R 2 = 15 R 3 = 20 R 5 = 25 R 4 = 30 R T = R 1 + R 2 + R 3 + R 4 + R 5 R T = 10 + 15 + 20 + 30 + 25 = 100

4-3: Series IR Voltage Drops By Ohm s Law, the voltage across a resistance equals I R. In a series circuit, the IR voltage across each resistance is called an IR drop or voltage drop, because it reduces the potential difference available for the remaining resistances in the circuit.

4-3: Series IR Voltage Drops Fig. 4-5: An example of IR voltage drops V 1 and V 2 in a series circuit. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4-4: Kirchhoff s Voltage Law (KVL) The total voltage is equal to the sum of the drops. V T V 3 V 1 V 2 V 5 V 4 V T = V 1 + V 2 + V 3 + V 4 + V 5 This is known as Kirchhoff s voltage law (KVL).

4-4: Kirchhoff s Voltage Law (KVL) The IR drops must add to equal the applied voltage (KVL). 10 15 V T = 10 V 1 V 2 20 0.1 A V 3 25 30 V 5 V 4 V T = V 1 + V 2 + V 3 + V 4 + V 5 V T = IR 1 + IR 2 + IR 3 + IR 4 + IR 5 V T = 0.1 10 + 0.1 15 + 0.1 20 + 0.1 30 + 0.1 25 V T = 1 V + 1.5 V + 2 V + 3 V + 2.5 V = 10 V

4-5: Polarity of IR Voltage Drops When current flows through a resistor, a voltage equal to IR is dropped across the resistor. The polarity of this IR voltage drop is: Negative at the end where the electrons enter the resistor. Positive at the end where the electrons leave the resistor.

4-5: Polarity of IR Voltage Drops The rule is reversed when considering conventional current: positive charges move into the positive side of the IR voltage. The polarity of the IR drop is the same, regardless of whether we consider electron flow or conventional current.

4-5: Polarity of IR Voltage Drops Fig. 4-8: Polarity of IR voltage drops. (a) Electrons flow into the negative side of V 1 across R 1. (b) Same polarity of V 1 with positive charges into the positive side. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4-6: Total Power in a Series Circuit The power needed to produce current in each series resistor is used up in the form of heat. The total power used in the circuit is equal to the sum of the individual powers dissipated in each part of the circuit. Total power can also be calculated as V T I Fig. 4-10: The sum of the individual powers P 1 and P 2 used in each resistance equals the total power P T produced by the source. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4-6: Total Power in a Series Circuit Finding Total Power 10 15 V T = 10 P 1 P 2 20 0.1 A P 3 25 30 P 5 P 4 P T = P 1 + P 2 + P 3 + P 4 + P 5 P T = I 2 R 1 + I 2 R 2 + I 2 R 3 + I 2 R 4 + I 2 R 5 P T = 0.1 W + 0.15 W + 0.2 W + 0.3 W + 0.25 W = 1 W Check: P T = V T I = 10 V 0.1 A = 1 W

4-8: Analyzing Series Circuits with Random Unknowns When trying to analyze a series circuit, keep the following principles in mind: 1. If I is known for one component, use this value in all components. The current is the same in all parts of a series circuit. 2. If I is unknown, it may be calculated in one of two ways: Divide V T by R T Divide an individual IR drop by its R. Remember not to mix a total value for an entire circuit with an individual value for part of the circuit.

4-8: Analyzing Series Circuits with Random Unknowns 3. If all individual voltage drops are known, add them to determine the applied V T. A known voltage drop may be subtracted from V T to find a remaining voltage drop.

4-10: Troubleshooting: Opens and Shorts in Series Circuits The Effect of an Open in a Series Circuit An open circuit is a circuit with a break in the current path. When a series circuit is open, the current is zero in all parts of the circuit. The total resistance of an open circuit is infinite ohms. When a series circuit is open, the applied voltage appears across the open points.

4-10: Troubleshooting: Opens and Shorts in Series Circuits The Effect of an Open in a Series Circuit Fig. 4-19: Effect of an open in a series circuit. (b) Open path between points P1 and P2 results in zero current in all parts of the circuit. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4-10: Troubleshooting: Opens and Shorts in Series Circuits Applied voltage V T is still present, even with zero current. The voltage source still has its same potential difference across its positive and negative terminals. Example: The 120-V potential difference is always available from the terminals of a wall outlet. If an appliance is connected, current will flow. If you touch the metal terminals when nothing else is connected, you will receive a shock.

4-10: Troubleshooting: Opens and Shorts in Series Circuits The Effect of a Short in a Series Circuit When part of a series circuit is shorted, the current flow increases. When part of a series circuit is shorted, the voltage drops across the non-shorted elements increase. The voltage drop across the shorted component drops to 0 V.

4-10: Troubleshooting: Opens and Shorts in Series Circuits The Effect of a Short in a Series Circuit Fig. 4-21: Series circuit of Fig. 4-18 with R 2 shorted. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4-10: Troubleshooting: Opens and Shorts in Series Circuits When troubleshooting a series circuit containing three or more resistors, remember: The component whose voltage changes in the opposite direction of the other components is the defective component.