Introduction 1. The Experimental Method

Similar documents
Experiment 12: Microwaves

Experiment 5: Spark Gap Microwave Generator Dipole Radiation, Polarization, Interference W14D2

Part 1: Standing Waves - Measuring Wavelengths

Lab 12 Microwave Optics.

INTERFERENCE OF SOUND WAVES

Laboratory Exercise 6 THE OSCILLOSCOPE

Turn off all electronic devices

Physics 4C Chabot College Scott Hildreth

Chapter 21. Alternating Current Circuits and Electromagnetic Waves

Microwave Diffraction and Interference

Experiment 19. Microwave Optics 1

Microwave Optics. Department of Physics & Astronomy Texas Christian University, Fort Worth, TX. January 16, 2014

Physics 476LW. Advanced Physics Laboratory - Microwave Optics

Exercise 9: inductor-resistor-capacitor (LRC) circuits

7. Experiment K: Wave Propagation

Definitions of Technical Terms

PHYS2090 OPTICAL PHYSICS Laboratory Microwaves

9. Microwaves. 9.1 Introduction. Safety consideration

point at zero displacement string 80 scale / cm Fig. 4.1

MFJ-249B HF/VHF SWR ANALYZER

6 Experiment II: Law of Reflection

In an unmagnetized piece of iron, the atoms are arranged in domains. In each domain the atoms are aligned, but the domains themselves are random.

... frequency, f speed, v......

ELECTROMAGNETIC WAVES HERTZ S EXPERIMENTS & OBSERVATIONS

AC Circuit. What is alternating current? What is an AC circuit?

1 Diffraction of Microwaves

Q1. (Total 1 mark) Q2. cannot (Total 1 mark)

Lab 10 - MICROWAVE AND LIGHT INTERFERENCE

Electrical Measurements

A Level. A Level Physics. WAVES: Combining Waves (Answers) OCR. Name: Total Marks: /30

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

PHYS102 Previous Exam Problems. Sound Waves. If the speed of sound in air is not given in the problem, take it as 343 m/s.

Standing waves in the microwave range

Antenna? What s That? Chet Thayer WA3I

LS200 TEST DATA IEC61000 SERIES

MFJ-219/219N 440 MHz UHF SWR Analyzer TABLE OF CONTENTS

Chapter 24. Alternating Current Circuits

MICROWAVE OPTICS. Instruction Manual and Experiment Guide for the PASCO scientific Model WA-9314B G

Introduction. Equipment

Chapter 25. Electromagnetic Waves

Lab in a Box Microwave Interferometer

EXPERIMENT 5 : THE DIODE

Lab 10 - Microwave and Light Interference

General Physics (PHY 2140)

BTEC NATIONALS-ELECTRIC AND ELECTRONIC PRINCIPLES ASSIGNMENT 1 RESISTANCE IN ELECTRIC CIRCUITS

Electricity. Interference of microwaves Electromagnetic Oscillations and Waves. What you need:

Lab 1. Resonance and Wireless Energy Transfer Physics Enhancement Programme Department of Physics, Hong Kong Baptist University

28 The diagram shows an experiment which has been set up to demonstrate two-source interference, using microwaves of wavelength λ.

ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment)

Experimental Competition

College Physics II Lab 3: Microwave Optics

1. Farad is a unit of (a) Resistance (b) Inductance (c) Capacitance. (d) Frequency.

UNIVERSITY OF TECHNOLOGY, JAMAICA SCHOOL OF ENGENEERING. Electrical Engineering Science. Laboratory Manual

A Level. A Level Physics. WAVES: Combining Waves (Answers) AQA. Name: Total Marks: /30

1. What is the unit of electromotive force? (a) volt (b) ampere (c) watt (d) ohm. 2. The resonant frequency of a tuned (LRC) circuit is given by

Interference and Diffraction of Microwaves

EXPERIMENT 5 : DIODES AND RECTIFICATION

CHAPTER 22: Electromagnetic Waves. Answers to Questions

Waves, Wavelength, Frequency and. Bands. Al Penney VO1NO

UNIVERSITY OF TECHNOLOGY, JAMAICA School of Engineering -

Lesson 11: Antennas. Copyright Winters Version 1.0. Preparation for Amateur Radio Technician Class Exam

EXPERIMENT 5 : THE DIODE

Useful general references for this experiment are Cheng [1], and Ramo et al [2].

Bryn Mawr College Department of Physics Undergraduate Teaching Laboratories Electron Spin Resonance

Test Equipment. PHYS 401 Physics of Ham Radio

Table of Contents Lesson One Lesson Two Lesson Three Lesson Four Lesson Five PREVIEW COPY

(i) Determine the admittance parameters of the network of Fig 1 (f) and draw its - equivalent circuit.

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS

Technician License Course Chapter 4. Lesson Plan Module 9 Antenna Fundamentals, Feed Lines & SWR

RC Circuit Activity. Retrieve a power cord and a voltage sensor from the wire rack hanging on the wall in the lab room.

Resonance in Circuits

Lecture 3.10 ELECTRICITY Alternating current Electrical safety

Lab 10 - MICROWAVE AND LIGHT INTERFERENCE

DIGITAL MULTIMETER CONTENTS DIGITAL MULTIMETER CONTENTS

EE 42/100 Lecture 18: RLC Circuits. Rev A 3/17/2010 (3:48 PM) Prof. Ali M. Niknejad

5: SOUND WAVES IN TUBES AND RESONANCES INTRODUCTION

TESTING OF ELECTROMAGNETIC RADIATION RESONATOR-CONVERTER PROTOTYPE

Introduction to oscilloscope. and time dependent circuits

Lab 2 Radio-frequency Coils and Construction

The 6LE8 One Tube Broadcaster

Electromagnetic Can Crusher Victoria Meadows and Matthew Kundrock Advisor: Dr. Gore. Introduction

Lloyd s Mirror. Understand the nature of sound-waves. Calculate the frequency of ultrasonic sound-waves by Lloyd s Mirror Interference.

Oscilloscope Measurements

PHY 123/253 Shot Noise

EXPERIMENT 5 : THE DIODE

Lab #4: Measuring Q by the Ringdown Method Physics 426

Introduction to Electronic Equipment

Understanding and Optimizing Electromagnetic Compatibility in Switchmode Power Supplies

NO FREE-ENERGY NIKOLA TESLA SECRETS FOR EVERYBODY FIRST SECRET. All of Tesla s secrets are based on ELECTROMAGNETIC FEEDBACK

Fig On Fig. 6.1 label one set of the lines in the first order spectrum R, G and V to indicate which is red, green and violet.

Friday 18 January 2013 Morning

Name Date: Course number: MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START EXPERIMENT 10. Electronic Circuits

Simple Oscillators. OBJECTIVES To observe some general properties of oscillatory systems. To demonstrate the use of an RLC circuit as a filter.

RLC Circuits Building An AM Radio

AC Theory and Electronics

AS Physics Unit 5 - Waves 1

Exam 3 Solutions. ! r, the ratio is ( N ) ( ) ( )( ) 2. PHY2054 Spring Prof. Pradeep Kumar Prof. Paul Avery Prof. Yoonseok Lee Mar.

9.8 Making a Shaker (or Forever) Flashlight. Grade 9 Activity Plan

Technician License. Course

Radio and Electronics Fundamentals

Transcription:

8.02 Fall 2001 A Microwave Generator, Receiver, and Reflector 1 Introduction 1 Hertz first generated electromagnetic waves in 1888, and we replicate Hertz s original experiment here. The method he used was to charge and discharge a capacitor connected to a spark gap and an antenna. When the spark jumps across the gap (once per 0.13 millisecond in our experiment), the antenna is excited by this discharge current, and charges oscillate back and forth in the antenna at the antenna s natural resonance frequency. For our experiment this natural resonance frequency of the antenna is very high, about 2.4 x 10 9 cycles per second or 2.4 GigaHertz. For a brief period around the breakdown ( spark ) the antenna radiates electromagnetic waves at this high frequency. We will detect and find the wavelength λ of these bursts of radiation. Using the relation 10 f λ = c = 3x10 cm / s, we will then deduce the natural resonance frequency of the antenna, around 2.4 GigaHertz, and show that it is what we expect on the basis of the very simple considerations given below. Figure 1 The Experimental Method Here in broad outline is how the experiment works 2. The 25 pf capacitor shown in the diagram is charged by a high voltage power supply on your electronics board. This voltage is typically 700 Volts, but this is a very safe level because the current is limited to a very small value across the capacitor. When the voltage is high enough and the distance between thumbtacks in your spark gap (the space between the two thumb tacks above) is small enough, the capacitor discharges across the gap. This happens when the electric field in the gap exceeds the breakdown field of air (about a 1000 Volts per mm). The radiation we are seeking is generated in this discharge (see explanation below). After discharging, the capacitor charges up again through a 4.5 M Ω resistor. The time constant is τ 12 = RC = (4.5x10 Ω)(25x10 F ) = 1.3x10 6 4 sec So the charging and breakdown will generate a spark discharge about every 0.13 msec. The Resonant Frequency Of The Antenna During the discharge across the spark gap, the antenna acts as an LC oscillator in which energy sloshes back and forth between magnetic and electric energy. Initially, when the two halves of the antenna are charged up with opposites signs of charge, the two halves of the antenna act as capacitor plates with energy stored in the electric field between them. When breakdown starts and current flows across the gap to discharge the antenna halves, energy is transferred from electric to magnetic energy associated with the flowing current. The antenna halves discharge, but the current continues on in the same direction 1 We are grateful to Dr. Peter Dourmashkin, Professor John King, and Professor Phillip Morrison for elements of this description and for the design of the microwave experiment itself, which is from 8.02X. 2 If you are interested in the details, we can provide you with a complete description of the electronics and physics in addition to this write-up. 1

8.02 Fall 2001 A Microwave Generator, Receiver, and Reflector 2 ( overshoots ), charging up the two halves of the antenna to the opposite polarity from the original configuration. The current then goes to zero, but the recharged antenna (with opposite polarity) now drives current in the opposite direction, discharging the antenna halves again and then recharging them back to the original polarity. This process continues on and on for many cycles at the resonance frequency ω = 1/ LC. How fast do these oscillations take place? Here is a crude estimate that turns out to be right. If l is the length of one of the halves of the antenna (about 31 mm in our case), then the distance that the charge oscillation travels going from the (+-) polarity to the (-+) polarity and back again to the original (+-) polarity is 4l (from one tip of the antenna to the other tip and back again). The time T it takes to do this, assuming that information is flowing at the speed of light, is T = 4l/c, where c is the speed of light. If the charges are being shaken back and forth at a frequency of 1/T, they will radiate electromagnetic radiation at this frequency. For l = 31 mm, this estimate of the frequency radiated is f rad 8 3x10 m / s = 1/ T = c / 4l = = 2.4x10 0.124m 9 Hz = 2.4 GHz Electromagnetic waves with this frequency will have a wavelength of c/f, or 4l. Thus our simple picture predicts that we will generate electromagnetic radiation with this antenna with wavelengths of about 12.4 cm, and that is something that we will experimentally confirm in this experiment. Before you continue, go to the Current Assignment" page, which has a link to animations of the electric field lines generated by this back and forth sloshing of charge between the two halves of the antenna. This is the radiation pattern we will be studying today. The oscillations of the charge back and forth between the two halves of the antenna damp out as energy is dissipated, and the antenna is finally discharged. Then the 25 pf-capacitor starts charging up again, ultimately headed toward breakdown in another 0.13 millisecond. The antenna will thus emits bursts of damped radiation at frequencies around 2.4 GHz every looks like Figure 2 on a long time scale: 1.3x 10 4 sec. The overall time series Figure 2 oscillations start And, if we blow up the region around the spark discharge, it looks like this (Figure 3): 2

8.02 Fall 2001 A Microwave Generator, Receiver, and Reflector 3 Figure 3 The curves just above represent the current flowing in your receiver as a result of the oscillating electric fields of the microwave radiation. We have a diode in the receiver that allows current to flow in only one direction, and we detect that current using the amplifier and multimeter. Setting up the Apparatus WARNING: DO NOT TOUCH PARTS ON YOUR ELECTRONICS BOARD WHILE OPERATING, SINCE THEY MAY BECOME QUITE WARM!!! Figure 4: The spark gap transmitting antenna and the receiver (the receiver is shown in two different orientations). Plug the power supply into your electronics board at the position indicated. Plug in your receiving antenna (which looks like the tube to the left) to the remaining input jack on the board. Your transmitting antenna is the clothespin assembly, and is already connected. Once you have connected up the power supply, turn on the transmitter (using the off-on switch the LED will light when it is on). 3

8.02 Fall 2001 A Microwave Generator, Receiver, and Reflector 4 Your one remaining task is to adjust the spark gap using the wing nut on the clothespin antenna until you get a spark discharge. Once you get that discharge, and learn how to make it reasonably steady, you can use your receiver to make measurements of the radiation emitted. Arrange the transmitting antenna (Figure 4 above right) on your desktop as far away from metal as possible. Put your electronics boards on the desk and somewhat back so that you can explore the radiation field with the receiver (Figure 4 above left). You should be able to move the receiving antenna from a few inches from the transmitter to as far as the shielded wire will let you go on the other side -- for larger distances, move the amplifier. Now, with your power supply connected, vary the distance between the thumbtacks by adjusting the nut. You will be able to see the spark when breakdown occurs. To measure the characteristics of the radiation emitted, you explore the radiation generated using signals from your receiver that are amplified by an amplifier and read out on your voltmeter. Exercise 1. Measuring The Polarization Of The Emitted Radiation Prediction 1-1: The radiation we are generating is produced by charges oscillating back and forth between the two halves of your antenna (see Figure 1 above). If you hold the receiver in the two orientations shown in Figure 4 above, which should produce the biggest signal on the voltmeter connected to your receiver? Receiver wire vertical Receiver wire horizontal Activity 1-1: Measure the polarization with your receiver and check this prediction. Exercise 2. Measuring The Angular Dependence of The Emitted Radiation Figure 5 Figure 6 Prediction 2-1: The radiation we are generating is produced by charges oscillating back and forth along the length of your antenna. If you move the receiver in the two patterns shown above, which should show the biggest change in signal on your voltmeter over the range of motion? the left pattern(fig. 5) the right pattern (Fig. 6) 4

8.02 Fall 2001 A Microwave Generator, Receiver, and Reflector 5 Activity 2-1: Measure the angular dependence of the emitted radiation with your receiver and check this prediction. Exercise 3. Measuring The Wavelength of The Emitted Radiation Figure 7 This is by far the most challenging part of the experiment. We will measure the wavelength of the radiation from your transmitter by using a reflector to reflect the radiation so that it returns to interfere with itself. By measuring the distance we must move the reflector to go from constructive to destructive interference and back again, we will determine the wavelength of the radiation. First adjust your gap so that the spark produces a steady reading on the meter. Unless you can perform this task, you will have a hard time locating the adjacent maxima and minima below. Then set up one of the reflectors you are given in the positions shown below, and position the receiver and transmitter as shown. With this configuration, you want to vary the distance between the reflector and transmitter, holding both the transmitter and receiver fixed in space. Search for the positions for constructive and destructive interference by moving the reflector slowly toward or away from the transmitter, watching the voltmeter scale as you do so. The clearest signal is probably obtained in moving the reflector in the region from about 10 cm to about 24 cm away from the transmitter. You hope to see the voltage rise and drop rhythmically with your motion as you move along this distance. Adjacent maxima should be separated by ½ wavelength. A maximum and a minimum should be separated by ¼ wavelength. Make a number of different measurements to arrive at a reasonable average for the wavelength of your wave using this method. Problems In Making The Measurement: It is not easy to get a convincing result here unless the spark is cooperating. Cleaning the tack faces with a scrap of paper will usually calm things down, at least for a fraction of a minute. Mark the positions of the antenna that give meter maxima (minima would do as well), performing the sweep several times to counteract the spark's general jumpiness. Use your ruler to get the wavelengths. It is best for one person to both move the receiver and judge the meter reading, a subtle feedback mechanism. The peaks are a half-wavelength apart. When you find a value for the wavelength your group is comfortable with, write that value on the whiteboard for your table. At the end of this activity we will compare values. 5