The Inverse Mellin Transform, Bell Polynomials, a Generalized Dobinski Relation, and the Confluent Hypergeometric Functions

Similar documents
H2 Mathematics Pure Mathematics Section A Comprehensive Checklist of Concepts and Skills by Mr Wee Wen Shih. Visit: wenshih.wordpress.

信號與系統 Signals and Systems

信號與系統 Signals and Systems

Permutation Enumeration

Summary of Random Variable Concepts April 19, 2000

1. How many possible ways are there to form five-letter words using only the letters A H? How many such words consist of five distinct letters?

Name Class. Date Section. Test Form A Chapter Chapter 9 Infinite Series. 1 n 1 2 n 3n 1, n 1, 2, 3, Find the fourth term of the sequence

Roberto s Notes on Infinite Series Chapter 1: Series Section 2. Infinite series

Logarithms APPENDIX IV. 265 Appendix

EECE 301 Signals & Systems Prof. Mark Fowler

Symmetric implicit multiderivative numerical integrators for direct solution of fifth-order differential equations

Unit 5: Estimating with Confidence

2.1 Partial Derivatives

Counting on r-fibonacci Numbers

A generalization of Eulerian numbers via rook placements

Definitions and claims functions of several variables

Mod. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Higher. Expressions & Functions. Unit 2 Course Contents. Higher Higher Higher Higher Higher. Higher Higher. Higher Higher. Higher Higher.

Ch 9 Sequences, Series, and Probability

Differentiable functions (Sec. 14.4)

Applications of Monte Carlo Methods in Charged Particles Optics

Data Mining the Online Encyclopedia of Integer Sequences for New Identities Hieu Nguyen

ADSP ADSP ADSP ADSP. Advanced Digital Signal Processing (18-792) Spring Fall Semester, Department of Electrical and Computer Engineering

A RULE OF THUMB FOR RIFFLE SHUFFLING

PEAT SEISMOLOGY Lecture 6: Ray theory

X-Bar and S-Squared Charts

PROJECT #2 GENERIC ROBOT SIMULATOR

CHAPTER 5 A NEAR-LOSSLESS RUN-LENGTH CODER

Combinatorics. Chapter Permutations. Reading questions. Counting Problems. Counting Technique: The Product Rule

3. Error Correcting Codes

OPTIMIZATION OF RNS FIR FILTERS FOR 6-INPUTS LUT BASED FPGAS

DIFFERENTIAL EQUATIONS. A principal model of physical phenomena.

MEASUREMENT AND CONTORL OF TOTAL HARMONIC DISTORTION IN FREQUENCY RANGE 0,02-10KHZ.

CP 405/EC 422 MODEL TEST PAPER - 1 PULSE & DIGITAL CIRCUITS. Time: Three Hours Maximum Marks: 100

TEN GOOD REASONS FOR USING SPLINE WAVELETS

CS3203 #5. 6/9/04 Janak J Parekh

On the Binomial Coefficients and their Interpolation *

}, how many different strings of length n 1 exist? }, how many different strings of length n 2 exist that contain at least one a 1

Laboratory Exercise 3: Dynamic System Response Laboratory Handout AME 250: Fundamentals of Measurements and Data Analysis

A SELECTIVE POINTER FORWARDING STRATEGY FOR LOCATION TRACKING IN PERSONAL COMMUNICATION SYSTEMS

THE LUCAS TRIANGLE RECOUNTED. Arthur T. Benjamin Dept. of Mathematics, Harvey Mudd College, Claremont, CA Introduction

PRACTICAL FILTER DESIGN & IMPLEMENTATION LAB

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, Introduction to EECS 2.

(2) The MOSFET. Review of. Learning Outcome. (Metal-Oxide-Semiconductor Field Effect Transistor) 2.0) Field Effect Transistor (FET)

Poles and Zeros of H(s), Analog Computers and Active Filters

HYDROELASTICITY OF QUARTER-INFINITE PLATE ON WATER OF FINITE DEPTH

Fingerprint Classification Based on Directional Image Constructed Using Wavelet Transform Domains

DIGITALLY TUNED SINUSOIDAL OSCILLATOR USING MULTIPLE- OUTPUT CURRENT OPERATIONAL AMPLIFIER FOR APPLICATIONS IN HIGH STABLE ACOUSTICAL GENERATORS

[f(t)] 2 + [g(t)] 2 + [h(t)] 2 dt. [f(u)] 2 + [g(u)] 2 + [h(u)] 2 du. The Fundamental Theorem of Calculus implies that s(t) is differentiable and

PERMUTATION AND COMBINATION

f Sum(n) = 6 8 δ(n)+ 1 8 δ(n 1)+ 1 δ(n+1) (1) f Sum(n) = 2 8 δ(n)+ 1 8 δ(n 1)+ 4 8 δ(n 2)+ 1 δ(n 3) (2) n f Sum (n) 0 e 0 = 1 p ap b p c p ap b p c

RECOMMENDATION ITU-R P Propagation by diffraction

Encode Decode Sample Quantize [ ] [ ]

On the Binomial Coefficients and their Interpolation *

Revision: June 10, E Main Suite D Pullman, WA (509) Voice and Fax

AC : USING ELLIPTIC INTEGRALS AND FUNCTIONS TO STUDY LARGE-AMPLITUDE OSCILLATIONS OF A PENDULUM

The Point Spread Function (PSF) using Longitudinal Black and White Strips inside a Circular Aperture

Combined Scheme for Fast PN Code Acquisition

Computational Algorithm for Higher Order Legendre Polynomial and Gaussian Quadrature Method

Fourier Transform. louder softer. louder. softer. amplitude. time. amplitude. time. frequency. frequency. P. J. Grandinetti

Alternating Permutations

Asymptotic behaviour of permutations avoiding generalized patterns


Section 7.2 Logarithmic Functions

Research Article Dominant Mode Wave Impedance of Regular Polygonal Waveguides

CONTROLLING FREQUENCY INFLUENCE ON THE OPERATION OF SERIAL THYRISTOR RLC INVERTERS

B) 0 C) 1 D) No limit. x2 + y2 4) A) 2 B) 0 C) 1 D) No limit. A) 1 B) 2 C) 0 D) No limit. 8xy 6) A) 1 B) 0 C) π D) -1

Circular waveguides. Introduction. Table of Contents

PERMUTATIONS AND COMBINATIONS

Run-Time Error Detection in Polynomial Basis Multiplication Using Linear Codes

MATH Exam 2 Solutions November 16, 2015

Making sure metrics are meaningful

APPLICATION NOTE UNDERSTANDING EFFECTIVE BITS

Partial Differentiation 1 Introduction

Measurement of the atmospheric primary aberrations by 4-aperture DIMM

Continuous Space Fourier Transform (CSFT)

7. Counting Measure. Definitions and Basic Properties

A robust multi-conductor transmission line model to simulate EM transients in underground cables

Effective simulation for robust inverse lithography using convolutionvariation

A SIMPLE METHOD OF GOAL DIRECTED LOSSY SYNTHESIS AND NETWORK OPTIMIZATION

4.3 COLLEGE ALGEBRA. Logarithms. Logarithms. Logarithms 11/5/2015. Logarithmic Functions

Computer Networks - Xarxes de Computadors

Lecture 29: MOSFET Small-Signal Amplifier Examples.

8. Combinatorial Structures

Enhancement of the IEEE MAC Protocol for Scalable Data Collection in Dense Sensor Networks

The Eye. Objectives: Introduction. PHY 192 The Eye 1

Subband Coding of Speech Signals Using Decimation and Interpolation

A New Use of Group Representation Theory in Statistics

VECTOR CALCULUS Julian.O 2016

ADITIONS TO THE METHOD OF ELECTRON BEAM ENERGY MEASUREMENT USING RESONANT ABSORPTION OF LASER LIGHT IN A MAGNETIC FIELD.

A SIMPLE METHOD OF GOAL DIRECTED LOSSY SYNTHESIS AND NETWORK OPTIMIZATION

Math 5BI: Problem Set 1 Linearizing functions of several variables

GENERALIZED SCATTERING MATRIX FOR OPTICAL STRUCTURES. Sunit Mehrotra,Reena Kumbhare and Girish P. Saraph

An Adaptive Image Denoising Method based on Thresholding

Improved IDEA. The IDEA 1 (International Data Encryption Algorithm) algorithm. 1 The IDEA cryptographic algorithm is patented in Europe and in the

1. Vector Fields. f 1 (x, y, z)i + f 2 (x, y, z)j + f 3 (x, y, z)k.

A PLANE WAVE MONTE CARLO SIMULATION METHOD FOR REVERBERATION CHAMBERS

Exam 1 Study Guide. Math 223 Section 12 Fall Student s Name

Single Bit DACs in a Nutshell. Part I DAC Basics

Empirical Estimation of Probability Distribution of Extreme Responses of Turret Moored FPSOs

Transcription:

The Iverse Melli Trasform, Bell Polyomials, a Geeralized Dobiski Relatio, ad the Cofluet Hypergeometric Fuctios Tom Copelad Tsukuba, Japa tcjp@ms.com Nov. 6, 2 Iverse Trasform Represetatios of Delta Fct.. Iverse Fourier Trasform δy sil y lim lim l y l l/2 l/2 e x y e x y The limits, as usual, are to be take outside ay itegral cotaiig the delta fct..2 Iverse Laplace Trasform Lettig p x i the iverse Fourier Traform gives δy i i e p y dp..3 Iverse Melli Trasform i I δz w i e p z w dp, let z ly, w lx, ad p s with δ[ly lx] i i y s x s ds. But, x, y >, givig

INVERSE TRANSFORM REPRESENTATIONS OF DELTA FCT. 2 δ[fu] u i zeros of f δ[ dfu i du u u i ] zeros of f δ[ u u i ] / dfu i, so du δ[ly lx] δ[lx ly] y δ[x y]. Therefore, δy x δx y i i y s x s ds The formally, with Hx the Heaviside step fuctio, Hx fx fy δy x dy σ+ i σ i, the iverse Melli Trasform rep. fy y s dy x s ds σ+ i σ i fs x s ds, i.e., the iverse Melli Trasform of fs, idetifyig the Melli trasform of fx as fs fx x s. A appropriate cotour must be chose to obtai the desired fx usig the iverse Melli trasform. Example I: Widow Fuctio Hy H y δy x Hy { σ+ i σ i y s x s ds} Hy σ+ i σ i y s { x s } ds Hy σ+ i σ i y s { } ds for σ < s Hy σ+ i σ i y s { } ds for σ > s where Hx is the Heaviside step fuctio that vaishes for x <, equals 2 ad is for x >. for x,

2 INTERPOLATION AND RAMANUJAN S MASTER FORMULA 3 Coversely, fs H x x s x s s for Res>. Example II: Dirichlet Series Let fx the fs a a δ x a δ x x s δ x x s a s, a Dirichlet series. Coversely, fx a σ+ i σ i fs x s ds σ+ i σ i / s x s ds a σ+ i σ i a δ x s x s ds a δ x. 2 Iterpolatio ad Ramauja s Master Formula With the fiite differece operator s a s a, s j xj xs xj, the Newto iterpolatio of for Res >. j! s! j! Defiig the modifed Melli Trasform ad its iverse as fs Hx fx the formally fx xs s! ad σ+i s! σ i fs x s ds σ+i sis σ i fs x s s! ds,

2 INTERPOLATION AND RAMANUJAN S MASTER FORMULA 4 fs fx xs s! fx s j xj j! s j Hx fx Hx fx xj s j! j f x! <RMF> fj +, a Newto iterpolatio, ad by closig the iversio cotour to the left with Reσ > ad pickig up the sigularities of if fx is such that fs has o sigularities ad decays sis sufficietly fast i the eighborhood of ifiity. Example III: Expoetial Fct. fs Fiite Part {e x [ e x Hx {e x [ j e x xs s! x j ]} xs for <Res< j! s! xs for Res>. s! j x j j! ]} σ+i σ i s! x s ds σ+i x s ds sis s! σ i for < σ <. Hx e x for σ >. σ+i σ i s! x s ds σ+i x s ds sis s! σ i fs s j fj + s j for all s.

3 BELL / EXPONENTIAL / TOUCHARD POLYNOMIALS 5 3 Bell / Expoetial / Touchard Polyomials For the umber operator x d, x s s! is a eigefuctio with eigevalue s, i.e., x d x s s! s x s s!. For σ > ad, a atural umber, Hx e x [x d ] exp x Hx e x [x d ] σ+i x s ds sis s! σ i Hx e x σ+i sis s x s ds s! σ i Hx e x j j j xj j! Hx j j k k xj j! Hxφ x Hx e x φ : x d : e x, where φ x is the th Bell polyomial, : x d :k x k dk k. The biomial trasform has bee used above: e x e a. x e a. x or e x j j a j x j j! j j k a k xj j!. Coversely, MMT [e x φ x] e x φ x xs s! s for Res> s k k j [ j + ] for all s, agreeig with the Newto iterpolator fs s k k j fj +. To determie the expoetial geeratig fct. for the polyomials cosider Hx exp[t φ. x] Hx e x exp[t φ. : x d :] e x Hx e x expt x d e x e x expt x d σ+i x s ds sis s! σ i

Hx e x Hx e x [ j σ+i sis σ i x s exp t s ds for Res > s! j e t j xj j! ] Hx exp[ x et ] Hx e x exp[ e t : x d :] e x. So also expt x d Gx exp[t φ. : x d :] Gx exp[ et : x d Gx e t. :] Gx 4 Geeralized Dobiski Relatios: Cofluet Hypergeometric Fuctios / Geeralized Laguerre Fuctios The results of the previous sectios ca formally be geeralized operatioally as Hx e x fx d e x Hx e x Hx e x fx d σ+i sis σ i f s x s s! ds σ+i x s ds sis s! σ i Hx e x f[ φ. : x d Hx f[ φ. x], :] e x givig a geeralized Dobiski relatio, Hx f[ φ. x] Hx e x σ+i sis σ i f s x s s! ds, with, for Res > σ, the Melli trasform givig the umbral hybrid Laplace-Melli trasform f s e x f[ φ. x] x s s!.

Checkig for cosistecy, substitute φ. y for s, the formally Hy f φ. y e x f[ φ. x] e y e x f[ φ. x] e y e x f[ φ. x] e y e x f[ φ. x] e y Hy f[ φ. y], ad also e x f[ φ. x] : x! x φ. y [ φ. y ]! : y! δ x y! exp y d δx δx y : x φ. y [ φ. y ]! : Hy ey σ+i sis σ i x s y s ds s! s! Hy e y Lettig fx f φ. x σ+i σ i x+α+ φ. x+α+ x y x s ds Hy e y δx y., the α+ K, α +, x L α x where Ka, b, x is Kummer s cofluet hypergeometric fuctio ad L α x, a geeralized Laguerre fuctio. The Hx L α x Hx φ. x+α+ Hxe x Hx j Hx e x j+α+ σ+i sis σ i x! Hx s+α+ +α+ α+ x α+! x s s! ds. x!

For the associated Newto iterpolatio cosider the Melli trasform agai. f s j e x f[ φ. x] x s s!, e x e x e x fj j f x! fj x! e x x! x s s! x s s! x s s! j fj s + s j fj s j fj. Summarizig, the associated Newto iterpolatio is f s s j fj, or chagig variables, fs s j fj, or traslatig the fuctio, fs s j fj +. x+α+ Specifically for fx Chu-Vadermode idetity appears: s+α+ e x e x φ. x+α+ α+ x α+!, we walk through the steps agai to see that the x s s! x s s!

s j α+ +s α+ α+ s j+α+. x+α+ s j+α+ j Substitutig s for s ad α + for α or traslatig the fct. gives s+α+ s j++α+ j, or for fx, fs s j fj +. Also, s+α+ e x e x e x φ. x+α+ +α+ x! +α+ x! x s s! x s s! x s s!, ad cosistetly j+α+ j dj j e x φ. x+α+ +α+ x! x j j! x j j! +α+ x δ j x! e x φ. x+α+ e x φ. x+α+ δ j x x

Now apply the umbral compositioal iverse of φ x to these equatios. For fx x, from the geeralized Dobiski relatio, Hx f φ. x Hx φ x Hx e x Hxe x j j j xj Hx k j! j k j xk k!. σ+i sis σ i s x s s! ds Replace x umbrally by the the egative of the fallig factorial x., the φ [x. ] k j k j k x k k! x j j x. The last equality follows from the Melli trasform results above with fx x : f s e y f[ φ. y] y s s! dy, givig with x s, x e y e y φ y y x x! k j k j yk k! dy y x x! dy x j j. So, the fallig factorial is the umbral compostioal iverse of the Bell polyomial. Recallig the formulas from above Hx L α x Hx φ. x+α+ Hxe x Hx j Hx e x j+α+ σ+i sis σ i x! Hx s+α+ +α+ α+ x α+! x s s! ds, x! ad substitutig the egative of the fallig factorial s. for x gives

s+α+ s j j+α+ s α+ α+ ad from e x L α x +α+ s σ+i siω σ i ω+α+ s ω ω dω?diverges? s si siα+ k α+ k α+k s k k α+ α+k s +. α+ Note: +α+ s si siα+ s α+ ca be obtaied by repeated use of siλ λ λ! λ! or by usig the Kummer trasformatio pg. 55, Abramowitz ad Stegu, Hadbook of Mathematical Fuctios to obtai e x L α x 4.. Exercises si siα+ Lα α++ x. A Cofirm that e t t φ. x+α φ. x+α! t! dt φ. x+α+ L α x. B Show that t φ. x φ. x! et δx t e x δx t. C Show that φ. x + x, Re >, x >.! D Show that where Uα,, x φ. x α E Show that ψα,, x ψ, α +, x L α x. L α x U,α+,x! is the Tricomi cofluet hypergeometric fuctio. φ. x Uα,,x α α!, so that

F Usig show that siλ λ ν ν µ+ µ+λ siα α Reν >, L α x xα α >, x >. α! G Iterpret! D t t φ. x++α t where D t tλ λ! tλ λ! F P! [: D tt :] t φ. x+α t FP z t t t t z! z λ λ! dz FPFiite Part! z t + z λ λ! dz ad [: D t t :] D t t. H Iterpret α! W α t t φ. x+ α t where W α t α! [: W tt :] α t φ. x+ t F P I Iterpret α! D α t t φ. x t J Prove the relatio t z t α α! dz ad [: W t t :] α W α t t α. α! [: D tt :] α t φ. x +α t. L α x + y e y k L α+k x yk L α+φ. y k! x k φ. x y+α+ φ. x + φ. y+α+ startig with s j s+α+ K Explore! φ. x + j+α+.! L φ. x++!l x. x ad! Which of the above expressios are more fudametal,.i.e., are valid as they stad, for these two cases?