Table of Contents. Preface... xi

Similar documents
Power Electronics Semiconductor Devices

POWER ELECTRONICS. Converters, Applications, and Design. NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota

Contents. About the Authors. Abbreviations and Symbols

POWER ELECTRONICS. Alpha. Science International Ltd. S.C. Tripathy. Oxford, U.K.

Semiconductor Devices

Modern Power Electronics Courses at UCF

Fundamentals of Power Electronics

FUNDAMENTALS OF MODERN VLSI DEVICES

Effects of the Internal Layout on the Performance of IGBT Power Modules

1 FUNDAMENTAL CONCEPTS What is Noise Coupling 1

Chapter 6 Soft-Switching dc-dc Converters Outlines

Fundamentals of Power Semiconductor Devices

POWER- SWITCHING CONVERTERS Medium and High Power

Preface... Chapter 1. Nonlinear Two-terminal Devices... 1

PHYSICS OF SEMICONDUCTOR DEVICES

Transformer Engineering

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI

CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES

Improving conducted EMI forecasting with accurate layout modeling

CHAPTER I INTRODUCTION

DOWNLOAD PDF POWER ELECTRONICS DEVICES DRIVERS AND APPLICATIONS

Power semiconductors... 1 Construction of IGBT components... 66

Power Semiconductor Devices

Electrical Materials may be referred to a metal, dielectrics,electrical insulators or conductors,paramagnetic materials and many other.

MEMS in ECE at CMU. Gary K. Fedder

Power Electronics. Contents

VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION

Contents. Acknowledgments. About the Author

ELECTRONIC DEVICES AND CIRCUITS

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34

3. Draw the two transistor model of a SCR and mention its applications. (MAY 2016)

Simulation Technology for Power Electronics Equipment

A Series-Resonant Half-Bridge Inverter for Induction-Iron Appliances

Lecture Notes. Emerging Devices. William P. Robbins Professor, Dept. of Electrical and Computer Engineering University of Minnesota.

CONTENTS. Chapter 1. Introduction to Power Conversion 1. Basso_FM.qxd 11/20/07 8:39 PM Page v. Foreword xiii Preface xv Nomenclature

PIEZOELECTRIC TRANSFORMER FOR INTEGRATED MOSFET AND IGBT GATE DRIVER

Condition Assessment of High Voltage Insulation in Power System Equipment. R.E. James and Q. Su. The Institution of Engineering and Technology

High-Voltage Switch Using Series-Connected IGBTs With Simple Auxiliary Circuit

Lecture 23 Review of Emerging and Traditional Solid State Switches

Design and Simulation of 15 KV, 15 Stage Solid State Bipolar Marx Generator

Advanced RF MEMS CAMBRIDGE UNIVERSITY PRESS. Edited by STEPAN LUCYSZYN. Imperial College London

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

CHAPTER 3 DC-DC CONVERTER TOPOLOGIES

IGBT Technologies and Applications Overview: How and When to Use an IGBT Vittorio Crisafulli, Apps Eng Manager. Public Information

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT NAME & CODE: EC2403 & RF AND MICROWAVE ENGINEERING UNIT I

2.8 Gen4 Medium Voltage SST Development

Electromagnetic Simulation of Power Modules via Adapted Modelling Tools

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore

Analysis and Design of Autonomous Microwave Circuits

3 Hints for application

Some Key Researches on SiC Device Technologies and their Predicted Advantages

1. The current-doubler rectifier can be used to double the load capability of isolated dc dc converters with bipolar secondaryside

L MOSFETS, IDENTIFICATION, CURVES. PAGE 1. I. Review of JFET (DRAW symbol for n-channel type, with grounded source)

Power Semiconductor Devices for Variable Frequency Drives

Part Derating Parameters

Power Devices Prof. Dr. Ing. Hans Georg Herzog Prof. Dr. Ing. Ralph Kennel

Analysis on IGBT Developments

P-cell and N-cell based IGBT Module: Layout Design, Parasitic Extraction, and Experimental Verification

2 Marks - Question Bank. Unit 1- INTRODUCTION

MegaCube. G. Ortiz, J. Biela, J.W. Kolar. Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory

CMOS Digital Logic Design with Verilog. Chapter1 Digital IC Design &Technology

A New ZVS-PWM Full-Bridge Boost Converter

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY)

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

Power Electronics Semiconductor Switches

3D SOI elements for System-on-Chip applications

(a) All-SiC 2-in-1 module

Power Semiconductors. Brian K. Johnson and Herbert L. Hess University of Idaho P.O. Box Moscow, ID USA

All-SiC Modules Equipped with SiC Trench Gate MOSFETs

Ratings of Semiconductors for AC Drives

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS

Components. Véronique Beauvois, Ir Copyright 2015 Véronique Beauvois, ULg

Power MOSFET Zheng Yang (ERF 3017,

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Review of Power IC Technologies

Modeling Power Converters using Hard Switched Silicon Carbide MOSFETs and Schottky Barrier Diodes

To Study The MATLAB Simulation Of A Single Phase STATCOM And Transmission Line

Joe Warner, Electric Power Industry Conference (EPIC), November 15, 2016 Advances in Grid Equipment Transmission Shunt Compensation

Z Source Inverter for Fuel Cells

Reduction of Stray Inductance in Power Electronic Modules Using Basic Switching Cells

References. Advanced Industrial Electronics Resonant Power Converters

Analog and Telecommunication Electronics

POWER ELECTRONICS PO POST GRAD POS UATE 2010 AC Ch AC o Ch p o per Prepare Prep d are by: d Dr. Gamal Gam SOwilam SOwila 11 December 2016 ١

DEVICE AND TECHNOLOGY SIMULATION OF IGBT ON SOI STRUCTURE

Solid State Devices (2)

Lines and Slotlines. Microstrip. Third Edition. Ramesh Garg. Inder Bahl. Maurizio Bozzi ARTECH HOUSE BOSTON LONDON. artechhouse.

(ESC) , 49 51, 53 54, 59, 155, 161 error amplifier (EA) 53, 56 59, , , 239, 262 ESR, see equivalent series

Novel Zero-Current-Switching (ZCS) PWM Switch Cell Minimizing Additional Conduction Loss

USING F-SERIES IGBT MODULES

Introduction to HVDC VSC HVDC

Lesson Plan. Week Theory Practical Lecture Day. Topic (including assignment / test) Day. Thevenin s theorem, Norton s theorem

Chapter 9 Zero-Voltage or Zero-Current Switchings

SYLLABUS. osmania university CHAPTER - 1 : CONTROL SYSTEMS CLASSIFICATION

Design and Simulation of Synchronous Buck Converter for Microprocessor Applications

Investigation into the design domains interdependencies of an inverter

A Bidirectional DC-DC High Frequency Dual-Half Bridge Series Resonant Converter: Design, Simulation and Experimental Results

CIRCUITS. Raj Nair Donald Bennett PRENTICE HALL

Solid State Devices- Part- II. Module- IV

Design Optimization of Hybrid Switch Soft- Switching Inverters using Multi-Scale Electro- Thermal Simulation

UNIT I POWER SEMI-CONDUCTOR DEVICES

Transcription:

Table of Contents Preface... xi Chapter 1. Power MOSFET Transistors... 1 Pierre ALOÏSI 1.1. Introduction... 1 1.2. Power MOSFET technologies... 5 1.2.1. Diffusion process... 5 1.2.2. Physical and structural MOS parameters... 7 1.2.3. Permanent sustaining current... 20 1.3. Mechanism of power MOSFET operation... 23 1.3.1. Basic principle... 23 1.3.2. Electron injection... 23 1.3.3. Static operation... 25 1.3.4. Dynamic operation... 30 1.4. Power MOSFET main characteristics... 34 1.5. Switching cycle with an inductive load... 36 1.5.1. Switch-on study... 36 1.5.2.Switch-off study... 38 1.6. Characteristic variations due to MOSFET temperature changes... 44 1.7. Over-constrained operations... 46 1.7.1. Overvoltage on the gate... 46 1.7.2. Over-current... 47 1.7.3. Avalanche sustaining... 49 1.7.4. Use of the body diode... 50 1.7.5. Safe operating areas... 51 1.8. Future developments of the power MOSFET... 53 1.9. References... 55

vi Power Electronics Semiconductor Devices Chapter 2. Insulated Gate Bipolar Transistors... 57 Pierre ALOÏSI 2.1. Introduction... 57 2.2. IGBT technology... 58 2.2.1. IGBT structure... 58 2.2.2. Voltage and current characteristics... 60 2.3. Operation technique... 63 2.3.1. Basic principle... 63 2.3.2. Continuous operation... 64 2.3.3. Dynamic operation... 71 2.4. Main IGBT characteristics... 74 2.5 One cycle of hard switching on the inductive load... 75 2.5.1. Switch-on study... 76 2.5.2. Switch-off study... 78 2.6 Soft switching study... 86 2.6.1. Soft switching switch-on: ZVS (Zero Voltage Switching)... 86 2.6.2. Soft switching switch-off: ZCS (Zero Current Switching)... 88 2.7. Temperature operation... 94 2.8. Over-constraint operations... 98 2.8.1. Overvoltage... 98 2.8.2. Over-current... 99 2.8.3. Manufacturer s specified safe operating areas... 113 2.9. Future of IGBT... 116 2.9.1. Silicon evolution... 116 2.9.2. Saturation voltage improvements... 117 2.10. IGBT and MOSFET drives and protections... 119 2.10.1. Gate drive design... 119 2.10.2. Gate drive circuits... 122 2.10.3. MOSFET and IGBT protections... 128 2.11. References... 130 Chapter 3. Series and Parallel Connections of MOS and IGBT... 133 Daniel CHATROUX, Dominique LAFORE and Jean-Luc SCHANEN 3.1. Introduction... 133 3.2. Kinds of associations... 134 3.2.1. Increase of power... 134 3.2.2. Increasing performance... 135 3.3. The study of associations: operation and parameter influence on imbalances in series and parallel... 135 3.3.1. Analysis and characteristics for the study of associations... 135 3.3.2. Static operation... 137

Table of Contents vii 3.3.3. Dynamic operation: commutation... 140 3.3.4. Transient operation... 149 3.3.5. Technological parameters that influence imbalances... 151 3.4. Solutions for design... 152 3.4.1. Parallel association... 152 3.4.2. Series associations... 161 3.4.3. Matrix connection of components... 179 3.5. References... 182 Chapter 4. Silicon Carbide Applications in Power Electronics... 185 Marie-Laure LOCATELLI and Dominique PLANSON 4.1. Introduction... 185 4.2. Physical properties of silicon carbide... 186 4.2.1. Structural features... 186 4.2.2. Chemical, mechanical and thermal features... 189 4.2.3. Electronic and thermal features... 188 4.2.4. Other candidates as semiconductors of power... 195 4.3. State of the art technology for silicon carbide power components.... 296 4.3.1. Substrates and thin layers of SiC... 296 4.3.2. Technological steps for achieving power components... 203 4.4. Applications of silicon carbide in power electronics.... 216 4.4.1. SiC components for high frequency power supplies... 216 4.4.2. SiC components for switching systems under high voltage and high power... 233 4.4.3. High energy SiC components for series protection systems... 249 4.5. Conclusion... 252 4.6. Acknowledgments... 255 4.7. References... 255 Chapter 5. Capacitors for Power Electronics... 267 Abderrahmane BÉROUAL, Sophie GUILLEMET-FRITSCH and Thierry LEBEY 5.1. Introduction... 267 5.2. The various components of the capacitor description... 268 5.2.1. The dielectric material... 269 5.2.2. The armatures... 269 5.2.3. Technology of capacitors... 270 5.2.4. Connections... 271 5.3. Stresses in a capacitor... 272 5.3.1. Stresses related to the voltage magnitude... 272 5.3.2. Losses and drift of capacity... 273 5.3.3. Thermal stresses... 274

viii Power Electronics Semiconductor Devices 5.3.4. Electromechanical stresses... 275 5.3.5. Electromagnetic constraints... 276 5.4. Film capacitors... 276 5.4.1. Armatures... 276 5.4.2. Dielectric materials... 279 5.5. Impregnated capacitors... 279 5.6. Electrolytic capacitors... 280 5.7. Modeling and use of capacitors... 282 5.7.1. Limitations of capacitors... 283 5.7.2. Application of capacitors... 290 5.8. Ceramic capacitors... 293 5.8.1. Definitions... 294 5.8.2. Methods of producing ceramics... 296 5.8.3. Technologies of ceramic capacitors... 299 5.8.4. The different types of components.... 302 5.8.5. Summary conclusion... 310 5.9. Specific applications of ceramic capacitors in power electronics... 311 5.9.1. Snubber circuits... 311 5.9.2. In ZVS... 312 5.9.3. Series resonant converters... 313 5.10. R&D perspectives on capacitors for power electronics... 313 5.10.1. Film capacitors... 313 5.10.2. Electrolytic capacitors... 314 5.10.3. Ceramic capacitors... 314 5.11. References... 315 Chapter 6. Modeling Connections... 317 Edith CLAVEL, François COSTA, Arnaud GUENA, Cyrille GAUTIER, James ROUDET and Jean-Luc SCHANEN 6.1. Introduction... 317 6.1.1. Importance of interconnections in power electronics... 317 6.1.2. The constraints imposed on the interconnections... 318 6.1.3. The various interconnections used in power electronics... 319 6.1.4. The need to model the interconnections... 320 6.2. The method of modeling... 321 6.2.1. The required qualities... 321 6.2.2. Which method of modeling?... 322 6.2.3. Brief description of the PEEC method... 324 6.3. The printed circuit board... 329 6.3.1. Introduction... 330 6.3.2. Thin wire method... 330

Table of Contents ix 6.3.3. Expressions of per unit length parameters... 332 6.3.4. Representation by multi-poles, circuit modeling... 340 6.3.5. Topological analysis of printed circuit... 346 6.3.6. Experimental applications... 349 6.3.7. Conclusion on the simulation of printed circuit... 353 6.4. Towards a better understanding of massive interconnections... 353 6.4.1. General considerations... 353 6.4.2 The printed circuit board or the isolated metal substrate (IMS)... 359 6.4.3. Massive conductors... 361 6.4.4. Bus bars... 361 6.5. Experimental validations... 362 6.6. Using these models... 366 6.6.1. Determination of equivalent impedance... 366 6.6.2. Other applications: towards thermal analysis and electrodynamic efforts computation... 390 6.7. Conclusion... 399 6.8. References... 400 Chapter 7. Commutation Cell.... 403 James ROUDET and Jean-Luc SCHANEN 7.1. Introduction: a well-defined commutation cell... 403 7.2. Some more or less coupled physical phenomena... 404 7.3. The players in switching (respective roles of the component and its environment)... 410 7.3.1. Closure of the MOSFET... 411 7.3.2. Opening of the MOSFET... 424 7.3.3. Summary... 431 7.4. References... 432 Chapter 8. Power Electronics and Thermal Management... 433 Corinne PERRET and Robert PERRET 8.1. Introduction: the need for efficient cooling of electronic modules... 433 8.2. Current power components... 436 8.2.1. Silicon chip: the active component... 436 8.2.2. Distribution of losses in the silicon chip... 442 8.3. Power electronic modules... 442 8.3.1. Main features of the power electronic modules... 442 8.3.2. The main heat equations in the module... 444 8.3.3. Cooling currently used for components of power electronics... 446 8.3.4. Towards an all silicon approach... 448 8.3.5. Conclusion... 451

x Power Electronics Semiconductor Devices 8.4. Laws of thermal and fluid exchange for forced convection with single phase operation... 452 8.4.1. Notion of thermal resistance... 452 8.4.2. Laws of convective exchanges from a thermal and hydraulic point of view: the four numbers of fluids physics... 456 8.5. Modeling heat exchanges... 461 8.5.1. Semi-analytical approach... 461 8.5.2. The numerical models... 472 8.5.3. Taking into account electro-thermal coupling... 478 8.6. Experimental validation and results... 486 8.6.1. Infrared thermography... 486 8.6.2. Indirect measurement of temperature from a thermo-sensible parameter... 490 8.7. Conclusion... 493 8.8. References... 494 Chapter 9. Towards Integrated Power Electronics... 497 Patrick AUSTIN, Marie BREIL and Jean-Louis SANCHEZ 9.1. The integration... 497 9.1.1. Introduction... 497 9.1.2. The different types of monolithic integration... 499 9.2. Examples and development of functional integration... 507 9.2.1. The MOS thyristor structures... 507 9.2.2. Evolution towards the integration of specific functions... 514 9.3. Integration of functions within the power component... 520 9.3.1. Monolithic integration of electrical functions... 520 9.3.2. Extensions of integration... 530 9.4. Design method and technologies... 535 9.4.1 Evolution of methods and design tools for functional integration.. 535 9.4.2. The technologies... 537 9.5. Conclusion... 541 9.6. References... 542 List of Authors... 547 Index... 551