Modeling and Simulation of SRF and P-Q based Control DSTATCOM

Similar documents
IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 06, 2014 ISSN (online):

Comparison of Control Algorithms for Shunt Active Filter for Harmonic Mitigation

SIMULATION OF D-STATCOM AND DVR IN POWER SYSTEMS

A Five Level DSTATCOM for Compensation of Reactive Power and Harmonics

PSPWM Control Strategy and SRF Method of Cascaded H-Bridge MLI based DSTATCOM for Enhancement of Power Quality

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE

Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side

Shunt Active Power Filter based on SRF theory and Hysteresis Band Current Controller under different Load conditions

Mitigation of Voltage Sag/Swell Using UPQC

Improvement of Voltage Profile using D- STATCOM Simulation under sag and swell condition

Enhancement of Power Quality in Distribution System Using D-Statcom for Different Faults

Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM

Power Quality Improvement Using Cascaded H-Bridge Multilevel Inverter Based Dstatcom

Design Strategy for Optimum Rating Selection of Interline D-STATCOM

Power Quality Improvement using Shunt Passive Filter

Harmonics Elimination Using Shunt Active Filter

Protection from Voltage Sags and Swells by Using FACTS Controller

Cascaded H-Bridge Five Level Inverter for Harmonics Mitigation and Reactive Power Control

ABSTRACT I. INTRODUCTION

DESIGN A D STATCOM FOR VOLTAGE HARMONIC SUPPRESSION IN DISTRIBUTION SYSTEM

Improvement of Power Quality in Distribution System using D-STATCOM With PI and PID Controller

COMPENSATION OF POWER QUALITY PROBLEMS USING ACTIVE POWER FILTER

SHUNT COMPENSATOR USED FOR POWER QUALITY IMPROVEMENT

Mitigation of Voltage Sag and Swell using Distribution Static Synchronous Compensator (DSTATCOM)

Power Quality Improvement in Distribution System Using D-STATCOM

ISSN Vol.07,Issue.21, December-2015, Pages:

MITIGATION OF VOLTAGE SAGS/SWELLS USING DYNAMIC VOLTAGE RESTORER (DVR)

Design and Simulation of DVR Used For Voltage Sag Mitigation at Distribution Side

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

A DSTATCOM-Control Scheme for Power Quality Improvement of Grid Connected Wind Energy System for Balanced and Unbalanced Non linear Loads

ANALYSIS OF SYNCHRONOUS-REFERENCE-FRAME-BASED CONTROL METHOD FOR UPQC UNDER UNBALANCED AND DISTORTED LOAD CONDITIONS Salava Nagaraju* 1

Harmonic Immunity And Power Factor Correction By Instantaneous Power Control Of D-STATCOM

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System

Harmonics Reduction using 4-Leg Shunt Active Power Filters

Power Quality enhancement of a distribution line with DSTATCOM

INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION

IJESR/Nov 2012/ Volume-2/Issue-11/Article No-21/ ISSN International Journal of Engineering & Science Research

Active Power Filter with Fast PI Controller Using Matlab/simulink

Unit.2-Voltage Sag. D.Maharajan Ph.D Assistant Professor Department of Electrical and Electronics Engg., SRM University, Chennai-203

Simulation of D-STATCOM for Power Quality Improvement With Fuzzy Based Phase Locked Loop Control Strategy

SIMULATION OF DISTRIBUTED POWER FLOW CONTROLLER FACTS DEVICE IN VOLTAGE SAG AND SWELL MITIGATION

Power Quality Improvement of Grid Connected Wind Energy System by Statcom for Balanced and Unbalanced Linear and Nonlinear Loads

Analysis, Modeling and Simulation of Dynamic Voltage Restorer (DVR)for Compensation of Voltage for sag-swell Disturbances

ISSN Vol.03,Issue.11, December-2015, Pages:

Design and Simulation of Level Shifted Cascaded H-Bridge Multilevel Inverter Based DSTATCOM

Development and Simulation of Dynamic Voltage Restorer for Voltage SAG Mitigation using Matrix Converter

Power Quality improvement of a three phase four wire system using UPQC

Ripple Reduction Using Seven-Level Shunt Active Power Filter for High-Power Drives

A Comparative Study on Four Time-Domain Harmonic Detection Methods for Active Power Filters Serving in Distorted Supply

Application of Distribution Static Synchronous Compensator in Electrical Distribution System

IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 12 June 2016 ISSN (online): X

CHAPTER 4 POWER QUALITY AND VAR COMPENSATION IN DISTRIBUTION SYSTEMS

ENHANCEMENT OF POWER QUALITY USING 9-LEVEL CASCADED H-BRIDGE BASED D-STATCOM WITH IRP THEORY SK. Meeravali* 1, Dr. K.

A NOVEL APPROACH ON INSTANTANEOUS POWER CONTROL OF D-STATCOM WITH CONSIDERATION OF POWER FACTOR CORRECTION

Power Control Scheme of D-Statcom

Modified Three-Phase Four-Wire UPQC Topology with Reduced DC-Link Voltage Rating

A Time Domain Reference-Algorithm for Shunt Active Power Filters

Design and Simulation of Three Phase Shunt Active Power Filter Using SRF Theory

Application of Fuzzy Logic Controller in Shunt Active Power Filter

A Review on Improvement of Power Quality using D-STATCOM

A CONTROL TECHNIQUE FOR INSTANT MITIGATION OF VOLTAGE SAG/SWELL BY DYNAMIC VOLTAGE RESTORER

PI-VPI Based Current Control Strategy to Improve the Performance of Shunt Active Power Filter

Study of Different Fault Conditions using D-STATCOM Employing Diesel Generator-Based Isolation Generation System

Control of grid connected inverter system for sinusoidal current injection with improved performance

Improvement of Power Quality Using Hybrid Active Power Filter in Three- Phase Three- Wire System Applied to Induction Drive

Modelling of Dynamic Voltage Restorer for Mitigation of Voltage Sag and Swell Using Phase Locked Loop

[Mahagaonkar*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

Enhancement of Power Quality Using Advanced Series Active Power Filters

Power Control and Quality Management in DG Grid Interfaced Systems

Harmonics Reduction of 3 Phase Diode Bridge Rectifier by Implementing P-Q Theory with Active Filter

Implementation of SRF based Multilevel Shunt Active Filter for Harmonic Control

A Voltage Controlled D-STATCOM for Power Quality Improvement with DVR

Analysis of Reference Current Generation for Shunt Active Power Filter Using SRF Algorithm to Compensate Harmonic Current

Simulation Results of a Shunt Active Power Filter with Control Based on p-q Theory

Voltage Sag and Mitigation Using Dynamic Voltage Restorer (DVR) System

A Voltage Controlled Dstatcom for Power Quality Improvement

Downloaded from

Multi-Pulse Voltage Source Converter Statcom For Voltage Flicker Mitigation

Manjeet Baniwal 1, U.Venkata Reddy 2, Gaurav Kumar Jha 3

HYSTERESIS CONTROL FOR CURRENT HARMONICS SUPPRESSION USING SHUNT ACTIVE FILTER. Rajesh Kr. Ahuja

OVERVIEW OF SVC AND STATCOM FOR INSTANTANEOUS POWER CONTROL AND POWER FACTOR IMPROVEMENT

Sinusoidal Current Control based Shunt Active Power Filter for Current Harmonics Reduction

A DYNAMIC VOLTAGE RESTORER (DVR) BASED MITIGATION SCHEME FOR VOLTAGE SAG AND SWELL

Enhancement of Power Quality with Multifunctional D-STATCOM Operated under Stiff Source for Induction Motor Applications

IMPROVEMENT OF POWER QUALITY USING CUSTOM POWER DEVICES

Simulation of Multi Converter Unified Power Quality Conditioner for Two Feeder Distribution System

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013

SIMULATION VERIFICATION OF DYNAMIC VOLTAGE RESTORER USING HYSTERESIS BAND VOLTAGE CONTROL

Multifunctional Dynamic Voltage Restorer Using Matrix Converter Resmi. S, Reshmi. V, Joffie Jacob Amal Jyothi College of Engineering, Kanjirappally

STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads

P.CHAITHANYAKUMAR, T.VARAPRASAD/

A MATLAB-SIMULINK APPROACH TO SHUNT ACTIVE POWER FILTERS

Improvement in Power Quality of Distribution System Using STATCOM

Power Quality Improvement of Unified Power Quality Conditioner Using Reference Signal Generation Method

Power Quality Improvement using Active shunt Power filter using PI Controller

Power Quality Improvement in Fourteen Bus System using UPQC

Performance of DVR under various Fault conditions in Electrical Distribution System

Level Shifted Pulse Width Modulation in Three Phase Multilevel Inverter for Power Quality Improvement

Voltage Sags in Distribution Systems with Induction Motor Loads Fed by Power Converters and Voltage Mitigation using DVR and D-STATCOM

Comparison of Three leg and Four Leg VSC DSTATCOM for Power Quality Assessment

Transcription:

International Journal of Engineering Research and Development ISSN: 2278-067X, Volume 1, Issue 10 (June 2012), PP.65-71 www.ijerd.com Modeling and Simulation of SRF and P-Q based Control DSTATCOM Kasimvali. A 1, J. Srinivasa Rao 2 1 M-Tech Student, Power System Control & Automation, Department Of Electrical And Electronics Engineering, QIS College, of Engineering & Technology, (A.P), India. 2 Professor, Department of Electrical & Electronics Engineering, QIS College, of Engineering & Technology, (A.P), India. Abstract With the widespread use of harmonic generating devices, the control of harmonic currents to maintain a high level of power quality is becoming increasingly important. An effective way for harmonic suppression is the harmonic compensation by using active power filter. This paper presents a comprehensive survey of DSTATCOM control strategies put forward recently. It is aimed at providing a broad perspective on the status of DSTATCOM control methods to researchers and application engineers dealing with harmonic suppression issues. Many control techniques have been designed, developed, and realized for active filters in recent years. This paper presents different types of Synchronous reference frame methods for real time generation of compensating current for harmonic mitigation and reactive power compensation. All the techniques are analyzed mathematically and simulation results are obtained which are being compared in terms of its compensation performance with different parameters under steady state condition. The three techniques analyzed are the Synchronous Reference Frame Theory (SRF), SRF theory without synchronizing circuit like phase lock loop (PLL) also called instantaneous current component theory and finally modified SRF theory. Simulation results are obtained under sinusoidal balanced voltage source balanced load condition. The comparison and effectiveness of all the methods is based on the theoretical analysis and simulation results obtained with MATLAB employing a three phase three wire DSTATCOM test system. Keywords D-STATCOM, Voltage Sags, Voltage Source Converter (VSC). I. INTRODUCTION One of the most common power quality problems today is voltage dips. A voltage dip is a short time (10 ms to 1 minute) event during which a reduction in r.m.s voltage magnitude occurs. It is often set only by two parameters, depth/magnitude and duration. The voltage dip magnitude is ranged from 10% to 90% of nominal voltage (which corresponds to 90% to 10% remaining voltage) and with a duration from half a cycle to 1 min. In a three-phase system a voltage dip is by nature a three-phase phenomenon, which affects both the phase-to-ground and phase-to-phase voltages. A voltage dip is caused by a fault in the utility system, a fault within the customer s facility or a large increase of the load current, like starting a motor or transformer energizing. Typical faults are single-phase or multiple-phase short circuits, which leads to high currents. The high current results in a voltage drop over the network impedance. At the fault location the voltage in the faulted phases drops close to zero, whereas in the non-faulted phases it remains more or less unchanged [1, 2]. Voltage dips are one of the most occurring power quality problems. Off course, for an industry an outage is worse, than a voltage dip, but voltage dips occur more often and cause severe problems and economical losses. Utilities often focus on disturbances from end-user equipment as the main power quality problems. This is correct for many disturbances, flicker, harmonics, etc., but voltage dips mainly have their origin in the higher voltage levels. Faults due to lightning, is one of the most common causes to voltage dips on overhead lines. If the economical losses due to voltage dips are significant, mitigation actions can be profitable for the customer and even in some cases for the utility. Since there is no standard solution which will work for every site, each mitigation action must be carefully planned and evaluated. There are different ways to mitigate voltage dips, swell and interruptions in transmission and distribution systems. At present, a wide range of very flexible controllers, which capitalize on newly available power electronics components, are emerging for custom power applications [3, 4]. Among these, the distribution static compensator and the dynamic voltage restorer are most effective devices, both of them based on the VSC principle. STATCOM is often used in transmission system. When it is used in distribution system, it is called D-STATCOM (STATCOM in Distribution system). D-STATCOM is a key FACTS controller and it utilizes power electronics to solve many power quality problems commonly faced by distribution systems. Potential applications of D-STATCOM include power factor correction, voltage regulation, load balancing and harmonic reduction. Comparing with the SVC, the D- STATCOM has quicker response time and compact structure. It is expected that the D-STATCOM will replace the roles of SVC in nearly future D-STATCOM and STATCOM are different in both structure and function, while the choice of control strategy is related to the main-circuit structure and main function of compensators [3], so D-STATCOM and STATCOM adopt different control strategy. At present, the use of STATCOM is wide and its strategy is mature, while the introduction of D-STATCOM is seldom reported. Refer to the strategies for STATCOM, in this paper, a compound control strategy used in D-STATCOM is presented to achieve the purpose of rapid-response compensation. A PWM-based control scheme has been implemented to control the electronic valves in the two-level VSC used in the D-STATCOM [5, 6]. 65

Figure. 1 Basic principal of shunt current compensation DSTATCOM II. DESIGN OF DSTATCOM A. Principle of DSTATCOM A D-STATCOM (Distribution Static Compensator), which is schematically depicted in Figure-1, consists of a twolevel Voltage Source Converter (VSC), a dc energy storage device, a coupling transformer connected in shunt to the distribution network through a coupling transformer. The VSC converts the dc voltage across the storage device into a set of three-phase ac output voltages. These voltages are in phase and coupled with the ac system through the reactance of the coupling transformer. Suitable adjustment of the phase and magnitude of the D-STATCOM output voltages allows effective control of active and reactive power exchanges between the DSTATCOM and the ac system. Such configuration allows the device to absorb or generate controllable active and reactive power. Figure 1 Schematic Diagram of a DSTATCOM The VSC connected in shunt with the ac system provides a multifunctional topology which can be used for up to three quite distinct purposes: 66

1. Voltage regulation and compensation of reactive power; 2. Correction of power factor 3. Elimination of current harmonics. Modeling and Simulation of SRF and P-Q based Control DSTATCOM Here, such device is employed to provide continuous voltage regulation using an indirectly controlled converter. As shown in Figure-1 the shunt injected current I sh corrects the voltage sag by adjusting the voltage drop across the system impedance Z th. The value of I sh can be controlled by adjusting the output voltage of the converter. The shunt injected current I sh can be written as, I sh = I L I S = I L ( V th V L ) / Z th (1) I sh /_η = I L /_- θ (2) The complex power injection of the D-STATCOM can be expressed as, * S sh = V L I sh (3) It may be mentioned that the effectiveness of the DSTATCOM in correcting voltage sag depends on the value of Z th or fault level of the load bus. When the shunt injected current I sh is kept in quadrature with V L, the desired voltage correction can be achieved without injecting any active power into the system. On the other hand, when the value of I sh is minimized, the same voltage correction can be achieved with minimum apparent power injection into the system. III. SRF METHODS Among the several methods presented in the literature, the Synchronous Reference Frame method (SRF) is one of the most common and probably it is widely used method. This section is organized as to describe succinctly the SRF methods. The three methods presented in this section with some results obtained with the above mentioned methods. The nonlinear load considered is a three-phase diode bridge rectifier. A Synchronous Reference Theory (SRF) In the SRF [5], the load current signals are transformed into the conventional rotating frame d-q. If theta is the transformation angle, the transformation is defined by: Fig.2 shows the basic configuration of synchronous reference frame. In the SRF is a time varying angle that represents the angular position of the reference frame which is rotating at constant speed in synchronism with the three phase ac voltages. In the SRF is a time varying angle that represents the angular position of the reference frame which is rotating at constant speed in synchronism with the three phase ac voltages. To implement the SRF method some kind of synchronizing system should be used. In [6] phase-locked loop (PLL) is used for the implementation of this method. In this case the speed of the reference frame is practically constant, that is, the method behaves as if the reference frame s moment of inertia is infinite. The fundamental currents of the d-q components are now dc values. The harmonics appear like ripple. Harmonic isolation of the d-q transformed signal is achieved by removing the dc offset. This is accomplished using high pass filters (HPF). In spite of a high pass filter, a low pass filter is used to obtain the reference source current in d-q coordinates. 67

Figure. 2 Basic principal of SRF B. Instantaneous Current Component (id-iq) Theory The Modified Synchronous Frame method is presented in [7]. It is called the instantaneous current component (idiq) method. This is similar to the SRF frame method. The transformation angle is now obtained with the voltages of the ac network. The major difference is that, due to voltage harmonics and imbalance, the speed of the reference frame is no longer constant. It varies instantaneously depending of the waveform of the three phase voltage system. In this method the compensating currents are obtained from the instantaneous active and reactive current components and of the nonlinear load. In the same way, the mains voltages V(a,b,c) and the polluted currents il(a,b,c) in α-β components must be calculated as given by (2), where C is Clarke Transformation Matrix. However, the load current components are derived from a synchronous reference frame based on the Park transformation, where represents the instantaneous voltage vector angle (3). Figure.3 Principal of the synchronous reference frame method 68

Fig. 3 shows the block diagram SRF method. Under balanced and sinusoidal mains voltage conditions angle θ is a uniformly increasing function of time. This transformation angle is sensitive to voltage harmonics and unbalance; therefore dθ/dt may not be constant over a mains period. With transformation (2) and (3) the direct voltage component is IV. MATLAB/SIMULINK MODELING AND SIMULATION RESULTS Fig. 5 shows the Matlab/Simulink model of Shunt active power filter. Here simulation is carried out for four cases. In case one APF is simulated using Synchronous Reference Theory (SRF), in case two APF is simulated using Instantaneous Current Component (id-iq) Theory, in case three APF is simulated using Modified (id-iq) Theory and case four APF is simulated in BLDC drive application. Figure.5 Matlab/Simulink Model of Shunt Active Power Filter 69

A Case one Figure. 6 Simulation results for Synchronous Reference Theory (SRF) Fig.6 shows the simulation results for SRF theory. It shows three phase source voltage, three phase source currents and three phase non sinusoidal load currents. B Case two Figure. 7 Simulation results for Instantaneous Current Component (id-iq) Theory Fig.7 shows the simulation results for Instantaneous Current Component (id-iq) Theory theory. It shows three phase source voltage, three phase source currents and three phase non sinusoidal load currents. V. CONCLUSION This paper presents the compensation performance of all the different SRF techniques under sinusoidal voltage source condition as shown in table-1. Results are similar with gained source THD under IEEE 519, but under various filter type the chebyshev type filter is having superior performance compare to Butterworth filter for all methods. The Synchronous Reference Frame method is one of the most common and performing methods for detection of harmonics in active filters. An Improved Synchronous Reference Frame Method for the control of active power filters was presented. It is called Filtered Modified Reference Frame Method (FMRF) and is based on the same principle as the Synchronous Reference Frame method. However, this new method explores the fact that the performance of the active filter to isolate harmonics depends on the speed of the system that determines the rotating reference frame, but doesn t depend on its position. So, the delay introduced by the ac voltage filters, used for the detection of the reference frame, has no influence on the detection 70

capability of the method. Compared with other methods, this new method presents some advantages due to its simplicity. Finally a BLDC drive application is considered for simulation purpose. THD plots without APF and with APF are presented REFERENCES [1]. IEEE Recommended Practices and Requirements for Harmonic Control of Electrical Power systems, IEEE Standards. 519-1992, 1993. [2]. H.Akagi, New trends in active filters for power conditioning, IEEE Industry Applications., vol. 32, No-6, pp. 1312-1322, 1996. [3]. H. Akagi, Y. Kanazawa, and A. Nabae, "Generalized theory of the instantaneous reactive power in three-phase circuits," Proc. 1983 Int. Power Electronics Conf., Tokyo. Japan, 1983. pp. 1375-1386. [4]. H. Akagi, Y. Kanazawa, and A. Nabae Instantaneous reactive power compensators comprising switching devices without energy storage components, IEEE Trans. Ind Appli.,Vol. IA-20, 1984. [5]. Bhattacharya, M. Divan, and B. Benejee, Synchronous Reference Frame Harmonic Isolator Using Series Active Filter, 4th European Power Electronic Conference, Florence, 1991, Vol. 3, pp. 30-35. [6]. M.J. Newman, D.N.Zmood, D.G.Holmes, Stationary frame harmonic reference generation for active filter systems, IEEE Trans. on Ind. App., Vol. 38, No. 6, pp. 1591 1599, 2002. [7]. V.Soares,P.Verdelho,G.D.Marques, An instantaneous active reactive current component method for active filters IEEE Trans. Power Electronics, vol. 15, no. 4, July- 2000, pp. 660 669. [8]. G.D.Marques, V.Fernao Pires, Mariusz Mlinowski, and Marian Kazmierkowski, An improved synchronous Reference Method for active filters, the International conference on computer as a tool, EUROCON 2007, Warsaw, September - 2007, pp. 2564-2569. [9]. V. Soares, P.Verdelho, G. D. Marques, Active Power Filter Control Circuit Based on the Instantaneous Active and reactive Current id-iq Method Power Electronics Specialists Conference, Pesc 97 St. Louis, Missouri, June 22-27, 1997, pp- 1096-1101. [10]. P. Verdelho, G. D. Marques, An Active Power Filter and Unbalanced Current Compensator IEEE Transactions on Industrial Electronics, vol. 44, Nº3 June 1997, pp 321-328. [11]. A.Cavallani and G.C.Montarani, Compensation strategies for shunt active-filter control, IEEE Trans. Power Electron., vol. 9, no. 6, Nov. 1994, pp. 587 593. [12]. B.Singh, K.Al-Haddad and Chandra Ambrish," Harmonic elimination, reactive power compensation and load balancing in three phase, four wire electric distribution system supplying nonlinear loads", Electric Power System Research, Vo1.44, 1998, pp.93-100. 71