Turbo-coding of Coherence Multiplexed Optical PPM CDMA System With Balanced Detection

Similar documents
BER Performance of Turbo-Coded PPM CDMA Systems on Optical Fiber

On the performance of Turbo Codes over UWB channels at low SNR

Simulation of Optical CDMA using OOC Code

BER Analysis for Synchronous All-Optical CDMA LANs with Modified Prime Codes

Study of Turbo Coded OFDM over Fading Channel

Performance of OCDMA Systems Using Random Diagonal Code for Different Decoders Architecture Schemes

Chapter 3 Convolutional Codes and Trellis Coded Modulation

Performance comparison of convolutional and block turbo codes

Next Generation CDMA Technology

Hybrid Subcarrier Multiplexed Spectral-Amplitude-Coding Optical CDMA System Performance for Point-to-Point Optical Transmissions

Mitigation of distortion in FH-OCDMA Networks with Various Modulation Techniques

Modulo-p Addition Based Constant Weight Variable Length Prime Codes for SAC-OCDMA Systems

SNR Estimation in Nakagami Fading with Diversity for Turbo Decoding

A rate one half code for approaching the Shannon limit by 0.1dB

PERFORMANCE ANALYSIS OF A NEW CLASS OF CODES WITH FLEXIBLE CROSS CORRELATION FOR SAC-OCDMA SYSTEM

Power Efficiency of LDPC Codes under Hard and Soft Decision QAM Modulated OFDM

An Improved Rate Matching Method for DVB Systems Through Pilot Bit Insertion

1 Introduction. Keywords: modified double weight (MDW) code, SAC- OCDMA, WDM and FBG

CAPACITY ENRICHMENT OCDMA BASED ON ALGORITHM OF NOVEL FLEXIBLE CROSS CORRELATION (FCC) ADDRESS CODE

Performance Analysis of MIMO Equalization Techniques with Highly Efficient Channel Coding Schemes

SIMULTANEOUS INTERROGATION OF MULTIPLE FIBER BRAGG GRATING SENSORS FOR DYNAMIC STRAIN MEASUREMENTS

THE idea behind constellation shaping is that signals with

Performance of Nonuniform M-ary QAM Constellation on Nonlinear Channels

Ultra high speed optical transmission using subcarrier-multiplexed four-dimensional LDPCcoded

CONSTRUCTION AND PERFORMANCE STUDIES OF A PSEUDO-ORTHOGONAL CODE FOR FIBER OPTIC CDMA LAN

Available online at ScienceDirect. Procedia Computer Science 93 (2016 )

Department of Electronic Engineering FINAL YEAR PROJECT REPORT

Performance Analysis Of Hybrid Optical OFDM System With High Order Dispersion Compensation

2.50 Gbps Optical CDMA Transmission System

ISSN: Page 320

Performance Analysis of SAC OCDMA in FSO system using SPD Technique with APD for Different Weather Conditions

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013

Three-level Code Division Multiplex for Local Area Networks

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 22.

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 26, NO. 16, AUGUST 15, /$ IEEE

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise

Phase Modulator for Higher Order Dispersion Compensation in Optical OFDM System

Coding for the Slepian-Wolf Problem With Turbo Codes

Fiber-Optic Communication Systems

Jitter in Digital Communication Systems, Part 1

Communications Theory and Engineering

New Architecture & Codes for Optical Frequency-Hopping Multiple Access

Performance of a 1Gbps Optical Direct Sequence CDMA Based on Sampled Fiber Bragg Grating.

TURBO codes are an exciting new channel coding scheme

FOR wireless applications on fading channels, channel

S Optical Networks Course Lecture 3: Modulation and Demodulation

White Paper FEC In Optical Transmission. Giacomo Losio ProLabs Head of Technology

EXIT Chart Analysis for Turbo LDS-OFDM Receivers

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

Cardinality Enhancement of SAC-OCDMA Systems Using new Diagonal Double Weight Code

ANALYSIS PERFORMANCE OF HYBRID SUBCARRIER MULTIPLEXED OCDMA SYSTEM BASED ON AND SUBTRACTION DETECTION AND SINGLE PHOTODIODE DETECTION

Research Letter Throughput of Type II HARQ-OFDM/TDM Using MMSE-FDE in a Multipath Channel

A review on optical time division multiplexing (OTDM)

Lecture 8 Fiber Optical Communication Lecture 8, Slide 1

π code 0 Changchun,130000,China Key Laboratory of National Defense.Changchun,130000,China Keywords:DPSK; CSRZ; atmospheric channel

ISSN: International Journal of Innovative Research in Science, Engineering and Technology

REVIEW OF COOPERATIVE SCHEMES BASED ON DISTRIBUTED CODING STRATEGY

Master s Thesis Defense

All-Optical Signal Processing. Technologies for Network. Applications. Prof. Paul Prucnal. Department of Electrical Engineering PRINCETON UNIVERSITY

Optimized BPSK and QAM Techniques for OFDM Systems

PH-7. Understanding of FWM Behavior in 2-D Time-Spreading Wavelength- Hopping OCDMA Systems. Abstract. Taher M. Bazan Egyptian Armed Forces

Comparative Analysis of Inter Satellite Links using Free Space Optical Communication with OOK and QPSK Modulation Techniques in Turbo Codes

High-Speed Visible Light Indoor Networks Based on Optical Orthogonal Codes and Combinatorial Designs

Comparison of Different Detection Techniques Based on Enhanced Double Weight Code in Optical Code Division Multiple Access System

Turbo Codes for Pulse Position Modulation: Applying BCJR algorithm on PPM signals

Performance Analysis of SOA-MZI based All-Optical AND & XOR Gate

Module 12 : System Degradation and Power Penalty

Comparison of Cooperative Schemes using Joint Channel Coding and High-order Modulation

n Based on the decision rule Po- Ning Chapter Po- Ning Chapter

Lecture 7 Fiber Optical Communication Lecture 7, Slide 1

BANDWIDTH-PERFORMANCE TRADEOFFS FOR A TRANSMISSION WITH CONCURRENT SIGNALS

Comparison of MIMO OFDM System with BPSK and QPSK Modulation

Module 10 : Receiver Noise and Bit Error Ratio

Performance of Turbo codec OFDM in Rayleigh fading channel for Wireless communication

Simulation Performance of MMSE Iterative Equalization with Soft Boolean Value Propagation

Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing

Analytical Comparison of Various Fiber-Optic CDMA Receiver Structures

SNR Estimation in Nakagami-m Fading With Diversity Combining and Its Application to Turbo Decoding

Performance Analysis of OFDM FSO System using ODSB, OSSB and OVSB modulation scheme by employing Spatial Diversity

Fundamentals of Digital Communication

All-Optical Signal Processing and Optical Regeneration

Multi-user, 10 Gb/s spectrally. coded O-CDMA system with hybrid chip and slot-level timing coordination

Effect of Signal Direct Detection on Sub-Carrier Multiplexed Radio over Fiber System

POLARIZED OPTICAL ORTHOGONAL CODE FOR OPTICAL CODE DIVISION MULTIPLE ACCESS SYSTEMS

Bit error rate simulation using 16 qam technique in matlab

Multirate schemes for multimedia applications in DS/CDMA Systems

Study of Optical Spectral CDMA Zero Cross-correlation Code

CHAPTER 5 SPECTRAL EFFICIENCY IN DWDM

Performance Evaluation using M-QAM Modulated Optical OFDM Signals

SAC- OCDMA System Using Different Detection Techniques

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang

Bridging the Gap Between Parallel and Serial Concatenated Codes

Performance Analysis of Dispersion Compensation using FBG and DCF in WDM Systems

Performance Evaluation of 32 Channel DWDM System Using Dispersion Compensation Unit at Different Bit Rates

Spectrally Compact Optical Subcarrier Multiplexing with 42.6 Gbit/s AM-PSK Payload and 2.5Gbit/s NRZ Labels

Optical Complex Spectrum Analyzer (OCSA)

International Journal of Engineering and Techniques - Volume 3 Issue 4, July-Aug 2017

Optimum Power Allocation in Cooperative Networks

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING. FINAL EXAMINATION, April 2017 DURATION: 2.5 hours

International Journal of Advanced Research in Computer Science and Software Engineering

Transcription:

American Journal of Applied Sciences 4 (5): 64-68, 007 ISSN 1546-939 007 Science Publications Turbo-coding of Coherence Multiplexed Optical PPM CDMA System With Balanced Detection K. Chitra and V.C. Ravichandran Department of ECE, College of Engineering, Anna University, Chennai-600 05, Tamilnadu, India Abstract: The effects of turbo-coding on the coherence multiplexed optical PPM CDMA systems are shown by evaluating bit error rate (BER) with respect to system parameters such as interleaver length (K), number of simultaneous users (N), code length (f), initial pulsewidth (t0) and normalized threshold (θ) by including the effects of thermal noise and shot noise. Turbo-codes increase the number of simultaneous users besides reducing the BER for a decreasing normalized threshold. As the initial pulsewidth reduces from 7ps to 5ps the BER reduces from 1.639x10-17 to 7.0167x10-18. For a fixed number of simultaneous users (N=0), an initial pulsewidth, (t0 = 5ps) and a normalized threshold (θ = 0.84), it is seen that the turbo-codes of interleaver length 10 reduces BER in the order 10-10, 10-18 and 10-3 for the code length varying as 63, 17 and 55 respectively. On comparison with the direct detection it is found that the balanced detection could accommodate an additional number of 8 users at a reduced BER of 10-16. Key words: Coherence multiplexing, CDMA networks, turbo-coded PPM, balanced detection INTRODUCTION Optical code division multiple access (OCDMA) technique is an emerging technology which permits multiple users to be multiplexed asynchronously at same wavelength through their unique signature sequences [1]. Optical Orthogonal Codes (OOCs) are commonly used as signature sequences for OCDMA communication systems. Presently, turbo-coded optical PPM communication systems are widely employed in OCDMA networks. In addition to a near optimum error correcting performance [], the turbo-coded PPM systems achieve a better coding gain with reasonable encoding and decoding complexity. A variety of turbo decoding algorithms of varying complexity are implemented in achieving a low bit error rate [3]. However owing to its asynchronous capability, the coherence multiplexed networks are used for high data rates in OCDMA networks [4]. Balanced detection in coherence multiplexing removes signal terms common to both the detectors of high CMRR and produces successful decoding for matched delays and a noise-like jitter signal for unsuccessful decoding. The advantages of a coherence multiplexed CDMA network and turbo-coded optical PPM CDMA system are combined in order to achieve a lower BER and more number of users than that of a direct-detection scheme with APD detectors. Fig. 1: Block diagram of a coherence multiplexed turbo-coded optical PPM CDMA system The effects of various noises such as shot noise and thermal noise are also considered. The performance evaluation is carried out using transfer function bounding techniques [5]. System description: The block diagram of the coherence multiplexed turbo-coded optical PPM CDMA system is shown Fig. 1. The binary information of each user is fed to a turbo encoder producing a block-coded sequence of length K. A (1, 7/5, 7/5) turbo encoder of rate r=1/3 is considered for analysis with one punctured bit. A multiplexer can be used to transmit the two parity sequences of the turbo encoder alternatively. The information bits of weight i is converted into an output sequence of weight i+d, where d is the total weight of the two parity sequences. Corresponding Author: K.Chitra, Research Scholar, Department of ECE, College of Engineering, Anna University, Chennai- 600 05, Tamilnadu, India 64

The turbo-coded output is then passed to an electrical PPM modulator where the coded bit stream is blocked into a symbol of length log M bits. A binary PPM signaling format is assumed whereby each turbocoded bit is either placed in zeroth or first slot for an information bit of zero or one respectively. The optical encoder then encodes the PPM modulated turbo-coded output. Every encoder has a two-arm Mach-Zehnder interferometer (MZI) with a time delay element in one arm and a dispersive element in another arm, which produces signature sequences for CDMA networks. Programmable fiber Bragg gratings [6] can be used for obtaining distinct sequences for many users. The differential delay between any two transmitters must be greater than the source coherence time, τ c, to reduce the crosstalk. For shorter interferometer delays, a broader bandwidth source is to be considered. The spreaded information sequences from all the asynchronous users are coupled through a NxN star coupler and are connected to balanced receivers which modify the noise power spectral density and improve the signal-to-noise ratio [7]. Each receiver has a MZI acting as a decoder and a pair of photodiodes for differential detection [8]. The beat noise due to the optical field pairs that travels the same path are cancelled out in the MZI decoder, thereby reducing crosstalk. The optical decoder produces maximum output for authorized users whose encoder and decoder time delays are matched well within the source coherence time. Reprogramming of dispersive elements can also be carried out to match the signature sequences of different pairs of transmitters and receivers. The PPM demodulator identifies the slot with the highest output as the transmitted sequence. BCJR algorithm [9] is used for producing extrinsic information in the turbo decoder stages. Log-MAP algorithm decodes the signal and recovers the original information bits. Performance analysis: An upper bound on the turbocoded bit error probability can be derived using transfer function bounding technique. For a PPM channel, the bit error rate depends on the probability of making correct slot decision. The upper bound on turbo-coded bit error probability is given by: K K i K p b B ( i,d ) p b1 (1) i = 0 K d = 0 i where N 1 1 N 1 i N = ( ) 1 i θ µ µ θ p + b p 1 p Q Q () 1 i= 1 i Am. J. Applied Sci., 4 (5): 64-68, 007 65 p = T Tb ; µ = ( i + λ) ;µ 4 ( i + λ + 1 ); = = i + = λ + th (3) th is the thermal noise of the detectors. T is the rms pulsewidth, T b is the bit rate of the individual user, is the variance of the Gaussian pulse, λ is the mean and variance of the shot noise, B(i,d) is the number of code words generated by an input sequence of input hamming weight i and output hamming weight d. The conditional probability, P(d/i), of obtaining a code fragment of weight d, for a given input sequence of weight i is [5], P(d/i) = t(k,i,d) / Σ d t(k,i,d ) (4) K = t ( K, i, d) (5) i where K is the interleaver length, i.e. the number of information bits and the denominator term in the above equation gives the total number of code words of hamming weight i. For a rate 1/3 and (1,7/5,7/5) turbo encoder, the probability p (d 1, d / i) that any input sequence of weight i will be mapped into codeword fragments of weights d 1 and d is P (d 1, d / i) = P 7/5 (d 1 /i). P 7/5 (d /i) (6) and hence B(i,d) = K K d 1 = 0 d = 0 P ( d 1, d NUMERICAL RESULTS / i ) (7) The performance analysis of a coherence multiplexed turbo-coded optical PPM CDMA system is carried out in terms of BER by varying the following system parameters namely number of simultaneous users, normalized threshold, initial pulse width, interleaver length and code length. The BER is computed using Eq.(1) to Eq.(7). Turbo-codes with an interleaver length of 10 and 50 are considered for the numerical analysis. The initial pulsewidth is allowed to vary from 5 ps to 7 ps. The code length variation is assumed to be 63, 17 and 55. The bit rate of the individual users is chosen as a typical rate of 1Gb/s. Figure shows that as the number of simultaneous users increases (N), the normalized threshold at which the minimum BER occurs is found to increase and try to converge towards the optimal threshold of 1.0. As N increases from 30 to 35, 40 and 50, the BER increases from 3.156x10-0 to.398x10-18, 9.4706x10-17 and 3.3074x10-14 for the threshold varying as 0.80 to 0.8, 0.84 and 0.86 respectively.

Am. J. Applied Sci., 4 (5): 64-68, 007 Fig. : Normalized Threshold Vs BER for different users Fig. 5: Number of simultaneous users Vs BER with direct and balanced detection Fig. 3: Number of simultaneous users Vs BER for different code length and initial pulsewidth Fig. 4: Number of simultaneous users Vs BER at an Interleaver length of 50 Turbo-codes with an interleaver length of 10 is applied in Fig. 3 which shows the variation of the BER with the number of simultaneous users at a fixed normalized threshold of 0.84 and the initial pulsewidth varying from 7 ps to 5 ps. When the code length is 63, a maximum of 3 users can be accommodated at a specified BER of 4.085x10-10 (t0=5ps) and 7.3375x10-10 (t0=7ps) beyond which there is an abrupt increase in the BER. Similarly, when the code length is varied to 17 and 55 the BER reduces to 1.991x10-17 (t0=5ps) and.434x10-31 (t0=5ps) respectively with the number of users at that BER increasing from 3 to 34 beyond which there is an abrupt rise. Almost the same BER is maintained for f=55 even if the number of users is increased to 48 (t0=5 ps). The similar effect for a t0 of 7 ps is also plotted in this figure. The effects of thermal and shot noise are considered in this analysis. Figure 4 shows the variation of BER as the number of simultaneous users increases at an interleaver length of 50. It is seen that more number of users are supported at a reduced BER for an increasing threshold. For a fixed number of users (N=6) and a threshold of 0.86, 0.84, 0.8 and 0.80 the BER is found to reduce as 1.069x10-14, 8.109x10-17, 5.654x10-19 and 3.753x10-1 respectively. Also, it is found that almost the same BER is maintained when the number of users increases to 44, 39, 3 and 8 for the respective threshold variations. The thermal noise and shot noise effects are included in this figure. Figure 5 compares the performance of the system with direct detection and balanced detection. It is found that the BER is maintained at around 10-16 for the number of users varying from 19 (BER=1.1364x10-16 ) to 44 (BER=6.1835x10-16 ) when balanced detection is 66

Am. J. Applied Sci., 4 (5): 64-68, 007 Fig. 6: Normalized Threshold Vs BER for different code length and initial pulsewidth. the code length is 17, the threshold is found to increase from 0.76 to 0.77 with BER increasing from 1.9314x10-6 (t0=5ps) to 1.9485x10-4 (t0=7ps). For a code length of 63, the threshold is found to increase from 0.79 to 0.81 with BER increasing from 5.9891x10-1 (t0=5ps) to 1.1038x10-10 (t0=7ps). Hence, as the code length increases, the BER reduces. Figure 7 shows a comparison of uncoded and turbo-coded CDMA system with a normalized threshold of 0.8 and 0.86. At a BER of 7.745x10-0 (θ=0.8), only 0 users could be supported by an uncoded system whereas 4 users could be supported by a turbo-coded system. However, the same 0 users can be supported by a turbo-coded system with a reduced BER of 3.8738x10-0. Hence BER in the turbocoded system is reduced by half that of the uncoded system. Fig. 7: Comparison of turbo-coded and uncoded system with different threshold employed. But the BER increases to 1.3756x10-14 when the number of users increases to 50. However, when direct detection is employed, it is found that the same BER is maintained for the number of users varying from 19 (BER=1.1187x10-16 ) to 36 (BER=3.3616x10-16 ) and the BER increases to 3.536x10-11 for 50 users. Thus, 5 users are accommodated at a BER of 10-16 in the case of balanced detection whereas only 17 users are possible for that of direct detection, i.e. an additional number of 8 users are accommodated in balanced detection. The noise effects are ignored in this analysis and the interleaver length is chosen as 10 with θ=0.86. Figure 6 shows the variation of BER with respect to normalized threshold as the code length is varied from 63 to 17 for a fixed number of 0 users. When 67 CONCLUSION From the above analysis it is seen that as the code length increases, BER decreases with turbo-codes applied to coherence-multiplexed PPM CDMA system and the BER is found to reduce to half that of the uncoded system. With an increase in interleaver length of the turbo-code along with an increase in normalized threshold, an extended number of users could be supported at a reduced BER. It was also shown that the balanced detection could accommodate more number of users besides reducing BER compared to direct detection. Hence the balanced detection of turbo coded, coherence-multiplexed PPM modulation is a better solution for a typical data rate of 1Gb/s optical CDMA networks REFERENCES 1. Salehi, J.A., 1989. Code division multiple-access techniques in optical fiber networks-part I: Fundamental principles. IEEE Trans. on Communications, 37: 84-833.. Berrou, C. and A. Glavieux, 1996. Near Optimum error correcting coding and decoding: Turbo-codes. IEEE Trans. on Communications, 44: 161-171.3. Kim, J.Y. and H.V. Poor, 001. Turbo-coded Optical Direct-Detection CDMA System with PPM Modulation. J. Light Wave Tech., 19: 31-3. 4. Griffin, R.A., D.D. Sampson and D.A. Jackson, 1995. Coherence coding for photonic code-division multiple access networks. J. Light Wave Tech., 13: 186-1837.

Am. J. Applied Sci., 4 (5): 64-68, 007 5. Divsalar, D., S. Dolnar, F. Pollara and R.J. McEliece, 1995. Transfer function bounds on the performance of turbo codes. Telecommunications and Data Acquisition Progr. Rep., 4-1: 44-55. 6. Wang L. and A.M.Weiner, 1999. Programmable spectral phase coding of an amplified spontaneous emission light source. Optics Communications, 167: 11-4. 7. Pendock, G.J. and D.D. Sampson, 1997. Noise in coherence multiplexed optical fiber systems. Appl. Optics, 36: 9536-9540. 8. Pendock, G.J. and D.D. Sampson, 1997. Capacity of coherence multiplexed CDMA networks. Optics Communications, 143: 109-117. 9. Bahl, L.R., J. Cocke, F. Jelinek and J. Raviv, 1974. Optimal decoding of linear codes for minimizing symbol error rates. IEEE Trans. Inform. Theory, 0: 84-87. 68