Innovation and Canada s Ability to Compete Globally. Atlantic Leaders Summit

Similar documents
CRC Association Conference

THE ECONOMICS OF DATA-DRIVEN INNOVATION

OECD s Innovation Strategy: Key Findings and Policy Messages

OECD/ADBI 7th Round Table on Capital Market Reform in Asia October 2005 ADB Institute, Tokyo, Japan

POWERING AMERICA S AND NEVADA S ADVANCED INDUSTRIES

CDP-EIF ITAtech Equity Platform

Innovation in Europe: Where s it going? How does it happen? Stephen Roper Aston Business School, Birmingham, UK

Technology and Industry Outlook Country Studies and Outlook Division (DSTI/CSO)

DATA-DRIVEN INNOVATION

Finnish STI Policy

OECD Science, Technology and Industry Outlook 2008: Highlights

DTI 1998 Competitiveness White Paper: Some background and introduction

OECD Science, Technology and Industry Outlook 2010 Highlights

MSMES: OPPORTUNITIES AND CHALLENGES FOR THE SDG AGENDA

GOING DIGITAL Trends and Key Policy Issues for Digital Transformation Workshop on Portugal s 2030 Agenda Lisbon, 28 November 2017 Molly Lesher, OECD

THE STATE OF VENTURE CAPITAL

Health Policy Conference Centre for Health Services

OECD Innovation Strategy: Developing an Innovation Policy for the 21st Century

TRANSFORMATION INTO A KNOWLEDGE-BASED ECONOMY: THE MALAYSIAN EXPERIENCE

ARTIFICIAL INTELLIGENCE TRENDS AND POLICY ISSUES

Outcomes of the 2018 OECD Ministerial Conference on SMEs & the way forward

VTT TECHNOLOGY STUDIES. KNOWLEDGE SOCIETY BAROMETER Mika Naumanen Technology Studies VTT Technical Research Centre of Finland

Capturing and Conveying the Essence of the Space Economy

Sparking a New Economy. Canada s Advanced Manufacturing Supercluster

Europe as a Global Actor. International Dimension of Horizon 2020 and Research Opportunities with Third Countries

Offshoring and the Skill Structure of Labour Demand

Innovation. Key to Strengthening U.S. Competitiveness. Dr. G. Wayne Clough President, Georgia Institute of Technology

Catalogue no X. Industrial Research and Development: Intentions

Climate Change Innovation and Technology Framework 2017

CANADA S OCEAN SUPERCLUSTER DRAFT NOVEMBER 1

Public Private Partnerships & Idea selection

TECHNOLOGY VISION 2017 IN 60 SECONDS

Q INTRODUCTION VC ACTIVITY OVERVIEW. Summary of investment and fundraising. ($ millions)

Financing SMEs and Entrepreneurs 2012

on Mineral Development MINING THE FUTURE A Plan for Growth in the Newfoundland and Labrador Mining Industry

Research DG. European Commission. Sharing Visions. Towards a European Area for Foresight

Addressing the Innovation Imperative

GLOBAL PRIVATE EQUITY Report Charts

Ministry of Industry. Indonesia s 4 th Industrial Revolution. Making Indonesia 4.0. Benchmarking Implementasi Industri 4.0 A.T.

STATE ADVANCED MANUFACTURING POLICIES AND PROGRAMS. As at February 2018

Christina Miller Director, UK Research Office

Seoul Initiative on the 4 th Industrial Revolution

Member State Programme Objec ve Focus Priori es Method Funding Source

GOING DIGITAL IN SWEDEN

Building an enterprise-centred innovation system

Demétrio Toledo. Smart G Colloquium: Science, Technology and Innovations Systems in Africa and Brazil Helsinki 9-12 August, 2010

ADVANCED MANUFACTURING GROWTH CENTRE INDUSTRY KNOWLEDGE PRIORITIES 2016

Converting Research into Innovation & Growth: SBIR, the University, and the Park

TRIUMF ACCELERATING CANADIAN BUSINESS THROUGH SCIENCE AND INNOVATION Pre-Budget Consultation

VENTURE CAPITAL MONITOR

COMPETITIVE BUSINESS ENVIRONMENT

Advancing Health and Prosperity. A Brief to the Advisory Panel on Healthcare Innovation

National Innovation Systems: Implications for Policy and Practice. Dr. James Cunningham Director. Centre for Innovation and Structural Change

"Made In China 2025 & Internet Plus: The 4th Industrial Revolution" Opportunities for Foreign Invested Enterprises in China

A Vision for Health Research and Innovation in Canada

Service Science: A Key Driver of 21st Century Prosperity

Korea Published on Innovation Policy Platform (

Patent Statistics as an Innovation Indicator Lecture 3.1

Measuring the Value of Software and Research and Development Products in Alberta

INDUSTRY ACADEMIA LINKAGE PROGRAMS (MALAYSIA)

A brief history of the world (of S,T & I)

Brief to the. Senate Standing Committee on Social Affairs, Science and Technology. Dr. Eliot A. Phillipson President and CEO

ARTEMIS The Embedded Systems European Technology Platform

A comparative analysis of the science and innovation profiles of OECD and selected countries. Nils de Jager Canberra.

Q INTRODUCTION VC ACTIVITY OVERVIEW. Investment and fundraising. Deal size.

Q INTRODUCTION VC ACTIVITY OVERVIEW. Summary of investment and fundraising. Deal size.

2013 Global venture capital confidence survey results. How confident are investors?

Evolution of U.S. Innovation Policy

Plan I. Fostering innovation for long-term growth. 5 February Stian Westlake, Exec Dir of Policy &

Promoting Foreign Direct Investment in The United States. Christopher Clement International Investment Specialist Invest in America

Higher Education for Science, Technology and Innovation. Accelerating Africa s Aspirations. Communique. Kigali, Rwanda.

Aerospace Hub Vision, Mission, Strategy

DELAWARE S FUTURE IN THE NEW ECONOMY

Highlight. 19 August Automotive parts manufacturers gearing up to become global leaders

Securing Canada s Place in Space: Key to Canada s Competitiveness

$ 100M INVESTMENT IN AVIATION INDUSTRY PANOS XENOKOSTAS PRESIDENT & CEO ONEX TECHNOLOGIES INC ONEX SA

Innovation policies to promote more inclusive growth: comments

U15 Pre-Budget 2018 Submission

Assessing the socioeconomic. public R&D. A review on the state of the art, and current work at the OECD. Beñat Bilbao-Osorio Paris, 11 June 2008

Netherlands Observatory of Science and Technology. Science and Technology Indicators Summary

ENGINEERING 2030 AND NEW SKILLS FOR DIGITAL TRANSFORMATION IN CHILE AND LATIN AMERICA

They all say it is about the economy. It is more than ratio s, percentages, and growth; it is about the Lives of people

Patented Medicine Prices Review Board P M P R B GUIDELINES REFORM. 15 th Annual Market Access Summit. Douglas Clark Executive Director PMPRB

MINISTRY OF EDUCATION, RESEARCH & RELIGIOUS AFFAIRS. Dr. Agnes Spilioti Head of R&DI Policy Planning Directorate

TALENT AS CANADA S COMPARATIVE ADVANTAGE Digital Talent Strategy: Road to 2020 and Beyond Ottawa March 9 th Namir Anani President & CEO

Globalisation increasingly affects how companies in OECD countries

Smart Cities. Smart Cities Indicator Survey Highlights

Study overview. The Global Biomedical Industry: Preserving U.S. Leadership

Learning Lessons Abroad on Funding Research and Innovation. 29 April 2016

DIGITAL FINLAND FRAMEWORK FRAMEWORK FOR TURNING DIGITAL TRANSFORMATION TO SOLUTIONS TO GRAND CHALLENGES

ICT and Innovation for Structural Change

POLICY BRIEF AUSTRIAN INNOVATION UNION STATUS REPORT ON THE. adv iso ry s erv ic e in busi n e ss & i nno vation

EMBARGOED TILL DELIVERY

The International Communications Market Radio and audio

FINLAND. The use of different types of policy instruments; and/or Attention or support given to particular S&T policy areas.

Automotive Sector What is our interest in CAV & ITS and Why? Nigel J Francis

NRC s Role in the Future of Aerospace in Canada

GOING GLOBAL ONBOARD Fall 2017 LOND N CALLING

DIRECTION OF SCIENCE, TECHNOLOGY AND INNOVATION POLICY IN THAILAND

How New Jersey's Economy Benefits from International Trade & Investment

Transcription:

Innovation and Canada s Ability to Compete Globally Atlantic Leaders Summit February 2015

Introduction Canada has an innovation and productivity challenge in a world oriented towards intense competition and a global technological race Innovation is not limited to R&D It is also about adoption: It includes process, marketing and organization Typically non-linear (strong discovery research does not guarantee commercial innovation) It is path/sector dependent 2

Percent of population aged 25-64 Canada Japan Israel US Korea UK New Zealand Finland Australia Norway Switzerland Sweden Denmark Netherlands France Germany Austria Italy Canada Germany France UK Japan Total OECD US Italy Percent of GDP Canada has strong science and technology capacity Strong S&T capacity knowledge and talent Leads G7 for R&D spending in higher-education sector Produces relatively more top-cited scientific articles than most industrialized countries Net migration of researchers over the last decade Highly skilled / educated workforce with highest share of university or college graduates among working-age population in the OECD Robust growth in the number of science and engineering doctoral degrees in Canada (STIC 2012) 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Higher education expenditures on research and development, G7 countries, 2012 Source: OECD, Main Science and Technology Indicators 2014-1, June Percent of population having attained a tertiary education, selected OECD countries, 2011 Young Canadians continuing to perform at the top tier globally with respect to reading, mathematics and problem-solving skills and science (PISA 2012) However, skills needed to innovate are growing in complexity, calling for a broader set of: Soft, entrepreneurial and managerial skills 60 50 40 30 20 10 0 Skills sets in demand for big data and disruptive technologies Note: For Canada, Tertiary-education refers to college or university level Source: OECD, Education at a glance, 2013 3

USA SWE FRA DNK BEL GBR CAN FIN NLD SVN DEU JPN AUT CZE IRL LUX AUS PRT KOR ITA ESP Canada s weak productivity and subpar innovation performance limit future growth prospects Canada s labour productivity growth ranks 28 th among 35 comparator countries Productivity growth slowdown linked to weakness in multifactor productivity (MFP) Canada ranked 22 nd among OECD countries for business expenditure on R&D intensity Canadian business landscape faces issues beyond R&D Lack of management capacity & serial entrepreneurs Lack of anchor firms around innovation hubs Few business strategies focussed on innovation/growth Large component of small less productive firms Challenge in accessing new markets Limited access/scale of venture capital Risk averse culture 2.0% 1.5% 1.0% 0.5% 0.0% -0.5% -1.0% 20 15 10 5 0 Source: OECD Sources of Labour Productivity Growth in the Canadian Business Sector Labour Productivity Source: Statistics Canada Capital Intensity 1981-2000 2000-2011 Labour Composition MFP Investment in intangible assets 2010 (as a % of value added of business sector) Brand Equity, firm specific human capital, organisational capital R&D and other intellectual property products Software and databases 4

Risks of not keeping up with competitors are clear What are the stakes in the global innovation race? Loss of significant new market opportunities and economic potential Reduced attractiveness as an investment destination for value added activities Further erosion of manufacturing base Failure to recoup investment in public R&D Technology takers will not capture the highvalue parts of GVCs Leaders will shape how disruptive technologies address health, environmental and societal challenges, and the rules of the game those who follow will have no say Disruptive Technologies Haptic & Wearable Electronics: $15B by 2015 Big Data: $41.5 B by 2018 Nanotechnology: $3.2T by 2018 Energy Storage: $50B by 2020 Additive Manufacturing (parts): $48B by 2025 Autonomous Vehicles: $87B by 2030 Source: Lux Research, IDC From an economic potential perspective, McKinsey Consulting estimates that by 2025, the economic impact of additive manufacturing will range between $200B - $600B and energy storage between $100B - $600B 5

Disruptive technologies multi-faceted, presenting an array of opportunities for Canada Incubators Direct support programs Demonstration Centers Access to capital Platforms e.g. nanotechnology, genomics, synthetic biology, brain mapping Basic Research STEM Education Skilled Workforce Processes e.g. additive manufacturing, plant molecular farming, biochemical manufacturing, genome editing, precision farming Convergence of Technologies Driven and Enabled by ICT Products e.g. autonomous vehicles, smart phones, fuel cells, service robots, virtual reality goggles, nano wire lithium-ion batteries, nutraceuticals Health and Safety Standards Regulations Measures to promote consumer acceptance 6

Taking Stock of the Innovation Agenda We have done many things right but the results for innovation remain disappointing Canada has taken steps to get the macroeconomic framework right: Lowest corporate tax rates in the G-7 Changes to SR&ED Generally opted for indirect and passive support Even more remains to be done in the microeconomic agenda building on the Jenkins Panel: $400M in Venture Capital funding Transformation of NRC and programming to encourage greater demand from business Investments in incubators and start-ups Introduced programming with intermediary organizations such as Business-led Networks of Centres of Excellence (BL-NCE), Centres of Excellence for Commercialization and Research (CECR). Canada First Research Excellence Fund (CFREF) and Canada Excellence Research Chairs (CERC) Renewal of Science, Technology and Innovation Strategy (2014) New dimensions of advanced manufacturing / open science 7

Being Bolder / Getting Better Results Focus on five core elements: (1) people, (2) framework conditions, (3) policies to create and apply knowledge, (4) innovation for global and social challenges, and (5) governance and measurement. Do we treat innovation too much as as one thing? Differences in scope, timing and excellence in different sectors (eg. ICT vs health) How do we make Canada s R&D/innovation ecosystems more risk-taking and entrepreneurial? Able to accept failure and excellence? Should we move our system further from indirect, passive to direct? Where and how? How do we promote more multidisciplinary teams? Link better entrepreneurship and creativity? How do we align better the roles of government, universities and business? What are the roles of each, especially in dealing with disruptive technologies? How de we do a better job of connecting the research and business worlds? How do we give youth more experiential learning (eg. Co-ops) to allow talent to grow and lead innovation? How do we avoid a culture of complacency and promote excellence? 8

Annex: Competitors not standing idle positioning to win technological race U.S. vision: Capturing Domestic Competitive Advantage in Advanced Manufacturing President s Council of Advisors on Science and Technology; Innovation Strategy (2009) U.S. approach: The US is betting across the board, through MNE partnerships, federal investments and mission-oriented procurement Big Data Performing well on adoption and growth of the industry. Open data portal to access data German vision: Ensure that ideas are turned into marketable products as quickly as possible and that successful companies can set new standards for global markets. High Tech Strategy 2020 for Germany German approach: Germany is leading a reinvention of manufacturing Industry 4.0 with a pragmatic focus on platform and product, supported by extensive networks China: 12 th Five Year Plan (2010) prioritizes seven Strategic Emerging Industries Biotechnology; Industrialization Platforms for Aerospace; New Materials (including nanotechnology); Next-generation IT; Alternative Energy; Clean Energy Vehicles; Energy Conservation Goal: to increase the GDP share of high-technology to 20 percent by 2020 Central Government Budget 2014 $43.6B for S&T; $8.1B devoted to 16 megaprojects emphasizing engineering and applied research Brazil: National Strategy in Science, Technology and Innovation $37.5B for 2012-2015 period ICT, nanotechnology, materials ($248M towards ICT) UK vision: Develop a high tech industrial strategy [addressing] the missing pillar to any successful high tech strategy, that is technology and engineering as distinct from pure science. David Willetts, Minister for Business, Innovation & Skills, 2012 UK approach: The UK is making a concerted shift, after an in-depth consultative process, from research to application, focusing on areas it thinks it is competitive. Big Data Strategy in 2013 aims to foster adoption of big data by private sector and government Israel: Technological Incubators Program $730M since 1991 + $4B private investments Includes medical devices, biotechnology, pharmaceuticals, clean-tech and ICT 9

Annex: Canada s Federal Policy Mix Where We Stand Since 2007 strategy release: Ongoing support to HERD (approx. $3B/yr). Recently announced resources ($1.5B/10yrs CFREF) through competition-based program with a focus on global research excellence represents long term commitment. Successful introduction or expansion of business R&D programming (e.g., IRAP, procurement, venture capital), including business intermediaries (e.g., CAIP, BL-NCE). Much programming (e.g., APC, CAIP) require leveraged funds (to encourage partnerships) or makes partnership a requirement (e.g., TDP in particular, but also BL-NCE, IRAP vouchers). On disruptive technologies, clear strength in platform (genomics, nanotechnology, quantum, energy storage). Government response to Jenkins measures are recent and are expected to have an impact in the medium-term: Shift in tax benefits re-invested in direct support targeting SMEs. Trade agreements expected to have largest impact over time, once finalized Program consolidation: Mitacs as single delivery agent of federal support for postdoctoral industrial R&D fellowships; new NRC Concierge Service expected to address awareness and access issues. Moving Forward in Science, Technology and Innovation 2014 Builds on the 2007 framework and updates research priorities: Expands Environment priority to include Agriculture, reflecting key research areas in sustainable renewable resource development Adds Advanced Manufacturing as a priority, reflecting opportunities in that sector Revises Pillars: People: Expand to include youth, students, researchers and entrepreneurs Knowledge: Highlight commitment to world-leading research and major new investments since 2006 Innovation: New pillar to emphasize commitment to jobs, new technologies and Canada s challenges in innovation and productivity Reduces administrative burden on researchers, while ensuring accountability Fosters open government approaches Skills development: Enhanced support through internships and fellowships Science culture has not been a strong focus and outlook is not positive. Business innovation culture has also not been a focus and increasingly pointed to as a root cause of low productivity 10

Annex: Atlantic Canada recorded a decline in business sector productivity in recent years In 2013, Atlantic Canada lagged behind all other provinces in terms of business sector labour productivity. Newfoundland and Labrador increased Atlantic Canada s average productivity, as New Brunswick (36.0), Nova Scotia (35.4), and PEI (28.2) were well behind the other provinces. It should be noted that Newfoundland and Labrador (69.9) actually ranked just behind Alberta (70.4). Atlantic Canada appears to have been strongly impacted by the recent financial crisis in 2008. It was well above the national average in terms of labour productivity growth prior to 2000 and actually led all provinces during 2000 2010. Labour Productivity, Business Sector, 2013 Chained (2007) Dollars/Hour British Columbia 5% 4% 3% 2% 1% Alberta Saskatchewan Canada Manitoba Ontario Quebec Atlantic Canada Source: Statistics Canada 0 10 20 30 40 50 60 70 80 Labour Productivity Growth, Business Sector Compound Annual Growth Rate During 2010 2013, Atlantic Canada was the only region/province to post a decline in labour productivity 0% -1% -2% Source: Statistics Canada 1997-2000 2000-2010 2010-2013 11

% of Enterprises Annex: Atlantic Canada s business sector invests relatively little in R&D, and companies in the region tend not to use advanced technologies Atlantic Canada s higher education institutions performed very well in terms of R&D performance. The region trailed only Quebec (0.86) and Ontario (0.75); however, Nova Scotia (0.98) actually led all provinces while Newfoundland and Labrador (0.78) ranked third in the country. Atlantic Canada did very poorly in terms of business expenditures on R&D, ranking only ahead of Saskatchewan (0.24). Nova Scotia (0.21) was the lowest in Canada, just behind New Brunswick (0.22). Companies in Atlantic Canada lagged their counterparts in other regions of the country in advanced technology use. The proportion of enterprises in Atlantic Canada that reported using advanced technologies were well below those in other provinces for three types of advanced technologies examined. 30 25 20 15 10 5 0 Source: Statistics Canada Canada R&D Investment as a Share of GDP, by Performing Sectors, 2012 Use of Advanced Technologies, All Surveyed Industries, by Region, 2012 Atlantic provinces Source: Survey of Innovation and Business Strategy (SIBS), 2012 GDP GERD BERD HERD $Millions % of GDP % of GDP % of GDP Canada $ 1,831,228 1.71 0.88 0.66 Atlantic Canada $ 107,844 1.10 0.25 0.75 Quebec $ 357,431 2.27 1.31 0.86 Ontario $ 679,616 2.09 1.07 0.75 Manitoba $ 59,126 1.11 0.36 0.55 Saskatchewan $ 78,873 0.73 0.24 0.35 Alberta $ 315,803 1.09 0.62 0.40 British Columbia $ 222,565 1.32 0.70 0.57 Quebec Ontario Alberta Other provinces & territories Computerized design & engineering Computerized processing, fabrication, & assembly technologies Communication technologies 12