L9: Analog Building Blocks (OpAmps, A/D, D/A)

Similar documents
L10: Analog Building Blocks (OpAmps,, A/D, D/A)

L9: Analog Building Blocks (OpAmps,, A/D, D/A)

L10: Analog Building Blocks (OpAmps,, A/D, D/A)

6.111 Lecture # 15. Operational Amplifiers. Uses of Op Amps

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec

Quad 12-Bit Digital-to-Analog Converter (Serial Interface)

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016

Advantages of Analog Representation. Varies continuously, like the property being measured. Represents continuous values. See Figure 12.

8-Bit, high-speed, µp-compatible A/D converter with track/hold function ADC0820

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California

I hope you have completed Part 2 of the Experiment and is ready for Part 3.

A-D and D-A Converters

AD557 SPECIFICATIONS. T A = 25 C, V CC = 5 V unless otherwise noted) REV. B

CHAPTER ELEVEN - Interfacing With the Analog World

4 x 10 bit Free Run A/D 4 x Hi Comparator 4 x Low Comparator IRQ on Compare MX839. C-BUS Interface & Control Logic

Technical Brief FAQ (FREQUENCLY ASKED QUESTIONS) For further information, please contact Crystal Semiconductor at (512) or 1 (800)

Analogue to Digital Conversion

Cyber-Physical Systems ADC / DAC

P a g e 1. Introduction

Analogue to Digital Conversion

The need for Data Converters

Data Converters. Dr.Trushit Upadhyaya EC Department, CSPIT, CHARUSAT

Outline. Analog/Digital Conversion

Linear Integrated Circuits

8-Bit A/D Converter AD673 REV. A FUNCTIONAL BLOCK DIAGRAM

Chapter 2 Signal Conditioning, Propagation, and Conversion

Fundamentals of Data Converters. DAVID KRESS Director of Technical Marketing

Assoc. Prof. Dr. Burak Kelleci

6-Bit A/D converter (parallel outputs)

Low Cost 10-Bit Monolithic D/A Converter AD561

Serial Input 18-Bit Monolithic Audio DIGITAL-TO-ANALOG CONVERTER

DACPORT Low Cost, Complete P-Compatible 8-Bit DAC AD557*

Microprocessor-Compatible 12-Bit D/A Converter AD667*

QUAD 12-BIT DIGITAL-TO-ANALOG CONVERTER (12-bit port interface)

Software Programmable Gain Amplifier AD526

Analytical Chemistry II

Lecture 6: Digital/Analog Techniques

ZN428E8/ZN428J8/ZN428D 8-BIT LATCHED INPUT D-A CONVERTER

NI DAQPad -6020E Family Specifications

5 V Integrated High Speed ADC/Quad DAC System AD7339

TYPICAL APPLICATION LTC1591/LTC1591-1

ADC Bit µp Compatible A/D Converter

16-Bit ANALOG-TO-DIGITAL CONVERTER

DSP Project. Reminder: Project proposal is due Friday, October 19, 2012 by 5pm in my office (Small 239).

FEATURES APPLICATIONS TYPICAL APPLICATION. LTC1451 LTC1452/LTC Bit Rail-to-Rail Micropower DACs in SO-8 DESCRIPTION

CMOS 12-Bit Multiplying DIGITAL-TO-ANALOG CONVERTER Microprocessor Compatible

10-Bit, Low-Power, Rail-to-Rail Voltage-Output Serial DAC in SOT23

Serial Input 18-Bit Monolithic Audio DIGITAL-TO-ANALOG CONVERTER

Advanced Regulating Pulse Width Modulators

12-Bit Successive-Approximation Integrated Circuit A/D Converter AD ADC80

Data Converters. Lecture Fall2013 Page 1

1 A1 PROs. Ver0.1 Ai9943. Complete 10-bit, 25MHz CCD Signal Processor. Features. General Description. Applications. Functional Block Diagram

LC2 MOS Dual 12-Bit DACPORTs AD7237A/AD7247A

CENG4480 Lecture 04: Analog/Digital Conversions

Low-Power Pipelined ADC Design for Wireless LANs

10-Bit µp-compatible D/A converter

a Preliminary Technical Data

The simplest DAC can be constructed using a number of resistors with binary weighted values. X[3:0] is the 4-bit digital value to be converter to an

The counterpart to a DAC is the ADC, which is generally a more complicated circuit. One of the most popular ADC circuit is the successive

Lecture 9, ANIK. Data converters 1

Microprocessor-Compatible ANALOG-TO-DIGITAL CONVERTER

Low-Power, Low-Glitch, Octal 12-Bit Voltage- Output DACs with Serial Interface

Sigma-Delta ADCs. Benefits and Features. General Description. Applications. Functional Diagram

Lecture #6: Analog-to-Digital Converter

12-Bit, Low-Power, Dual, Voltage-Output DAC with Serial Interface

Mixed-Signal-Electronics

Analog to digital and digital to analog converters

Analog to Digital Conversion

Analog-to-Digital Converter (ADC) And Digital-to-Analog Converter (DAC)

Eliminate Pipeline Headaches with New 12-Bit 3Msps SAR ADC by Dave Thomas and William C. Rempfer

Microprocessor-Compatible 12-Bit D/A Converter AD767*

EEE312: Electrical measurement & instrumentation

OBSOLETE. 16-Bit/18-Bit, 16 F S PCM Audio DACs AD1851/AD1861

Dual 16-Bit DIGITAL-TO-ANALOG CONVERTER

Analog-to-Digital i Converters

ELG3336: Converters Analog to Digital Converters (ADCs) Digital to Analog Converters (DACs)

Operational amplifiers

DESCRIPTION FEATURES APPLICATIONS. LTC1590 Dual Serial 12-Bit Multiplying DAC TYPICAL APPLICATION

Data Acquisition & Computer Control

Fan in: The number of inputs of a logic gate can handle.

NI 6013/6014 Family Specifications

Low-Power, 12-Bit, Rail to Rail Voltage-Output Serial DAC in SOT23

Multiplexer Options, Voltage Reference, and Track/Hold Function

ADC-674 PRODUCT OVERVIEW FEATURES

INL PLOT REFIN DAC AMPLIFIER DAC REGISTER INPUT CONTROL LOGIC, REGISTERS AND LATCHES

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem

Basic Operational Amplifier Circuits

LM12454,LM12458,LM12H458

Operational Amplifier as A Black Box

Mixed-Signal-Electronics

IFB270 Advanced Electronic Circuits

TLC5620C, TLC5620I QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS

EE247 Lecture 20. Comparator architecture examples Flash ADC sources of error Sparkle code Meta-stability

Lecture #3 Basic Op-Amp Circuits

16-Bit, Low-Power, 2-Channel, Sigma-Delta ADC MX7705

Analog to Digital Converters

High-Speed Analog to Digital Converters. ELCT 1003:High Speed ADCs

ELG4139: Converters Analog to Digital Converters (ADCs) Digital to Analog Converters (DACs)

ADC Bit High-Speed µp-compatible A/D Converter with Track/Hold Function

Tuesday, March 1st, 9:15 11:00. Snorre Aunet Nanoelectronics group Department of Informatics University of Oslo.

Transcription:

L9: Analog Building Blocks (OpAmps, A/D, D/A) Courtesy of Dave Wentzloff. Used with permission. 1

Introduction to Operational Amplifiers v id in DC Model a v id LM741 Pinout out 10 to 15V Typically very high input resistance ~ 300K High DC gain (~10 5 ) Output resistance ~75 a(f) V a( f ) out V in 10 5 20dB/ decade 10 to 15V 10Hz (eprinted with permission of National Semiconductor Corporation. Used with permission.) L9: 6.111 Spring 2004 Introductory Digital Systems Laboratory f 2

The Inside of a 741 OpAmp Differential Input Stage Current Source for biasing Additional Gain Stage Output Stage Output devices provides large drive current Bipolar version has small input Bias current MOS OpAmps have ~ 0 input current Gain is Sensitive to Operating Condition (e.g., Device, Temperature, Power supply voltage, etc.) (eprinted with permission of National Semiconductor Corporation. Used with permission.) 3

Simple Model for an OpAmp i ~ 0 i ~ 0 v id V CC 100V V CC = 10V = 100V v id V easonable CC approximation Linear Mode V CC = 10V Negative Saturation Positive Saturation v id av id If V CC < < V CC v id V CC v id < v id V CC v id > Small input range for Open loop Configuration 4

The Power of (Negative) Feedback v in 1 2 v in 1 v id av id 2 v in v 1 id v out 2 v id 0 v id v a out v in 1 v a out 1 1 a 2 1 2 v v out in 2 1 a1 2 1 a 2 if a 1 Overall (closed loop) gain does not depend of open loop gain Trade gain for robustness Easier analysis approach: virtual short circuit approach v = v = 0 if OpAmp is linear 5

Basic OpAmp Circuits Voltage Follower (buffer) v in Noninverting v in 1 2 v in1 v in2 v out v in Differential Input 1 1 2 2 v in 2 v 1 1 in Integrator C v out 2 1 v in 2 v in1 1 v 6 out C t v in dt

Use With Open Loop Analog Comparator: Is V > V? The Output is a DIGITAL signal LM311 is a single supply comparator 7

Data Conversion: Quantization Noise A/D Conversion D/A Conversion Binary Output 11 10 01 00 V 0 ref 4 V ref 2 3V ref 4 Analog Input V ref Analog Output 3V ref 4 V ref 2 V ref 4 0 00 01 10 11 Binary code v in A/D digital code D/A Quantization noise LSB v noise Quantization noise exists even with ideal A/D and D/A converters V ref 4 V ref 2 3V ref 4 V ref v in 8

Nonidealities in Data Conversion Offset a constant voltage offset that appears at the output when the digital input is 0 Gain error deviation of slope from ideal value of 1 Analog Offset error Ideal Analog Gain error Ideal Binary code Integral Nonlinearity maximum deviation from the ideal analog output voltage Binary code Differential nonlinearity the largest increment in analog output for a 1bit change Analog Integral nonlinearity Ideal Analog Ideal Nonmonoticity Binary code Binary code 9

2 Ladder DAC Architecture 1 Note that the driving point impedance (resistance) is the same for each cell. 2 Ladder achieves large current division ratios with only two resistor values 10

DAC (AD 558) Specs Used in Lab 3 8bit DAC Single Supply Operation: 5V to 15V Integrates required references (bandgap voltage reference) Uses a 2 resistor ladder Settling time 1s Programmable output range from 0V to 2.56V or 0V to 10V Simple Latch based interface (Courtesy of Analog Devices. Used with permission.) 11

Chip Architecture and Interface D[7:0] LATCH CE CS Outputs are noisy when input bits settles, so it is best to have inputs stable before latching the input data (Courtesy of Analog Devices. Used with permission.) 12

Setting the Voltage ange Very similar to a noninverting amp Strap output for different voltage ranges Convert data to Offset binary (Courtesy of Analog Devices. Used with permission.) 13

Another Approach: BinaryWeighted DAC I b3 b b b 2 1 0 I 2 I 4 I 8 Switch binaryweighted currents MSB to LSB current ratio is 2 N I b 1 1 1 3 2 b2 4 b1 8 b 0 AD9768 Analog Devices AD9768 uses two banks of ratioed currents Additional current division performed by 750 resistor between the two banks eference current source (Courtesy of Analog Devices. Used with permission.) 14

Glitching and Thermometer D/A Glitching is caused when switching times in a D/A are not synchronized Example: Output changes from 011 to 100 MSB switch is delayed Filtering reduces glitch but increases the D/A settling time One solution is a thermometer code D/A requires 2 N 1 switches but no ratioed currents 011100 t Binary Thermometer 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 I T0 T1 T2 15 I T 0 I T1 T2 I

SuccessiveApproximation A/D D/A converters are typically compact and easier to design. Why not A/D convert using a D/A converter and a comparator? D to A generates analog voltage which is compared to the input voltage If D to A voltage > input voltage then set that bit; otherwise, reset that bit This type of A to D takes a fixed amount of time proportional to the bit length V in code D/A C Comparator out Example: 3bit A/D conversion, 2 LSB < V in < 3 LSB 16

SuccessiveApproximation A/D D/A Converter N Data Successive Approximation Generator Done v in Sample/ Hold Control Go Serial conversion takes a time equal to N(t D/A t comp ) 17

SuccessiveApproximation A/D (AD670) Used in Lab 3 Unipolar (BPO =0) ~10µs conversion time Bipolar (BPO =1) (Courtesy of Analog Devices. Used with permission.) 18

Single Write, Single ead Operation (see data sheet for other modes) /W CE, CS Status t DC t w Write ead t c t TD t DT Data Valid Data Valid t w (write/start pulse width) = 300ns (min) t DC (delay to start conversion) = 700ns (max) t c (conversion time) = 10s (max) t TD (Bus Access Time) = 250 (max) t DT (Output Float Delay) = 150 (max) Control bits CE and CS can be wired to ground if A/D is the only chip driving the bus Tie the CE and CS pins together for lab3 and hardwire BPO and Format 19

Simple A/D Interface FSM clk reset sample FSM cs_b r_w_b status CS CE /W STATUS AD670 dataavail Data[7:0] Q D Status should be synchronized: why? Courtesy of James Oey and Cemal Akcaba 20

Example A/D Verilog Interface module AD670 (clk, reset, sample, dataavail, r_wbar, cs_bar, status, state); // System Clk input clk; // Global eset signal, assume it is synchronized input reset; // User Interface input sample; output dataavail; // AD Interface input status; reg status_d1, status_d2; output r_wbar, cs_bar; output [3:0] state; // internal state reg [3:0] state; reg [3:0] nextstate; reg r_wbar_int, r_wbar; reg cs_bar_int, cs_bar; reg dataavail; 1/5 // State declarations. parameter IDLE = 0; parameter CONV0 = 1; parameter CONV1 = 2; parameter CONV2 = 3; parameter WAITSTATUSHIGH = 4; parameter WAITSTATUSLOW = 5; parameter EADDELAY0 = 6; parameter EADDELAY1 = 7; parameter EADCYCLE = 8; always @ (posedge clk or negedge reset) begin if (!reset) state <=IDLE; else state <=nextstate; status_d1 <= status; status_d2 <= status_d1; r_wbar <= r_wbar_int; cs_bar <=cs_bar_int; end 2/5 21

Example A/D Verilog Interface (cont.) always @ (state or status_d2 or sample) begin // defaults r_wbar_int = 1; cs_bar_int = 1; dataavail = 0; case (state) IDLE: begin if(sample) nextstate = CONV0; else nextstate = IDLE; end CONV2: begin r_wbar_int = 0; cs_bar_int = 0; nextstate = WAITSTATUSHIGH; end WAITSTATUSHIGH: begin cs_bar_int = 0; if (status_d2) nextstate = WAITSTATUSLOW; CONV0: begin r_wbar_int = 0; cs_bar_int = 0; nextstate = CONV1; end CONV1: begin r_wbar_int = 0; cs_bar_int = 0; nextstate = CONV2; end else nextstate = WAITSTATUSHIGH; end WAITSTATUSLOW: begin cs_bar_int = 0; if (!status_d2) nextstate = EADDELAY0; else nextstate = WAITSTATUSLOW; end 3/5 4/5 22

Example A/D Verilog Interface(cont.) EADDELAY0: begin cs_bar_int = 0; nextstate = EADDELAY1; end EADDELAY1: begin cs_bar_int = 0; nextstate = EADCYCLE; end EADCYCLE: begin cs_bar_int = 0; dataavail = 1; nextstate = IDLE; end default: nextstate = IDLE; endcase // case(state) end // always @ (state or status_d2 or sample) endmodule // adcinterface 5/5 23

Simulation On reset, present state goes to 0 r_w_b must stay low for at least 3 cycles (@ 100ns period) Don t need 3 cycles if you use the 1.8432MHz clock Enable read flipflop Status is synchronized two register delays Sample pulse initiates data conversion Wait for ~10s for status to go low Notice a one cycle delay since A/D control signal delayed through a register 24

Flash A/D Converter Vref vin Bruteforce A/D conversion C C C Comparators Thermometer to binary b 0 b 1 Simultaneously compare the analog value with every possible reference value Fastest method of A/D conversion Size scales exponentially with precision (requires 2 N comparators) Another example of OpAmp in open loop 25

AD 775 Flash Data Converter (Courtesy of Analog Devices. Used with permission.) 26

High Performance Converters: Use Pipelining and Parallelism! Pipelining (used in video rate, F basestations, etc.) Sample/ Hold A/D Converter 1bit D/A Converter Amplifier 2 Sample/ Hold A/D Converter 1bit D/A Converter Amplifier 2 Parallelism (use many slower A/D s in parallel to build very high speed A/D converters) [ISSCC 2003], Poulton et. al. 20Gsample/sec, 8bit ADC from Agilent Labs 27

Summary of Analog Blocks Analog blocks are integral components of any system. Need data converters (analog to digital and digital to analog), analog processing (OpAmps circuits, switched capacitors filters, etc.), power converters (e.g., DCDC conversion), etc. We looked at example interfaces for A/D and D/A converters Make sure you register critical signals (enables, /W, etc.) Analog design incorporate digital principles Glitch free operation using coding Parallelism and Pipelining! More advanced concepts such as calibration 28