PRM SRM. Grav. Wave ReadOut

Similar documents
The VIRGO suspensions

Control Servo Design for Inverted Pendulum

The AEI 10 m Prototype. June Sina Köhlenbeck for the 10m Prototype Team

Virgo status and commissioning results

Mechanical modeling of the Seismic Attenuation System for AdLIGO

VIRGO. The status of VIRGO. & INFN - Sezione di Roma 1. 1 / 6/ 2004 Fulvio Ricci

7th Edoardo Amaldi Conference on Gravitational Waves (Amaldi7)

PUSHING THE ADVANCED VIRGO INTERFEROMETER TO THE LIMIT

GAS (Geometric Anti Spring) filter and LVDT (Linear Variable Differential Transformer) Enzo Tapia Lecture 2. KAGRA Lecture 2 for students

How to Build a Gravitational Wave Detector. Sean Leavey

Development of Optical lever system of the 40 meter interferometer

Model Independent Numerical Procedure for the Diagonalization of a Multiple Input Multiple Output Dynamic System

The VIRGO injection system

Seismic Noise & Vibration Isolation Systems. AIGO Summer Workshop School of Physics, UWA Feb Mar. 2, 2010

Angular control of Advanced Virgo suspended benches

Superattenuator seismic isolation measurements by Virgo interferometer: a comparison with the future generation antenna requirements

Interferometer signal detection system for the VIRGO experiment. VIRGO collaboration

DRAFT Expected performance of type-bp SAS in bkagra

Advanced Virgo commissioning challenges. Julia Casanueva on behalf of the Virgo collaboration

TNI mode cleaner/ laser frequency stabilization system

Arm Cavity Finesse for Advanced LIGO

CHAPTER 3. Multi-stage seismic attenuation system

Improving seismic isolation in Advanced LIGO using a ground rotation sensor

A gravitational wave is a differential strain in spacetime. Equivalently, it is a differential tidal force that can be sensed by multiple test masses.

Virgo and the quest for low frequency sensitivity in GW detectors. Adalberto Giazotto INFN Pisa

Optical bench Seismic Isolation System (SAS) Prototyped for the HAM chambers of the Advanced LIGO Interferometers

Possibility of Upgrading KAGRA

GROUND MOTION IN THE INTERACTION. ensured that the final focus quadrupoles on both. rms amplitudes higher than some fraction of the

Noise Budget Development for the LIGO 40 Meter Prototype

LIGO. LIGO Output Mode Cleaner HAM Seismic Attenuation System.

External seismic pre-isolation retrofit design

Beam Diagnostics, Low Level RF and Feedback for Room Temperature FELs. Josef Frisch Pohang, March 14, 2011

Tilt sensor and servo control system for gravitational wave detection.

Development of the accelerometer for cryogenic experiments II

Active Vibration Isolation of an Unbalanced Machine Tool Spindle

Our 10m Interferometer Prototype

Some Progress In The Development Of An Optical Readout System For The LISA Gravitational Reference Sensor

Alignment control of GEO 600

Using a Negative Impedance Converter to Dampen Motion in Test Masses

Quantum States of Light and Giants

The VIRGO detection system

R. De Rosa INFN Napoli For the VIRGO collaboration

Vibration measurement in the cryogenic interferometric gravitational wave detector (CLIO interferometer)

Commissioning of Advanced Virgo

arxiv: v1 [physics.ins-det] 10 Jul 2017

Advanced LIGO optical configuration investigated in 40meter prototype

Downselection of observation bandwidth for KAGRA

Inverted pendulum as low frequency pre-isolation for advanced gravitational wave detectors

Mystery noise in GEO600. Stefan Hild for the GEO600 team. 14th ILIAS WG1 meeting, October 2007, Hannover

Modeling of Alignment Sensing and Control for Advanced LIGO

Module 4 TEST SYSTEM Part 2. SHAKING TABLE CONTROLLER ASSOCIATED SOFTWARES Dr. J.C. QUEVAL, CEA/Saclay

Response spectrum Time history Power Spectral Density, PSD

Passive, Nonlinear, Mechanical Structures for Seismic Attenuation

A SIMPLE FORCE BALANCE ACCELEROMETER/SEISMOMETER BASED ON A TUNING FORK DISPLACEMENT SENSOR. D. Stuart-Watson and J. Tapson

Modeling and Commisioning of the 10m Prototype Autoalignment System

LIGO PROJECT. Piezo-Electric Actuator Initial Performance Tests. Eric Ponslet April 13, Abstract

Advanced Virgo Technical Design Report

Installation and Characterization of the Advanced LIGO 200 Watt PSL

Part 2: Second order systems: cantilever response

Results from the Stanford 10 m Sagnac interferometer

Enhanced LIGO HAM ISI Prototype Preliminary Performance Review T

Stable Recycling Cavities for Advanced LIGO

MEMS-FABRICATED ACCELEROMETERS WITH FEEDBACK COMPENSATION

Wavelength Control and Locking with Sub-MHz Precision

high, thin-walled buildings in glass and steel

Designing Optical Layouts for AEI s 10 meter Prototype. Stephanie Wiele August 5, 2008

The Principle and Simulation of Moving-coil Velocity Detector. Yong-hui ZHAO, Li-ming WANG and Xiao-ling YAN

OPTICS IN MOTION. Introduction: Competing Technologies: 1 of 6 3/18/2012 6:27 PM.

Omar E ROOD 1, Han-Sheng CHEN 2, Rodney L LARSON 3 And Richard F NOWAK 4 SUMMARY

Virgo change request. Title: EIB seismic attenuation system. VIRGO CHRQ xxx/yyyy

Low-Level RF. S. Simrock, DESY. MAC mtg, May 05 Stefan Simrock DESY

LIGO. Advanced LIGO. Keita KAWABE, LIGO Hanford, Caltech LIGO-G

LIGO II Photon Drive Conceptual Design

The Virgo detector. L. Rolland LAPP-Annecy GraSPA summer school L. Rolland GraSPA2013 Annecy le Vieux

Parametric signal amplification

An Alternative to Pyrotechnic Testing For Shock Identification

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans. Electronic Measurements & Instrumentation

The X-arm interferometer test of HEPI at LIGO Livingston

Optical design of shining light through wall experiments

Conventional geophone topologies and their intrinsic physical limitations, determined

Mechanical modeling of the Seismic Attenuation System for AdLIGO

Dynamic Angle Estimation

Status report : about the Monolithic Accelerometers(ACCs) Test

Introduction to laser interferometric gravitational wave telescope

레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 )

Readout and control of a power-recycled interferometric gravitational wave antenna

Koji Arai / Stan Whitcomb LIGO Laboratory / Caltech. LIGO-G v1

Squeezed light and radiation pressure effects in suspended interferometers. Thomas Corbitt

Vibrating Wire R&D for Alignment of Multipole Magnets in NSLS-II

New Long Stroke Vibration Shaker Design using Linear Motor Technology

Chapter 2 The Test Benches

LISA and SMART2 Optical Work in Europe

Improving the Performance of a Geophone through Capacitive Position Sensing and Feedback. Aaron Barzilai. Stanford University

OPERATION AND MAINTENANCE MANUAL TRIAXIAL ACCELEROMETER MODEL PA-23 STOCK NO

The VIRGO Environmental Monitoring System

PiezoMike Linear Actuator

RF System Models and Longitudinal Beam Dynamics

Velocity and Acceleration Measurements

Job Sheet 2 Servo Control

Figure 2.1 a. Block diagram representation of a system; b. block diagram representation of an interconnection of subsystems

Transcription:

Nov. 6-9,2 The 22nd Advanced ICFA Beam Dynamics Workshop on Ground Motion in Future Accelerators November 6-9, 2 SLAC Passive Ground Motion Attenuation and Inertial Damping in Gravitational Wave Detectors Presented by: V. Sannibale, A. Bertolini, G. Cella, S. Marka, R. de Salvo, A. Takamori, LI project California Institute of Technology, USA Universitá di Pisa, Italy University of Tokyo, Japan LI-G324--R

Nov. 6-9,2 Interferometer Topology ETMY Input Mode cleaner 4/2 ITMY 2 4/2 Laser units: m PRM SRM BS ITMX ETMX LI II Output Mode cleaner Grav. Wave ReadOut ITFs Comparison. LI I LI II Laser Power : W 8W Recycling Factor : 5 Arm Finesse : 5 2 Arm Power : ο 5kW ο 8kW Mirror Substrate : Fused Silica (Q ο 7 ) Sapphire (Q ο 8 ) Suspension Wires : steel Fused Silica LI-G324--R

Nov. 6-9,2 LI Sites: (Hanford and Livingston) LI-G324--R

Nov. 6-9,2 LI II sensitivity Curve ffl Inspiral NS/NS binaries : 2Mpc LII, 45 Mpc LI II ffl Inspiral NS/BH binaries : 4Mpc LII, Mpc LI II ffl Inspiral BH/BH binaries : Mpc LII, 2 Mpc LI II ffl Inspiral BH/BH merge Mpc Mfi/Mfi : S/N=.5 LII, S/N=LIII ffl Spinning NS,f ο 2 Hz, Galactic Core : ffl > 5 5 LII,ffl > 2 6 LIII LIII could reach a sensitivity able to allow a quantitative comparison with astrophysical models LI-G324--R

Nov. 6-9,2 Seismic Attenuation System (SAS): Principle Typical Linear Mechanical Oscillator Transfer Function Rigid Body Mode Resonance Detector Sensitivity Band Transmissibility Flat Response /f^2 Roll off Inertia of the Distributed Mass Internal Resonances. 5mHz Hz Hz 6Hz General Recipe to Improve Passive Seismic Isolation ffl Move down in frequency, lower as possible the rigid body modes ffl Move up in frequency, higher as possible the internal modes. ffl Damp the internal modes. ffl attenuate all the DOF (Crosstalk/Coupling Issues). ffl Active Control to damp the rigid body modes. LI-G324--R

Nov. 6-9,2 SAS : Performances/Goals 6 Horizontal Spectral density (m/sqrt(hz)) 7 8 9 Mirror Thermal Noise Pendulum Thermal Noise Thermal Noise Long SAS Seismic Noise Short SAS Seismc Noise 2... Frequency (Hz) ffi ~x(ν ' 6 Hz) ο 8 p m Hz ffix rms ' 7 m rms High Reliability and robustness => uninterrupt running time of the order of months LI-G324--R

Nov. 6-9,2 Monolithic Geometric Anti-Spring : (Principle/ Advantages) Frame Wire Monolithic Blades Wire Side View Frame Monolithic Blades Top/Bottom View Blade Clamp F x F y mg ffl Very Low Vertical Frequency Resonance (hard task to get very low res. freq. on the vertical DOF for heavy payloads and high internal mode frequency, in a reasonable space). ffl Mechanical Stable System ffl Good Thermal Stability ffl Simple, Compact, Relatively Low Cost. LI-G324--R

Nov. 6-9,2 Monolithic Geometric Anti-Spring : (Design) LI-G324--R

Nov. 6-9,2 Monolithic Geometric Anti-Spring : (Prototype) LI-G324--R

Nov. 6-9,2 Monolithic Geometric Anti-Spring : (Vertical Transfer Function) 2 Vertical Mode (~35mHz) Magnitude 2 2 /f Slope Internal Blade Mode 3 Simple Pendulum Transfer Function 4 2 3 Frequency (Hz) LI-G324--R

Nov. 6-9,2 Monolithic Geometric Anti-Spring : (Working Point/Thermal Stability).8.6 Resonant Frequency(Hz).4.2..8.6.4.2 Blade Compression Initial position -2.mm -4.5mm -6.mm Fitted Curve 4 5 6 7 Working Point(mm) 8 9.8 Displacement (mm).5.2. Sensitivity :.42mm/C.8 2. 2.5 2. 2.5 22. 22.5 23. Temperature (Degree Celsius) LI-G324--R

Nov. 6-9,2 Monolithic Geometric Anti-Spring : (Transfer Function/Quality Factor) 4 Rotation of Load 2 Isolation Ratio[dB] -2-4 Main GASF f=.236 (Hz) Q=4 Pitch of Load Monolithic GASF -6 Unidentified -8 st. Internal. Frequency[Hz]..5 Measured Fitted Output Signal [a.u.]. -.5 -. Main GASF f=.236(hz) Q=4 2 4 6 Time(sec) 8 2 LI-G324--R

Nov. 6-9,2 Inverted Pendulum (IP): (Principle/ Advantages) dx M g l Leg Table Flexural Joint Restoring Torque of the Flex. Joint Balanced by the Torque of the Gravit. Field ν = vut k g 2ß M l ; M < kl g ffl Very Low Horizontal Frequency Resonance (ν ' 2 mhz) ffl Large Dynamic Range in the 2 Horizontal Degrees of Freedom ffl Ideal for Applying an Active Control System in 3 D.O.F. ffl Small Forces Required to offset (by dx ) the table with very large payload M (F = M! 2 dx) LI-G324--R

Nov. 6-9,2 Inverted Pendulum Prototype: (Design) LI-G324--R

Nov. 6-9,2 Inverted Pendulum : (Working Point) Frequency (Hz).6.5.4.3 ω k g ( M L M Load Load + + m m LegEff 3 LegEff 2 ).2.. 5 5 2 25 3 35 4 45 5 55 Load (kg) Minimum Resonant Frequency Achieved : ν ' mhz (Horiz. DOF) LI-G324--R

Nov. 6-9,2 Inverted Pendulum : (Horizontal Transfer Function) 2 Translational Mode 2 /f Slope Internal Modes Magnitude 2 3 4 5 2 Frequency (Hz) Simple Undim. Model LI-G324--R

Nov. 6-9,2 Control Requirements ffl Mirrors RMS Local Positioning System to Provide a Coarse and Fine Alignment System. ffl Mirrors RMS Velocity Reduction to allow the ITF Locking. ffl Mirrors RMS Displacement Reduction to assure ITF Long Term Stability. => Inertial Damping and DC Relative Positioning Control Main Related Issues ffl Rigid Body Modes Main Source of Residual Displacement and Residual Velocity. ffl Crosstalk and Coupling of the Degrees of freedom ffl Actuators/Sensors Dynamic Range and Sensitivity. LI-G324--R

Nov. 6-9,2 Position Sensor : (LVDT) Linear Variable Differential Transformer (Logic Scheme) Modulation Secondary Winding Primary Winding + - Mixer Amplifier Lowpass Filter Sensitivity LVDT # 3 : Sensitivity Spectral Density (um/sqrt(hz)) 2 3 Low Pass Filter Cutoff Probable Internal Resonance of the Measurement Setup 4 2 2 3 Frequency (Hz) LI-G324--R

Nov. 6-9,2 Inertial Sensor: (Folded Pendulum Accelerometer) l g F M m F L! = s ( M l m l +2fl) g m + M LI-G324--R

Nov. 6-9,2 Inertial Sensor: (Folded Pendulum Accelerometer) (Sensitivity) 5 5 Amplitude (V) -5 - Sensitivity : 5 mv/ug -5-2 - 2 Acceleration (ug) Acceleration Spectral Density (ugrms/sqrt(hz)) -3-4 -5-6 -7-8 -9 - - 7. 2 3 4 5 6 7 BC Geophone Position Sensor Noise Actuator Noise Folded Pendulum Acc. 2 3 4 5 6 7 2 Frequency (Hz) LI-G324--R

Nov. 6-9,2 SAS-SUS Longitudinal Control Diagram Digital Control System ELECTROSTATIC DRIVER LSC:Error Signal DAC DAC COIL DRIVER SAS-SUS SUS LI II Four Stage GASF CHAIN (Passive) IP TABLE COIL DRIVER STEPPER MOTOR DRIVER SAS LVDT DRIVER ACCELER. DRIVER DAC Nonlinear feedback (Threshold Actuation) ADC DAC f=hz f=2hz f=2hz f=hz ELECTROSTATIC DRIVER Suspension f=-4mhz f=2hz VOICECOILS,2,3 ACCELEROM.,2,3 STEPPER MOTORS,2,3 LVDT,2,3 + + DAC DAC DC f=-4mhz ADC LSC:Error Signal -4mHz 4-6Hz Digital Signal Analog Signal Digital Control System Timing Board LI-G324--R

Nov. 6-9,2 LI-SAS Prototype Chain (Side View) LI-G324--R

Nov. 6-9,2 LI-SAS Prototype Chain (Top View) LI-G324--R

Nov. 6-9,2 LI-SAS Prototype Chain (Bottom View) LI-G324--R

Nov. 6-9,2 LI-SAS Prototype Chain (Actuators LVDT's) LI-G324--R

Nov. 6-9,2 SAS IP Sensor Actuator Map (X; Y and y ) y z x θ y Acceleration Sensor Position Sensor Voice Coil Accutator LEG3 LEG LEG2 LVDT LVDT3 LVDT2 ACT ACT2 ACT3 LI-G324--R

Nov. 6-9,2 Multiple Input Multiple Output System Diagonalization G(s) ^ _p D^ _v H(s) ^ u_ S^ q ffl ^H(s) Mechanical System with n eigenmodes. ffl u Sensor vector with n components. ffl v Actuators vector with n components. u = ^H(s) v Idea: Find two matrices ^S, ^D which diagonalize ^H(s) q = ^S ^H(s) ^D p ffl q Sensor vector each one sensitive to just one eigenmode. ffl p Actuators vector each one acting on just one eigenmode. ffl ^G(s) = ^S ^H(s) ^D Diagonalized System. LI-G324--R

Nov. 6-9,2 LVDT Sensors Diagonalization (Direct Transfer Functions) 2 LI SAS: LVDT Rotational Mode (theta) Magnitude 2 3 Two Translational Modes (x, y) 4 5 3 2 Frequency (Hz) LI-G324--R

Nov. 6-9,2 LVDT Sensors Diagonalization (Diagonalized Transfer Functions) LI SAS: LVDT Diagonalization 2 Magnitude 3 4 5 Two Translational Modes (x. y) Rotational Mode (theta) 6 7 8 3 2 Frequency (Hz) LI-G324--R

Nov. 6-9,2 Normal Mode Ring-Down (Yaw Mode) Amplitude (A.U.) 4 3 2 2 3 4.4.3 LVTP IP Diagonalization (Yaw Mode Ring Down) f =242.mHz Q = 48 25 5 75 25 5 75 2 Fit Data.2... 25 5 75 25 5 75 2 time(s) LI-G324--R

Nov. 6-9,2 Normal Mode Ring-Down (Y Mode) 3 LVTP IP Diagonalization (Y Mode Ring Down) Amplitude (A.U.) 2 2 3.8.6 2 3 4 5 Fit Data.4.2. f =47.8mHz Q = 2.2. 25. 5. 75.. 25. 5. 75. 2. time(s) LI-G324--R

Nov. 6-9,2 Normal Mode Ring-Down (X Mode) 2.5.5.5 LVTP IP Diagonalization (X Mode Ring Down) Amplitude (A.U.).5.5. 5.. 5. 2. 25. 3. 35. 4..2 Fit Data..8.6 f =45.6mHz Q = 72..4. 25. 5. 75.. 25. 5. time(s) LI-G324--R

Nov. 6-9,2 SAS Control : (Recent Results) ffl Position Sensor Diagonalization working ffl Actuator Diagonalization Working ffl Closed the Loops in the 3 DOF Example: Residual Seismic Noise Spectral Density DOF : y (Very Preliminary Result) Relative Seismic Noise Spec. Dens (Vrms/Sqrt(Hz)) Gain too high 3 2 Frequency (Hz) LI-G324--R