Lecture on Angular Vibration Measurements Based on Phase Demodulation

Similar documents
Gear Transmission Error Measurements based on the Phase Demodulation

PHASE DEMODULATION OF IMPULSE SIGNALS IN MACHINE SHAFT ANGULAR VIBRATION MEASUREMENTS

SIMPLE GEAR SET DYNAMIC TRANSMISSION ERROR MEASUREMENTS

Instrumentation and signal processing methods used for machine diagnostics

Theory and praxis of synchronised averaging in the time domain

NOISE AND VIBRATION DIAGNOSTICS IN ROTATING MACHINERY

VOLD-KALMAN ORDER TRACKING FILTERING IN ROTATING MACHINERY

Compensating for speed variation by order tracking with and without a tacho signal

Rotating Machinery Fault Diagnosis Techniques Envelope and Cepstrum Analyses

ANGULAR VIBRATION MEASUREMENTS OF THE POWER DRIWING SYSTEMS

Prognostic Health Monitoring for Wind Turbines

NOISE REDUCTION IN SCREW COMPRESSORS BY THE CONTROL OF ROTOR TRANSMISSION ERROR

Suggested Solutions to Examination SSY130 Applied Signal Processing

SEPARATING GEAR AND BEARING SIGNALS FOR BEARING FAULT DETECTION. Wenyi Wang

Congress on Technical Diagnostics 1996

Signal Analyzer, the software support for education of signal processing and measurements

Fault Diagnosis of Wind Turbine Gearboxes Using Enhanced Tacholess Order Tracking

Frequency Domain Analysis

Extraction of tacho information from a vibration signal for improved synchronous averaging

Chapter 4 REVIEW OF VIBRATION ANALYSIS TECHNIQUES

Synchronization of Matsuoka Neural Oscillator to Meshing Frequency for Estimation of Angular Position of Gears

APPLICATION NOTE 3560/7702. Introduction

Real-time Math Function of DL850 ScopeCorder

Chapter 3 Simulation studies

A Multi-Probe Setup for the Measurement of Angular Vibrations in a Rotating Shaft

Copyright 2017 by Turbomachinery Laboratory, Texas A&M Engineering Experiment Station

Application Note. Monitoring strategy Diagnosing gearbox damage

ACOUSTIC NOISE AND VIBRATIONS OF ELECTRIC POWERTRAINS

Current-Based Diagnosis for Gear Tooth Breaks in Wind Turbine Gearboxes

Condition based monitoring: an overview

SSC Applied High-speed Serial Interface Signal Generation and Analysis by Analog Resources. Hideo Okawara Verigy Japan K.K.

An Improved Method for Bearing Faults diagnosis

MUS421/EE367B Applications Lecture 9C: Time Scale Modification (TSM) and Frequency Scaling/Shifting

2.1 BASIC CONCEPTS Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal.

Real-Time FFT Analyser - Functional Specification

Modern Vibration Signal Processing Techniques for Vehicle Gearbox Fault Diagnosis

Study of Improper Chamfering and Pitting Defects of Spur Gear Faults Using Frequency Domain Technique

University of Huddersfield Repository

Fault Detection of Double Stage Helical Gearbox using Vibration Analysis Techniques

RF Systems I. Erk Jensen, CERN BE-RF

Vibration Analysis on Rotating Shaft using MATLAB

Final Exam Solutions June 14, 2006

Active Vibration Isolation of an Unbalanced Machine Tool Spindle

Enayet B. Halim, Sirish L. Shah and M.A.A. Shoukat Choudhury. Department of Chemical and Materials Engineering University of Alberta

Fundamentals of Vibration Measurement and Analysis Explained

A comparison of methods for separation of deterministic and random signals

Lab10: FM Spectra and VCO

Signal segmentation and waveform characterization. Biosignal processing, S Autumn 2012

PVA Sensor Specifications

Developer Techniques Sessions

Advanced Machine Diagnostics and Condition Monitoring

Frequency Demodulation Analysis of Mine Reducer Vibration Signal

Lecture 2 Review of Signals and Systems: Part 1. EE4900/EE6720 Digital Communications

Machine Diagnostics in Observer 9 Private Rules

A Comparison of Different Techniques for Induction Motor Rotor Fault Diagnosis

9LEUDWLRQ 0HDVXUHPHQW DQG $QDO\VLV

NON-SELLABLE PRODUCT DATA. Order Analysis Type 7702 for PULSE, the Multi-analyzer System. Uses and Features

IET (2014) IET.,

Presentation at Niagara Falls Vibration Institute Chapter January 20, 2005

AMTI FILTER DESIGN FOR RADAR WITH VARIABLE PULSE REPETITION PERIOD

Gearbox Vibration Source Separation by Integration of Time Synchronous Averaged Signals

Applying digital signal processing techniques to improve the signal to noise ratio in vibrational signals

Novel Spectral Kurtosis Technology for Adaptive Vibration Condition Monitoring of Multi Stage Gearboxes

CHAPTER 6 INTRODUCTION TO SYSTEM IDENTIFICATION

Appearance of wear particles. Time. Figure 1 Lead times to failure offered by various conventional CM techniques.

FAULT DIAGNOSIS OF SINGLE STAGE SPUR GEARBOX USING NARROW BAND DEMODULATION TECHNIQUE: EFFECT OF SPALLING

Topic 2. Signal Processing Review. (Some slides are adapted from Bryan Pardo s course slides on Machine Perception of Music)

Effect of parameters setting on performance of discrete component removal (DCR) methods for bearing faults detection

Advanced Vibration Analysis Techniques for Fault Detection and Diagnosis in Geared Transmission Systems

Problems from the 3 rd edition

Cepstral Removal of Periodic Spectral Components from Time Signals

CONTACTLESS MEASURING METHOD OF BLADE VIBRATION DURING TURBINE SPEED-UP

Fourier Transform Analysis of Signals and Systems

DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters

Shaft encoders are digital transducers that are used for measuring angular displacements and angular velocities.

Principles of Communications ECS 332

EE482: Digital Signal Processing Applications

Combining synchronous averaging with a Gaussian mixture model novelty detection scheme for vibration-based condition monitoring of a gearbox

Karl Janssens, Piet Van Vlierberghe, Philippe D Hondt, Ton Martens, Bart Peeters, Wilfried Claes

Correction for Synchronization Errors in Dynamic Measurements

DIAGNOSIS OF ROLLING ELEMENT BEARING FAULT IN BEARING-GEARBOX UNION SYSTEM USING WAVELET PACKET CORRELATION ANALYSIS

Guan, L, Gu, F, Shao, Y, Fazenda, BM and Ball, A

CONTROLLING THE OSCILLATIONS OF A SWINGING BELL BY USING THE DRIVING INDUCTION MOTOR AS A SENSOR

Communication Channels

Statistical Analysis of Vibration Signals for Monitoring Gear Condition 1

Midterm 1. Total. Name of Student on Your Left: Name of Student on Your Right: EE 20N: Structure and Interpretation of Signals and Systems

Composite square and monomial power sweeps for SNR customization in acoustic measurements

Gear Noise Prediction in Automotive Transmissions

EE 560 Electric Machines and Drives. Autumn 2014 Final Project. Contents

Calibration and Processing of Geophone Signals for Structural Vibration Measurements

PeakVue Analysis for Antifriction Bearing Fault Detection

BLADE AND SHAFT CRACK DETECTION USING TORSIONAL VIBRATION MEASUREMENTS PART 2: RESAMPLING TO IMPROVE EFFECTIVE DYNAMIC RANGE

Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Fading Channel. Base Station

Separation of Sine and Random Com ponents from Vibration Measurements

Detection of Wind Turbine Gear Tooth Defects Using Sideband Energy Ratio

Data Acquisition Systems. Signal DAQ System The Answer?

Phased Array System toolbox: An implementation of Radar System

New Long Stroke Vibration Shaker Design using Linear Motor Technology

Linear Time-Invariant Systems

PRODUCT DATA. PULSE Reflex Angle Domain Analysis Type Uses and Features

Transcription:

Lecture on Angular Vibration Measurements Based on Phase Demodulation JiříTůma VSB Technical University of Ostrava Czech Republic

Outline Motivation Principle of phase demodulation using Hilbert transform Gear angular vibration measurements Transmission error (TE) measurements Measurements of the car engine rotational speed uniformity Software tools for phase demodulation Jiri Tuma, 2005 2

Motivation Angular vibration as the source of the machine vibration and noise

Angular and Linear Vibration Excitation Line of action wheel F S Pressure angle Pitch point Centre line Support point Basic circle F T Pitch circle F T force acting to the wheel at the pitch point F S force acting at the wheel support bearing F = Jiri Tuma, 2005 4 S F T Forces F T and F S result in torque Force F S excites gearcase vibration

Gear Angular Vibration deg deg/s^2 0,0016 0,0008 0,0000-0,0008-0,0016 60000 30000 0-30000 -60000 Time : Time (Enhanced Time(Encoder)) 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 Revolution [-] Time : Time (Time (Enhanced Time(Encoder))) - 0 to 100 ord 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 Revolution [-] Angular vibration Double differentiation Angular acceleration m/s^2 10 5 0-5 -10 Time : Order Analyzer : Enhanced Time(Vibrace H) 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 Revolution [-] Linear acceleration on the gearbox housing Jiri Tuma, 2005 5

Source of car shaking while running at idle speed Crankshaft angular vibration Engine linear vibration Car body linear vibration Jiri Tuma, 2005 6

Variation of the Angular Acceleration Variation in 3D Surface Plot Jiri Tuma, 2002 Jiri Tuma, 2005 7

Transducers and signal processing methods

Transducers for Angular Vibration Measurements Tangentially mounted accelerometers Laser Torsional Vibration Meter (Doppler effect) Incremental rotary encoders (several hundreds of pulses per revolution) Jiri Tuma, 2005 9

How to Process Impulse Signals Time interval length measurements Sample number & Interpolation High frequency oscillator (10 GHz) & Impulse counter (Signal analyzer Rotec) Phase demodulation Jiri Tuma, 2005 10

Principle of the Hilbert transform

Analytic Signal Property ω = 2π P f Real harmonic signal (vanishing X N ) Complex analytic signal Jiri Tuma, 2005 12

Analytic Signal in a Helix Shape ω = 2π P f Jiri Tuma, 2005 13

Evaluation of Analytic Signal X = X P + X N X N π 2 Y N = j X N j π 2 Y N π 2 = j X P Z = 2X P YP = j X P j X = X N N Evaluation of the Hilbert transform using Fast Fourier Transform (FFT) Digital filters Time signal + j Hilbert transform = Analytic signal Jiri Tuma, 2005 14

Evaluation of the Hilbert Transform using FFT ( jω) FFT{ x( k) } X = X ( jω) Y ( jω) ( k) IFFT{ Y ( jω) } y = π 2 Y N = j X N YP = j X P π 2 Jiri Tuma, 2005 15

Evaluation of Analytic Signal using Digital Filter x(t) y(t) Real part Hilbert Transformer z(t) Imaginary part Frequency response function G HT ( jω e ) = j, + π > ω > 0 j, π < ω < 0 Impulse response g HT 1 + π 2π π 0, = 2 πn, ( ) ( jω n = G e ) HT e n = 2k n = 2k jωn + 1 dω = Jiri Tuma, 2005 16

Hilbert Transformer 160-order FIR filter Impulse response n = -80,,80 Frequency response function 0,8 FIR Filter Coefficients : hy160 1,2 FIR Filter FRF : ; Coefficients : hy160 0,6 0,4 0,2 0,0-0,2-0,4 Magnitude 1,0 0,8 0,6 0,4 Hilbert Transformer -0,6 0,2-0,8-20 -16-12 -8-4 0 4 8 12 16 20 Index n 0,0 0,0 0,2 0,4 0,6 0,8 1,0 Normalised Frequency [-] Jiri Tuma, 2005 17

Principle of phase demodulation

Phase Modulation 1,5 1,0 0,5 0,0-0,5-1,0-1,5 Real phase modulated signal x(t) = A cos(ω P t+ φ M (t)) Modulation signal Phase 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Revolution ω P Analytic signal Carrying component Sideband components Jiri Tuma, 2005 19

Phase Unwrapping and Linear Trend Removing 2π + π π 4 2 Unit 0-2 -4 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Revolution Discontinuities removing ( 2 f f ϕ π ) sampl ϕ < π ϕ + 2π ϕ, ϕ > +π ϕ 2π ϕ 7 6 5 4 rad 3 2 1 0 0 0,2 0,4 0,6 0,8 1 0,15 0,1 0,05 rad 0-0,05-0,1-0,15 0 0,2 0,4 0,6 0,8 1 Revolution Revolution Jiri Tuma, 2005 20

An alternative procedure Phase... Angular frequency Phase Envelope.. ϕ ω ϕ e () t () y = arctan x = dϕ dt () t = ( t) () t ( t) dx dt x y () t x() t t 2 2 t () t = ω( τ) dτ 0 2 2 () t = x () t + y () t () t + y () t dy dt ( t) Jiri Tuma, 2005 21

Gear Angular Vibration Measurements Solving the gearbox noise problem at the very source

Transmission error measurements Emitted gearbox noise level is proportional to the transmission error level decreasing TE by 10 db results in decreasing the noise level by 7 db

Measurement Principle TE Transmission error TE TE n n ( ) 2 rad = Θ2 Θ1 n n ( ) 2 m = Θ2 Θ1 r2 n, n 1 2 Θ 1, Θ 2 r 2 1 1. Teeth number. Angle of rotation [rad]. Wheel radius E 1, E 2. Incremental rotary encoders Θ 1 Θ 2 n 1 E 1 E 2 n 2 pinion wheel Jiri Tuma, 2005 24

Instrumentation 9/2 channels PULSE Order Analysis Heidehain encoders of the ERN 460-500 type (less than 300 ) Jiri Tuma, 2005 25

Encoder Accuracy E2 E1 1,000000 Phase difference Circle part RMS deg 0,100000 0,010000 0,001000 0,000100 634 RPM 1040 RPM 1 order 0,000010 0,000001 1 10 100 1000 Order [-] Heidehain encoders of the ERN 460-500 type (500 pulses per revolution) Jiri Tuma, 2005 26

Measurement Arrangement Car gearbox 21 V I REV II III IV 21 Engine E 1 E 2 4/2 channels PULSE Order Analysis & Special software 44 44 Heidehain encoders of the ERN 460-500 type Axle Jiri Tuma, 2005 27

Using the Fourier to evaluate the Hilbert transform

Effect of Phase Modulation on Pulse Frequency Spectrum RMS db/ref 1 V 10 0-10 -20-30 -40-50 -60-70 -80-90 Enhanced Spectrum, 21-Tooth Gear 395 416 437 458 479 500 521 542 563 584 605 RMS db/ref 1 V 10 0-10 -20-30 -40-50 -60-70 -80-90 Enhanced Spectrum, 44-Tooth Gear 324 368 412 456 500 544 588 632 676 Order [-] Orde r [-] Pinion 21 T Wheel 44 T Jiri Tuma, 2005 29

Pinion Angular Vibration deg 200000 180000 160000 140000 120000 100000 80000 60000 40000 20000 0 Time history : Pinion 21T : Enhanced Time(Impulsy500) 0,0 0,2 0,4 0,6 0,8 1,0 Revolution [-] Unwrapped phase deg 12 10 8 6 4 2 0-2 -4-6 -8 Time fázová demodulace pastorek : Pinion 21T : Enhanced Time(Impulsy500) 0,0 0,2 0,4 0,6 0,8 1,0 Revolution [-] Phase variation Jiri Tuma, 2005 30

Phase Modulation Frequency Spectrum -20 Autospectrum : Pinion 21T : Enhanced Time(Impulsy500) -20 Autospectrum : Wheel 44T : Enhanced Time(Impulsy500) -30-30 -40-40 RMS db/ref 1-50 -60-70 -80-90 RMS db/ref 1 deg -50-60 -70-80 -90-100 -100-110 -110-120 0 21 42 63 84 105 126-120 0 44 88 132 176 220 Order [-] Order [-] Pinion 21 T Wheel 44 T Jiri Tuma, 2005 31

Comb Filter 1 - Frequency Response H 1 ( j f ) f 0 Pass Band 5 harmonics of the toothmeshing frequency with the limited number of sidebands 0 0 1 2 3 4 f 0 toothmeshing frequency 5 f f 0 Jiri Tuma, 2005 32

Angular Vibration of the 21-Tooth Gear in Deg (after Comb Filtration) Toothmeshing frequency harmonics with 3 sideband components deg Time History : Pinion 21T : Enhanced Time(Impulsy500) 0,0020 0,0015 0,0010 0,0005 0,0000-0,0005-0,0010-0,0015-0,0020 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 Revolution [-] Jiri Tuma, 2005 33

Angular Vibration of the 44-Tooth Gear in Deg (after Comb Filtration) Toothmeshing frequency harmonics with 6 sideband components 0,006 Time History : Wheel 44T : Enhanced Time(Impulsy500) 0,004 0,002 deg 0,000-0,002-0,004-0,006 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 Revolution [-] Jiri Tuma, 2005 34

Comb Filter 2 - Frequency Response H 1 ( j f ) f 0 Pass Band 0 Only harmonics of the toothmeshing frequency without sidebands 0 0 1 2 3 4 f 0 toothmeshing frequency 5 f f 0 Jiri Tuma, 2005 35

Phase Delay Between Signals Original delay Zero delay 1,5 1,5 1,0 1,0 0,5 0,5 m/s^2 0,0-0,5-1,0 m/s^2 0,0-0,5-1,0-1,5-1,5-2,0 0,0 0,2 0,4 0,6 0,8 1,0-2,0 0,0 0,2 0,4 0,6 0,8 1,0 Tooth pitch rotation [-] Tooth pitch rotation [-] Vibration signal synchronized with pinion rotation Vibration Signal synchronized with pinion rotation Vibration signal synchronized with wheel rotation Vibration signal delayed by phase shift Jiri Tuma, 2005 36

Transmission Error (average per a tooth pitch rotation) 4 3 2 500 RPM, +40 Nm 500 RPM, +80 Nm TE [micron) 1 0-1 -2-3 -4 0 1 2 3 Tooth pitch rotation Jiri Tuma, 2005 37

Truck Gearbox Jiri Tuma, 2005 38

Transmission Error 2R 2N 6 6 4 4 micron 2 0-2 433 Nm 867 Nm 1300 Nm micron 2 0-2 348 Nm 697 Nm 1045 Nm -4-4 -6 0 0,2 0,4 0,6 0,8 1-6 0 0,2 0,4 0,6 0,8 1 Tooth pitch rotation Tooth pitch rotation Jiri Tuma, 2005 39

Using the FIR filter to evaluate the Hilbert transform

Measured Impulse Signals Impulse signals V 6 Time 3 : Time Capture Analyzer : Expanded Time(Encoder1) ; Expanded Time(Encoder2) 4 2 0-2 0,0000 0,0005 0,0010 0,0015 0,0020 0,0025 0,0030 0,0035 Time [s] Frequency spectra RMS db/ref 1E-6 140 120 100 80 60 40 Autospectrum : Time Capture Analyzer : Expanded Time(Encoder1) ; Expanded Time(Encoder2) 0 5000 10000 15000 20000 25000 Frequency [Hz] Jiri Tuma, 2005 41

Filtered Impulse Signals Filtered impulse signals RMS db/ref 1 V 4 2 0-2 -4 20 Time : Time Capture Analyzer : Time: Real (Expanded Time(Encoder1)) ; Time 2: Real (Expanded Time(Encoder2)) 0,0000 0,0005 0,0010 0,0015 0,0020 0,0025 0,0030 0,0035 Time [s] 0-20 -40-60 -80 Frequency spectra of filtered signals Autospectrum 1 : Time Capture Analyzer : Time: Real (Expanded Time(Encoder1)) ; Time 2: Real (Expanded Time(Encoder2)) 0 5000 10000 15000 20000 25000 Frequency [Hz] Jiri Tuma, 2005 42

Phase Difference Unwrapped phase of impulse signals 4000000 FIR Filters : Time Capture Analyzer : Time: Real (Expanded Time(Encoder1));Time: Real (Expanded Time(Encoder2)) 3000000 deg 2000000 1000000 deg 0 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 Time [s] Phase difference (Signal1 Signal2 * 27/44) 0,10 0,05 0,00-0,05-0,10 Difference : Time Capture Analyzer : FIR Filters: Unwrapped Phase (Time: Real (Expanded Time(Encoder1))) 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 Time [s] Jiri Tuma, 2005 43

Phase Spectrum RMS db/ref 1 deg 40 30 20 10 0-10 -20-30 -40 Phase spectrum Autospectrum 2 : Time Capture Analyzer : Difference (FIR Filters: Unwrapped Phase (Time: Real (Expanded Time(Encoder1))) - FIR Filters: Unwrapped Phase (Time 2: Real (Expanded Time(Encoder2)))) 0 1000 2000 3000 4000 5000 Frequency [Hz] Jiri Tuma, 2005 44

Time Domain Signal IFFT of phase spectrum micron 60 50 40 30 20 10 0-10 -20-30 -40-50 Time History : Time Capture Analyzer : Time 1: Real (Difference (FIR Filters: Unwrapped Phase (Time: Real (Expanded Time(Encoder1))) - FIR Filters: Unwrapped Phase (Time 2: Real (Expanded Time(Encoder2))))) 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 Time [s] Jiri Tuma, 2005 45

Transmission Error Time History Pinion micron 10 5 0-5 -10 Time History : Time Capture Analyzer : Resampling 1 (Time 1: Real (Difference (FIR Filters: Unwrapped Phase (Time: Real (Expanded Time(Encoder1))) - FIR Filters: Unwrapped Phase (Time 2: Real (Expanded Time(Encoder2)))))) 0 2 4 6 8 10 12 14 Revolution [-] Wheel micron 10 5 0-5 -10 Time History : Time Capture Analyzer : Resampling (Time 1: Real (Difference (FIR Filters: Unwrapped Phase (Time: Real (Expanded Time(Encoder1))) - FIR Filters: Unwrapped Phase (Time 2: Real (Expanded Time(Encoder2)))))) 0 1 2 3 4 5 6 7 8 Revolution [-] Jiri Tuma, 2005 46

Averaged Transmission Error 4 3 2 1 0-1 -2-3 -4-5 Pinion Time History : Time Capture Analyzer : Resampling 1: Averaged (Time 1: Real (Difference (FIR Filters: Unwrapped Phase (Time: Real (Expanded Time(Encoder1))) - FIR Filters: Unwrapped Phase (Time 2: Real (Expanded Time(Encoder2))))))1 0,0 0,2 0,4 0,6 0,8 1,0 Revolution [-] 4 3 2 1 0-1 -2-3 -4-5 Wheel Time History : Time Capture Analyzer : Resampling: Averaged (Time 1: Real (Difference (FIR Filters: Unwrapped Phase (Time: Real (Expanded Time(Encoder1))) - FIR Filters: Unwrapped Phase (Time 2: Real (Expanded Time(Encoder2)))))) 0,0 0,2 0,4 0,6 0,8 1,0 Revolution [-] Jiri Tuma, 2005 47

Results of the gear design improvements Effect of the design improvements on the gearbox noise

Effect of Contact Ratio on the Average Toothmesh Acceleration Signal Truck Gearbox ( ε 1.0) β ε γ ε α total contact ratio = profile contact ratio + face contact ratio ε β LCR HCR Jiri Tuma, 2005 49

Effect of Contact Ratio on the Noise Level in db db(a) 100,0 98,0 96,0 94,0 92,0 90,0 88,0 86,0 Truck gearbox noise level at the distance of 1m 3R 3N 4R 4N 5R 5N LCR 92,0 92,9 95,0 95,4 95,0 96,5 HCR 90,0 91,8 90,4 89,7 88,2 90,3 Speed Jiri Tuma, 2005 50

Effect of Tooth Surface Modification Hluk v db 88-92 84-88 80-84 76-80 72-76 68-72 64-68 60-64 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 S Gear train S RPM Torque Nm 805 1001 1245 1549 1968 2448 3080 22003831 Hluk v db 88-92 84-88 80-84 76-80 72-76 68-72 64-68 60-64 Gear train T2 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 RPM Torque Nm 1771 2203 2740 3408 4330 22005386 T1 T2 Jiri Tuma, 2005 51

Measurements of a car engine rotational speed variation Solving the problem of a car with random burst shaking while its engine is running in idle Car body vibrations correlate with changes in engine rotational speed

Engine rotation uniformity at idle speed Average RPM during 250 consecutive double revolutions 820 810 RPM 800 790 780 0 50 100 150 200 Index 800 RPM = 13.3 Hz Hz Jiri Tuma, 2005 53

Measurements of a Car Engine Rotational Speed and Acceleration Impulse signals crankshaft 4/2 channels PULSE Order Analysis tacho & (Divider) camshaft Jiri Tuma, 2005 54

Source of an Impulse Signal Jiri Tuma, 2005 55

Impulse Signal 6 60 2 = 58 impulses per revolution Impulse signal for engine control unit 4 2 V 0-2 -4-6 0 0,5 1 1,5 2 Addition of missing impulses Revolution 6 4 2 V 0-2 -4-6 0,9 0,92 0,94 0,96 0,98 1 Revolution Jiri Tuma, 2005 56

Angular Variation 1,5 1 0,5 deg 0-0,5-1 -1,5 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 Revolution Jiri Tuma, 2005 57

Engine rotation uniformity at idle speed Instantaneous RPM during the 2-revolution engine cycle 800 RPM = 13.3 Hz Hz 830 820 810 RPM 800 790 780 770 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 Revolution Jiri Tuma, 2005 58

Differentiation in the Frequency Domain Angle Velocity Acceleration ϕ t, Φ jω ω = d ϕ dt, Ω = jωφ ε = d ω dt, Ε = jωω 1,2 1 0,8 0,6 0,4 0,2 ( ) ( ) 0 deg 0 6 12 Orders 8 7 6 5 4 3 2 1 0 RPM Filtered out 0 6 12 Orders 120 100 80 60 40 20 0 rad/s2 Filtered out 0 6 12 Orders Jiri Tuma, 2005 59

Engine Crankshaft Angular Velocity and Acceleration Angular velocity 830 6 ord limit 820 810 RPM 800 790 780 770 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 Revolution Angular acceleration 300 Angular acceleration 250 200 150 100 ra d /s 2 5 0 0-5 0-1 0 0-1 5 0-2 0 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 R e v o lu tio n Jiri Tuma, 2005 60

Angular acceleration variation during two engine revolutions 4-cylinder // 4-stroke engine + 300 250 200 150 100 combustion cycle rad/s2 50 0-50 -100 - -150-200 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 Revolution compression cycle Jiri Tuma, 2005 61

Effect of sinusoidal signal distortion on its frequency spectrum 1 1 0,5 0-0,5 full half zero 0,8 0,6 0,4 0,2 0.5 ord 1 ord 1.5 ord 2 ord -1 0 0 0,5 1 1,5 2 full half zero 1.5 ord = 6.6 Hz Hz Jiri Tuma, 2005 62

Crankshaft angular acceleration frequency spectrum 90 80 70 240 60 Index 50 rad/s2 40 30 20 10 0 0 0,5 1 1,5 2 2,5 3 3,5 4 Order 6.6 Hz 13.3 Hz 26.6 Hz 200 160 120 80 40 rad/s2 70-80 60-70 50-60 40-50 30-40 20-30 10-20 0-10 0 0 1 2 3 4 Order Jiri Tuma, 2005 63

Linear acceleration frequency spectra Absorber effect Engine Car body 6.6-13.3-26.6 Hz 6.6 Hz Human body extra sensitive Jiri Tuma, 2005 64

Ride comfort RMS of Acceleration 4 8 Frequency [Hz] Jiri Tuma, 2005 65

Results Original absorber Improved absorber 0,14 0,12 0.5 ord = 6.6 Hz 0,1 0,08 m/s2 0,06 0,04 0,02 0 1 11 21 31 41 51 61 71 81 91 101 111 121 Index 0,09 0,08 0,07 1 ord = 13.3 Hz 0,06 m/s2 0,05 0,04 0,03 0,02 0,01 0 1 11 21 31 41 51 61 71 81 91 101 111 121 Index Jiri Tuma, 2005 66

Software Tools for Transmission Error Evaluation

Automation Program for PULSE, the BK Signal Analyser Jiri Tuma, 2005 68

Signal Analyser Jiri Tuma, 2005 69

Conclusion The lecture is focused on the problem of the angular vibration measurements using phase demodulation The shaft angular vibration excite the housing linear vibration and consequently machine noise The theory is illustrated by experimental data. Jiri Tuma, 2005 70

Thank you for your attention Jiri Tuma, 2005 71