Type Marking Ordering code (taped) CGY 180 CGY 180 Q68000-A8882 MW 12

Similar documents
MMA R GHz, 0.1W Gain Block Data Sheet October, 2012

MMA GHz, 0.1W Gain Block

AM002535MM-BM-R AM002535MM-FM-R

MMA GHz 1W Traveling Wave Amplifier Data Sheet

2 Watt Packaged Amplifier TGA2902-SCC-SG

MMA M GHz 4W MMIC Power Amplifier Data Sheet

18W X-Band High Power Amplifier. GaN Monolithic Microwave IC

MMA M4. Features:

5W X Band Medium Power Amplifier. GaN Monolithic Microwave IC

Gallium Nitride MMIC Power Amplifier

TGA2806-SM. CATV Linear Amplifier. Key Features. Measured Performance Small Signal Gain (75 Ω) includes balun losses

MMA GHz, 0.1W Gain Block Data Sheet

MMA R GHz 4W MMIC Power Amplifier Data Sheet Old package not recommended for new designs

MAAP PKG003 YYWW AP067G XXX MACOM. Amplifier, Power, 2W GHz. Primary Applications: M/A-COM Products Rev D. Features.

Features. = +25 C, Vdd = +15V, Vgg2 = +9.5V [1], Idq = 500 ma [2]

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Type Marking Pin Configuration Package BFP196 RIs 1 = C 2 = E 3 = B 4 = E - - SOT143

BFG235. NPN Silicon RF Transistor*

Features. = +25 C, Vdd =+28V, Idd = 850 ma [1]

Features. Output Power for 1 db Compression (P1dB) dbm Saturated Output Power (Psat) dbm

Features: Applications: Description: Absolute Maximum Ratings: (Ta= 25 C)* 28-31GHz 2.5W MMIC Power Amplifier Preliminary Data Sheet

MMA R4 30KHz-50GHz Traveling Wave Amplifier Data Sheet October 2012

MMA GHz 4W MMIC Power Amplifier Data Sheet

CHA F RoHS COMPLIANT

Ceramic Packaged GaAs Power phemt DC-12 GHz

3.6V 0.5W RF Power Amplifier IC for DECT

Features. = +25 C, Vdd = +5V, Idd = 400mA [1]

MECGaNC30. 4 to 6 GHz GaN HEMT Power Amplifier. Main Features. Product Description. Applications

Data Sheet. AMMP GHz High Gain Amplifier in SMT Package. Description. Features. Applications. Package Diagram. Functional Block Diagram

ESD Sensitive Component!!

CHA5294 RoHS COMPLIANT

Features. = +25 C, Vdd = +7V, Idd = 1340 ma [1]

Features. Parameter Min Typ. Max Min Typ. Max Min Typ Max Units Frequency Range GHz Gain

CHA7215 RoHS COMPLIANT

MMA M GHz, 1W MMIC Power Amplifier Data Sheet

15W Power Packaged Transistor. GaN HEMT on SiC

TGA2602-SM MHz High IP3 Dual phemt. Key Features and Performance. Measured Performance. Primary Applications. Product Description

0.5-20GHz Driver. GaAs Monolithic Microwave IC

SURFACE MOUNT PHEMT 2 WATT POWER AMPLIFIER,

Features. Parameter Min Typ. Max Min Typ. Max Min Typ Max Units Frequency Range GHz Gain

For broadband amplifiers up to 1 GHz at collector currents from 1 ma to 20 ma For mixers and oscillators in sub-ghz applications

Data Sheet, Rev. 2.3, Sept BGA428. Gain and PCS Low Noise Amplifier. RF & Protection Devices

MMA GHz, 1W MMIC Power Amplifier Data Sheet March, 2012

Type Marking Pin Configuration Package BFP540ESD AUs 1=B 2=E 3=C 4=E - - SOT343

CMD158C GHz Driver Amplifier. Features. Functional Block Diagram. Description. Electrical Performance - V dd = 5.0 V, T A = 25 o C, F = 11 GHz

MMA M GHz, 2W Power Amplifier Data Sheet

CMD187C GHz Driver Amplifier. Features. Functional Block Diagram. Description

Features. Specifications

Data Sheet AMMC KHz 80 GHz TWA. Description. Features. Typical Performance (Vd=5V, Idsq=0.1A) Component Image.

Features. = +25 C, Vdd1, 2, 3 = 5V, Idd = 250 ma*

14-17 GHz Packaged Doubler with Amplifier. TriQuint Semiconductor: www. triquint.com (972) Fax (972) April 2012 Rev B

Features. = +25 C, Vdd = +10 V, Idd = 350 ma

GHz RF Front-End Module. o C

TGA2601-SM MHz High IP3 Dual phemt. Key Features and Performance. Measured Performance. Primary Applications. Product Description

GaAs MMIC Power Amplifier

CMD283C GHz Ultra Low Noise Amplifier. Features. Functional Block Diagram. Description

Data Sheet 0GX. ATF Enhancement Mode [1] Pseudomorphic HEMT in SOT 89 Package. Features. Description. Specifications

MMA C3 6-22GHz, 0.1W Gain Block Data Sheet

GHz SUPER LOW NOISE PACKAGED AMPLIFIER WHM0510AE 1

Ultra-linear Mixer with Integrated IF Amp and LO Buffer

2-20 GHz Driver Amplifier

CHX2090-QDG RoHS COMPLIANT

MECXQMM-60W. 8.3 to 10.3 GHz GaN HEMT Power Amplifier

0.5-20GHz Driver. GaAs Monolithic Microwave IC

HMC618ALP3E AMPLIFIERS - LOW NOISE - SMT. GaAs SMT phemt LOW NOISE AMPLIFIER, GHz. Typical Applications. Features. Functional Diagram

Data Sheet. MGA High Linearity ( ) GHz Power Amplifier Module. Features. Description. Specifications. Applications.

X-band Medium Power Amplifier. GaAs Monolithic Microwave IC

OBSOLETE HMC5846LS6 AMPLIFIERS - LINEAR & POWER - SMT. Electrical Specifications, T A. Features. Typical Applications. General Description

MAAL Low Noise Amplifier GHz. Features. Functional Block Diagram. Description. Pin Configuration 1. Ordering Information 2,3 N/C

8Fx. Data Sheet ATF Low Noise Enhancement Mode Pseudomorphic HEMT in a Surface Mount Plastic Package. Description. Features.

MGA Current Adjustable Low Noise Amplifier

TGA2803-SM. CATV TIA / Gain Block. Applications. Product Features. Measured Performance. General Description. Ordering Information

HMC694LP4 / 694LP4E. Variable gain amplifiers - ANALOG - smt. GaAs MMIC ANALOG VARIABLE GAIN AMPLIFIER, 6-17 GHz. Typical Applications

HMC486LP5 / 486LP5E LINEAR & POWER AMPLIFIERS - SMT. SURFACE MOUNT PHEMT 2 WATT POWER AMPLIFIER, 7-9 GHz. Typical Applications.

MAAM Driver Amplifier GHz Rev. V3. Functional Schematic. Features. Description. Pin Configuration 3,4. Ordering Information 1,2

TGA2701-SM 3 Watt C-Band Packaged Power Amplifier Key Features Measured Performance Primary Applications Product Description

Features. Gain: 14.5 db. Electrical Specifications [1] [2] = +25 C, Rbias = 825 Ohms for Vdd = 5V, Rbias = 5.76k Ohms for Vdd = 3V

Features. = +25 C, Vdd1 = Vdd2 = +3.5V, Idd = 70 ma

8 11 GHz 1 Watt Power Amplifier

DC - 20 GHz Discrete power phemt

Product Data Sheet August 5, 2008

HMC5805ALS6 AMPLIFIERS - LINEAR & POWER - SMT. Typical Applications. Features. Functional Diagram

Features. = +25 C, Vdd1 = Vdd2 = +3.5V, Idd = 45 ma

CHA2194 RoHS COMPLIANT

HMC997LC4. Variable Gain Amplifier - SMT. VARIABLE GAIN AMPLIFIER GHz. Typical Applications. General Description. Functional Diagram

2-22GHz LNA with AGC. GaAs Monolithic Microwave IC

CHX3068-QDG RoHS COMPLIANT

GHz Power Amplifier. GaAs Monolithic Microwave IC in SMD leadless package

CMX901 RF Power Amplifier

6-18 GHz Low Phase Noise Amplifier

5 6.4 GHz 2 Watt Power Amplifier

PRELIMINARY DATASHEET

PRELIMINARY DATASHEET

GHz LOW NOISE AMPLIFIER WHM AE 1

30 MHz to 6 GHz RF/IF Gain Block ADL5544

GHz Packaged HPA. GaAs Monolithic Microwave IC in SMD leadless package. Output power (dbm)

VD1N, VD2N, VD3N are available externally but are internally interconnected

VWA ACAA. Features. Description. Applications. Ordering information. Pin out and dimensions (4,5 X 4,1 X 0.10 mm) Functional Block Diagram

Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications

1-24 GHz Distributed Driver Amplifier

Transcription:

Datasheet * Power amplifier for DECT and PCS application * Fully integrated 3 stage amplifier * Operating voltage range: 2.7 to 6 V * Overall power added efficiency 35 % * Input matched to 5 Ω, simple output match ESD: Electrostatic discharge sensitive device, observe handling precautions! Type Marking Ordering code (taped) Package 1) CGY 18 CGY 18 Q68-A8882 MW 12 Maximum ratings Characteristics Symbol max. Value Unit Positive supply voltage V D 8 V Negative supply voltage 2 ) V G -8 V Supply current I D 1.2 A Maximum input power P in,max 1 dbm Channel temperature T Ch 15 C Storage temperature T stg -55...+15 C Total power dissipation (Ts < 81 C) P tot 2.3 W Ts: Temperature at soldering point Pulse peak power P Pulse 9.5 W Thermal Resistance Channel-soldering point R thchs 3 K/W 1) Plastic body identical to SOT 223, dimensions see chapter Package Outlines 2) V G = -8V only in combination with V TR = V; V G = -6V while V TR V Siemens Aktiengesellschaft pg. 1/15 21.2.96

Functional Block Diagram: VG (2) VD1 (8) VD2 (9) VD3 (11) VTR (1) Control circuit Pin (7) Pout (11) GND1 (6) GND2 (3,4,5,1) Pin # Configuration 1 VTR Control voltage for transmit (V) / receive (open) mode 2 VG Negative voltage at control circuit (-4V...-8V) 3 GND2 RF and DC ground of the 2nd and 3rd stage 4 GND2 RF and DC ground of the 2nd and 3rd stage 5 GND2 RF and DC ground of the 2nd and 3rd stage 6 GND1 RF and DC ground of the 1st stage 7 RFin RF input power 8 VD1 Pos. drain voltage of the 1st stage 9 VD2 Pos. drain voltage of the 2nd stage 1 GND2 RF and DC ground of the 2nd and 3rd stage 11 VD3, Pout Pos. drain voltage of the 3rd stage, RF output power 12 n.c. Siemens Aktiengesellschaft pg. 2/15 21.2.96

Control circuit: VG supply: Negative voltage (stabilization is not necessary) in the range of -4V...-8V. VTR supply: During transmit operation: V., negative supply current 1mA...2.5mA. During receive operation: not connected (shut off mode) The operation current ID of CGY 18 is adjusted by the internal control circuit. DC characteristics Characteristics Symbol Conditions min typ max Unit Drain current stage 1 IDSS1 VD=3V, VG=V, VTR n.c. 15 22 32 ma stage 2 IDSS2 15 22 32 ma stage 3 IDSS3 675 1 144 ma Drain current with ID VD=3V, VG=-4V, VTR=V 29 45 65 ma active current control Transconductance gfs1 VD=3V, ID=9mA 8 1 14 ms (stage 1-3) gfs2 VD=3V, ID=9mA 8 1 14 ms gfs3 VD=3V, ID=4mA 36 5 63 ms Pinch off voltage Vp VD=3V, ID<17µA -3.8-2.8-1.8 V (all stages) Siemens Aktiengesellschaft pg. 3/15 21.2.96

Electrical characteristics (T A = 25 C, f=1.89 GHz, Z S =Z L =5 Ohm, VD=3.V, VG=-4V, VTR pin connected to ground, unless otherwise specified) Characteristics Symbol min typ max Unit Supply current Pin = dbm Negative supply current (transmit operation) Shut-off current VTR n.c. Negative supply current (shut off mode, VTR pin n.c.) Gain P in = -2dBm Output Power P in = dbm Output Power VD=5V; P in = dbm Overall Power added Efficiency P in = dbm Harmonics (P in =dbm) 2f - VD=3V; (P out =27dBm) 3f - Harmonics (P in =dbm) 2f I DD - 45 - ma I G - 1 2.5 ma I D - 5 18 µa I G - 1 5 µa G 28 3 - db P o 25.5 27 - dbm P o - 3 - dbm η 3 35 - % - - - - -28-25 dbc VD=5V; (P out =3dBm) 3f - - - -22 - - - -25 dbc Input VSWR VD=3V; - - 2 : 1 2.5 : 1 - Third order intercept point VD=3V; pulsed with a duty cycle of 1%; IP 3-33.5 - dbm f 1 =1.89GHz; f 2 =1.891728GHz; Third order intercept point VD=4.8V; pulsed with a duty cycle of 1%; f 1 =1.89GHz; f 2 =1.891728GHz; Load mismatch Pin=dBm, VD 6V, Z S =5 Ohm, Load VSWR = 2:1 for all phase, VTR=V, VG=-4V Stability Pin=dBm, VD=2-7V, Z S =5 Ohm, Load VSWR = 3:1 for all phase, VTR=V, VG=-4V IP 3-38.5 - dbm - No module damage for 1 sec. - All spurious output more than 6 db below desired signal level - - Siemens Aktiengesellschaft pg. 4/15 21.2.96

DC - characteristics Input characteristics - typical measured values of stage 1 and 2, VD1 or VD2=3V,26 low current medium current high current,24,22,2,18,16,14,12 ID[A],1,8,6,4,2-4 -3,8-3,6-3,4-3,2-3 -2,8-2,6-2,4-2,2-2 -1,8-1,6-1,4-1,2-1 -,8 -,6 -,4 -,2 VG[V] Output characteristics - typical measured values of stage 1 and 2,22,2 V ID[A],18,16,14,12,1,8,6 -.2V -.3V -.5V -.7V -.8V -1.V -1.2V -1.3V -1.5V -1.7V -1.9V,4-2.1V,2-2.3V -2.5V,2,4,6,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3 3,2 3,4 3,6 3,8 4 4,2 4,4 4,6 4,8 5 5,2 5,4 5,6 5,8 6 VD[V] Siemens Aktiengesellschaft pg. 5/15 21.2.96

Input characteristics - typical measured values of stage 3, VD3 = 3V 1,3 low current medium current high current 1,2 1,1 1,9,8,7,6,5 ID[A],4,3,2,1-4 -3,8-3,6-3,4-3,2-3 -2,8-2,6-2,4-2,2-2 -1,8-1,6-1,4-1,2-1 -,8 -,6 -,4 -,2 VG[V] Output characteristics - typical measured values of stage 3 1,1 1,9,8,7 V -.1V -.2V -.3V -.4V -.6V -.7V ID[A],6,5,4,3 -.9V -1.1V -1.3V -1.5V -1.7V,2-1.9V -2.1V,1-2.3V -2.5V,2,4,6,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3 3,2 3,4 3,6 3,8 4 4,2 4,4 4,6 4,8 5 5,2 5,4 5,6 5,8 6 VD[V] Siemens Aktiengesellschaft pg. 6/15 21.2.96

Output power and power added efficiency pulsed mode: ton=1ms, duty cycle 1% Pout[dBm] P out and PAE vs. Pin f = 1.89 GHz, VD = 3 V, VG=-4V, VTR=V 3 36 29 34 28 Pout [dbm] 32 27 3 26 PAE [%] 28 25 26 24 24 23 22 22 2 21 18 2 16 19 14 18 12 17 1 16 8 15 6 14 4 13 2 12-2 -18-16 -14-12 -1-8 -6-4 -2 2 4 6 P in [dbm] PAE [%] P out and PAE vs. Pin f = 1.89 GHz, VD = 5 V, VG=-4V, VTR=V Pout [dbm] PAE [%] 45 4 35 3 25 2 15 1 5-2 -15-1 -5 5 1 P in [dbm] Pout [dbm] PAE [%] Siemens Aktiengesellschaft pg. 7/15 21.2.96

Gain vs. frequency VG=-4V, VTR=V 3V Pin=dBm 5V Pin=dBm 3V Pin=-2dBm 5V Pin=-2dBm 33 32 31 GAIN vs. DRAIN VOLTAGE f=1.89 GHz, VD=3V, VG=-4V, VTR=V Gain [db] 3 29 28 27 26 Gain [db] Pin= dbm Gain [db] Pin =-2dBm 25 2 3 4 5 6 V D [V] Siemens Aktiengesellschaft pg. 8/15 21.2.96

Output power control vs. VTR 35 7 3 6 25 5 Pout [dbm] 2 15 4 3 Id [ma] Pout (Vd=4.5V) [dbm] Pout (Vd=3V) [dbm] ID (Vd=4.5V) [ma] 1 2 ID (Vd=3V) [ma] 5 1,5 1 1,5 2 -VTR [V] Total Power Dissipation Ptot=f(T S ) Siemens Aktiengesellschaft pg. 9/15 21.2.96

Permissible pulse load P tot_max /P tot_dc = f(t_p) Siemens Aktiengesellschaft pg. 1/15 21.2.96

Test circuit board: The following impedances of the bias circuit should be seen from the CGY18 ports: Γ=.97 / 96 8 Γ=.96 / 142 9 Γ =.94 / -134 11 CGY 18 8 9 11 Γ Γ 8 9 Γ 11 (values measured at f=1.89 GHz) Size: 2 x 25 mm; In, Out: 5 Ohm Principal circuit: Vg 1nF 1nF 4.7uF 1nF +Vd 1nF 68pF 6.8pF 1.5pF VG (2) VD1 (8) VD2 (9) VD3 (11) VTR VTR (1) Control circuit In Pin(7) Pout (11) Out CGY18 GND1(6) GND2(3,4,5,1) Siemens Aktiengesellschaft pg. 11/15 21.2.96

Output power at different temperatures* 3 28 26 Pout [dbm] 24 22 2 18 Pout(-2 C) [dbm] Pout(+2 C) [dbm] Pout(+7 C) [dbm] 16-12 -1-8 -6-4 -2 2 4 Pin [dbm] Power added efficiency at different temperatures* 4 35 3 25 PAE [%] 2 15 1 5 PAE(-2 C) [%] PAE(+2 C) [%] PAE(+7 C) [%] -12-1 -8-6 -4-2 2 4 Pin [dbm] *)measured with a CGY18 test circuit board (see page 11) VD=3V, VG=-4V, VTR=V Siemens Aktiengesellschaft pg. 12/15 21.2.96

Emissions due to modulation:* Spectrum of amplified DECT signal Measurement was done with the following equipment: negative supply voltage -4V VG Pulsed Power Supply Trigger VD=3V pulsed with a duty cycle of 1% ton=1ms gate delay 3µs gate length 1ms DECT Signal Generator Pin=dBm IN VD CGY18 OUT Spectrum Analyzer ROHDE&SCHWARZ SME3 VTR HP 8561E *)measured with a CGY18 test circuit board (see page 11) VD=3V, VG=-4V, VTR=V Siemens Aktiengesellschaft pg. 13/15 21.2.96

APPLICATION - HINTS 1. CW - capability of the CGY18 1.1 V D = 3 V Proving the possibility of CW - operations there must be known the total power dissipation of the device. This value can be found as a function of the temperature in the datasheet (page 8/14). The CGY18 has a maximum total power dissipation of P tot = 2.3 W. As an example we take the operating point with a drain voltage V D = 3 V. The possible ratings of the drain current adjusted by the internal current control of the CGY18 ( V G = -4 V, V TR = V ) are shown in the following table. Min. Typ. Max. I D / ma 325 45 65 At worst case you see a current of I D = 65 ma. So the maximum DC - power can be calculated to P = V I =195. W DC D D This value is smaller than 2.3W and CW - operation is possible. 1.2 V D = 4 V If you want to use the whole capability of the CGY18, you must consider the power added efficiency PAE. You want to take an operation point of V D = 4 V. Now there will be a higher current than at V D = 3 V. We assume a current of I D = 65 ma and a PAE = 35 %. With these values the DC - power is P DC = 2.6 W. That exeeds the P totdc of 2.3 W. Decoupling RF-Power from the CGY18 results in less power dissipation of the device. This is directly correlated with the achieved PAE. To calculate total power dissipation use the formula: ( 1 ) P = P PAE totdc P tot for the used operating point shown above will be DC Ptot = 26. W( 1 35. ) = 169. W. It is possible to use the CGY18 for CW - operations up to a drain voltage of V D = 4 V, if at the same time a PAE of 35% is achieved. The calculation can be done for any operating point to prove the capability of CW - operation. Siemens Aktiengesellschaft pg. 14/15 21.2.96.

2. Not using the internal current control If you don' t want to use the internal current control, it is recommended to connect the negative supply voltage at pin 1 ( V TR ) instead of pin 2 ( V G ). 3. Biasing and use considerations In all cases, RF input power should not be applied until the bias voltages have been applied, and RF input power should be turned off prior to removing the bias voltages. Bias application should be timed such that gate voltage ( V GG ) is always applied before the drain voltages ( V DD ), and when returning to the standby mode, gate voltage should only be removed once the drain voltages have been removed. Siemens Aktiengesellschaft pg. 15/15 21.2.96