ELM334 Garage Doorman

Similar documents
ELM409 Versatile Debounce Circuit

ELM313 Stepper Motor Controller

Construction of a high-voltage Buck-Boost capacitor charger. Transformer and logic

LM193A/293/A/393/A/2903 Low power dual voltage comparator

Low Voltage, High Current Time Delay Circuit

Description. Applications

High Current MOSFET Toggle Switch with Debounced Push Button

FAN1851A Ground Fault Interrupter

SP385A. +3V to +5V RS-232 Line Driver/Receiver. Operates from 3.3V or 5V Power Supply Meets All EIA-232D and V.28 Specifications

Autonomous Robot Control Circuit

+5V, Low-Power µp Supervisory Circuits with Adjustable Reset/Watchdog

ASTABLE MULTIVIBRATOR

Long Loopstick Antenna

Blinky Box TG2122 Optically Isolated Impulse Distributor User s Manual

Low-Cost Microprocessor Supervisory Circuits with Battery Backup

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS

HT7610A/HT7610B/HT7611A/HT7611B General Purpose PIR Controller

High-Accuracy μp Reset Circuit

Heliotrack Programmable Wind Alarm Switch V1.0 Developed in partnership with Inspeed.com, LLC

EE283 Electrical Measurement Laboratory Laboratory Exercise #7: Digital Counter

Applications. Tape and Reel Device Qualification Packaging AL5802LP4 Commercial X2-DFN ,000/Tape & Reel -7

Features. NOTE: Non-designated pins are no connects and are not electrically connected internally.

CD54/74HC221, CD74HCT221

MIC General Description. Features. Applications. Typical Application. 3A Low Voltage LDO Regulator with Dual Input Voltages

EDE1204 Bi-Polar Stepper Motor IC

LSI/CSI LS6506R LS6507R PIR SENSOR INTERFACE. LSI Computer Systems, Inc Walt Whitman Road, Melville, NY (631) FAX (631)

ASM1232LP/LPS 5V μp Power Supply Monitor and Reset Circuit

For Reference Only DUAL-OUTPUT HALL-EFFECT SWITCH FEATURES. ABSOLUTE MAXIMUM RATINGS at T A = +25 C

Low Power μp Supervisor Circuits

CD74HC221, CD74HCT221

NJM4151 V-F / F-V CONVERTOR

EXPERIMENT 12: DIGITAL LOGIC CIRCUITS

3.0V/3.3V Microprocessor Supervisory Circuits MAX690T/S/R, MAX704T/S/R, MAX802T/S/R, MAX804 MAX806T/S/R. Features

PIN CONNECTIONS

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

OBSOLETE - PART DISCONTINUED

CD4538 Dual Precision Monostable

SGM706 Low-Cost, Microprocessor Supervisory Circuit

LSI/CSI LS7213R PROGRAMMABLE DIGITAL DELAY TIMER

AS393/393A. Description. Pin Assignments. Features. Applications. Typical Applications Circuit LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS

SGM706 Low-Cost, Microprocessor Supervisory Circuit

DS1869 3V Dallastat TM Electronic Digital Rheostat

Dallastat TM Electronic Digital Rheostat

LSI Computer Systems, Inc Walt Whitman Road, Melville, NY (631) FAX (631)

AS339/339A. Description. Pin Assignments. Features. Applications LOW POWER LOW OFFSET VOLTAGE QUAD COMPARATORS AS339/339A

Low-Cost Microprocessor Supervisory Circuits with Battery Backup

Automotive Wash Wiper Timer

LM555 and LM556 Timer Circuits

DS V EconoReset PIN ASSIGNMENT FEATURES PIN DESCRIPTION PIN 1 GROUND PIN 2 RESET PIN 3 V CC PIN 4 GROUND (SOT 223 ONLY)

Fluorescent display tube level meter driver, 16-point 2 channel, VU scale, bar display

DISCONTINUED PRODUCT FOR REFERENCE ONLY COMPLEMENTARY OUTPUT POWER HALL LATCH 5275 COMPLEMENTARY OUTPUT POWERHALL LATCH FEATURES

LSI Computer Systems, Inc Walt Whitman Road, Melville, NY (631) FAX (631) PIR SENSOR INTERFACE

DUAL TIMING CIRCUIT SEMICONDUCTOR TECHNICAL DATA PIN CONNECTIONS ORDERING INFORMATION. Figure Second Solid State Time Delay Relay Circuit

LM219/LM319 Dual voltage comparator INTEGRATED CIRCUITS. Product data Supersedes data of 1994 Aug 31 File under Integrated Circuits, IC11 Handbook

FEATURES. Timers Low Supply Detector. Power up Timer. Post Alarm Dead Time. Counter. Pulse Width Discriminator. Discriminator control function

Features. Applications

Adaptive Power MOSFET Driver 1

Process Components. Process component

TIMING CIRCUIT SEMICONDUCTOR TECHNICAL DATA ORDERING INFORMATION. Figure Second Solid State Time Delay Relay Circuit

Atmel U6032B. Automotive Toggle Switch IC DATASHEET. Features. Description

LM1801 Battery Operated Power Comparator

Precision Micropower Single Supply Operational Amplifier OP777

MAX6711L/M/R/S/T/Z, MAX6712L/M/R/S/T/Z, MAX6713L/M/R/S/T/Z. 4-Pin SC70 Microprocessor Reset Circuits with Manual Reset Input

The silicon controlled rectifier (SCR)

OBSOLETE TTL/CMOS INPUTS* TTL/CMOS OUTPUTS TTL/CMOS TTL/CMOS OUTPUTS DO NOT MAKE CONNECTIONS TO THESE PINS INTERNAL 10V POWER SUPPLY

MT8809 8x8 Analog Switch Array

Low-Power, Single/Dual-Voltage μp Reset Circuits with Capacitor-Adjustable Reset Timeout Delay

A5832. BiMOS II 32-Bit Serial Input Latched Driver. Discontinued Product

Low Cost, General Purpose High Speed JFET Amplifier AD825

INTEGRATED CIRCUITS. SA571 Compandor. Product specification 1997 Aug 14 IC17 Data Handbook

Application Note 1047

±15kV ESD-Protected, 3.0V to 5.5V, Low-Power, up to 250kbps, True RS-232 Transceiver

TC7660S SUPER CHARGE PUMP DC-TO-DC VOLTAGE CONVERTER TC7660S GENERAL DESCRIPTION FEATURES ORDERING INFORMATION

Setup Period. General Description

CD V Low Power Subscriber DTMF Receiver. Description. Features. Ordering Information. Pinouts CD22204 (PDIP) TOP VIEW. Functional Diagram

DACPORT Low Cost, Complete P-Compatible 8-Bit DAC AD557*

ML Bit Data Bus Input PLL Frequency Synthesizer

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Supply Voltage Supervisor TL77xx Series. Author: Eilhard Haseloff

Triple Voltage Regulator TLE 4471

Single Channel Protector in an SOT-23 Package ADG465

Adaptive Power MOSFET Driver 1

O FF G ATE C LK PT8A324 4/5/6/7. 1 NTC1 NTC1 I I NTC voltage input, NTC open detection input.

ML4818 Phase Modulation/Soft Switching Controller

Application Note AN-3006 Optically Isolated Phase Controlling Circuit Solution

HIGH FREQUENCY 7660 DC-TO-DC VOLTAGE CONVERTER TC7660H GENERAL DESCRIPTION FEATURES ORDERING INFORMATION

SGM706 Low-Cost, Microprocessor Supervisory Circuit

Design and Technology

LP2902/LP324 Micropower Quad Operational Amplifier

Last Time Buy. Deadline for receipt of LAST TIME BUY orders: April 30, 2011

Description O FF G ATE C LK PT8A323 4/5/6/7. 1 NTC1 NTC1 I I NTC voltage input, NTC open detection input.

IXYS IXI848A. High-Side Current Monitor. General Description. Features: Applications: Ordering Information. General Application Circuit

MIC4451/4452. General Description. Features. Applications. Functional Diagram V S. 12A-Peak Low-Side MOSFET Driver. Bipolar/CMOS/DMOS Process

74F50729 Synchronizing dual D-type flip-flop with edge-triggered set and reset with metastable immune characteristics

Charge Pump Voltage Converters TJ7660

INTEGRATED CIRCUITS. 74F175A Quad D flip-flop. Product specification Supersedes data of 1996 Mar 12 IC15 Data Handbook.

High Speed, +5 V, 0.1 F CMOS RS-232 Driver/Receivers ADM202/ADM203

SERIALLY PROGRAMMABLE CLOCK SOURCE. Features

Auto door bells. Flash on Mde Auto-change. Override ON Duration. Effective Trigger Width HT7610A HT7610B HT7611A HT7611B. 2 times Flash 8 hrs

PIR sensor control chip

Transcription:

EM Garage Doorman Description The EM is an integrated circuit for remotely monitoring the position of electrical contacts (on a garage door, for example) and reporting the position by way of coloured EDs. A two-wire interface is all that is needed to convey the position of the door to two remotely located EDs, and to also provide pushbutton control for an electric opener if desired. This circuit is able to monitor the state of one or two position sensing switches, provide debouncing of the signals, and to generate an alternating (flashing) output when the position changes. In addition, there is a separate pushbutton input that may be used to control an electric garage door opener, or possibly trigger an alarm. Several examples of how the EM might be used are provided in the Example Applications section. Features ow power CMOS design Wide supply range -.0 to. volt operation Simultaneous monitoring of three inputs Fully debounced inputs Two wire interface to EDs Stuck button protection on the control output Pulsed control output Connection Diagram PDIP and SOIC (top view) VSS Applications RED OpenSw Garage door monitoring and control Remote signalling and acknowledgement GED PB ClosedSw Control Remote alarm circuits Block Diagram RED Debounce Timers OpenSw GED Drive ogic Debounce Timers ClosedSw PB Debounce Timers Pulse Generator Control of

EM Pin Descriptions (pin ) This pin is the positive supply pin, and should always be the most positive point in the circuit. Internal circuitry connected to this pin is used to provide power-on reset of the microprocessor, so an external reset signal is not required. Refer to the Electrical Characteristics section for further information. RED (pin ), and GED (pin ) These two outputs are for driving EDs (through a suitable current limiting resistance). ogic ensures that only one output is active at a time, allowing the two outputs to drive a single dual type ED (that is red if energized in one polarity, and green if the polarity is reversed). During powerup, the red ED will be lit for 0. sec, followed by the green for 0. sec, as a ED test. PB (pin ) A momentary low level on this pin will be debounced, and then used to initiate a 0. second output pulse on pin. If unused, it is preferrable to connect this pin to (but it may be left open-circuited, as there is an internal pullup resistor). Control (pin ) An active high level pulse will appear at this pin, in response to a low level on pin. Only a single 0. sec pulse will be output, regardless of the length of time that the pin input remains low (as long as it is greater than the msec debounce time). The state of the RED and the GED lines is not updated if the pushbutton is being pressed. ClosedSw (pin ), and OpenSw (pin ) These two inputs are for monitoring the position of the door (or other contacts). Since these switches might be attached to some very simple switch mechanisms, a long 0. sec debounce timer (pickup and dropout) is used on each input. This allows the ED outputs to possibly be used with logic circuits, as well as driving EDs. The OpenSw input is not required for circuit operation. If this input is not used, the EDs will still flash alternately when the door is opened, but after 0 seconds, the flashing will stop and the red ED will light solidly. Please refer to the Circuit Operation section for more details. If either pin or pin are not used, it is preferrable to connect them to (but they may be may be left open-circuited, as they both have internal pullup resistors). VSS (pin ) Circuit common is connected to this pin. This is the most negative point in the circuit. Ordering Information These integrated circuits are available in either the 00 mil plastic DIP format, or in the 0 mil SOIC surface mount type of package. To order, add the appropriate suffix to the part number: 00 mil Plastic DIP... EMP 0 mil SOIC... EMSM All rights reserved. Copyright 999, 00 Elm Electronics. Every effort is made to verify the accuracy of information provided in this document, but no representation or warranty can be given and no liability assumed by Elm Electronics with respect to the accuracy and/or use of any products or information described in this document. Elm Electronics will not be responsible for any patent infringements arising from the use of these products or information, and does not authorize or warrant the use of any Elm Electronics product in life support devices and/or systems. Elm Electronics reserves the right to make changes to the device(s) described in this document in order to improve reliability, function, or design. of

EM Absolute Maximum Ratings Storage Temperature... - C to +0 C Ambient Temperature with Power Applied...-0 C to + C Voltage on with respect to VSS... 0 to +.V Voltage on any other pin with respect to VSS... -0.V to ( + 0.V) Note: Stresses beyond those listed here will likely damage the device. These values are given as a design guideline only. The ability to operate to these levels is neither inferred nor recommended. Electrical Characteristics All values are for operation at C and a V supply, unless otherwise noted. For further information, refer to note below. Characteristic Minimum Typical Maximum Units Conditions Supply Voltage,.0.0. V rate of rise 0.0 V/ms see note Average Supply Current, IDD.0. ma = V, see note Debounce Period Pushbutton msec pickup or dropout times Position Switches msec Control Output Pulse Width msec see note Internal Pullup Resistance 00 KΩ pin 0 KΩ pin or Typical Output Voltages (pins,, or ) 0. V Current (sink) = ma. V Current (source) =.0 ma Notes:. This integrated circuit is produced with a Microchip Technology Inc. s PICCXX as the core embedded microcontroller. For further device specifications, and possibly clarification of those given, please refer to the appropriate Microchip documentation ( http://www.microchip.com/ ).. This spec must be met in order to ensure that a correct power on reset occurs. It is quite easily achieved using most common types of supplies, but may be violated if one uses a slowly varying supply voltage, as may be obtained through direct connection to solar cells, or some charge pump circuits.. Integrated circuit only. Does not include any ED or drive currents.. This is the pin output pulse width, once triggered by an active input on pin. The duration of the pulse does not change if the pushbutton is released before this time passes, or if is held for much longer times. of

EM Circuit Operation The EM can be thought of as two inverters that have some additional logic connected. The inputs to the inverters are located on pins and, while the outputs are connected to pins and. If pin is connected to a low level, then pin goes high. If pin is connected to a low level, pin will go high. There are several additions, however, that make these a little more than simple inverters. To make this IC more useful, we have added debounce circuits to the pin and inputs. These are similar to digital integrators - the input must be at one level for a set time before the output can change. This may not be necessary for simple EDs, but if you want to interface to a computer circuit or other logic, you will require a clean signal such as this provides. To ensure that the circuit works reliably even with very poor quality switches, a debounce period of 0. seconds is used. In addition to the debouncing, there is logic connected to these pins, so that both EDs are not on at the same time, etc. (the door is either closed or open, but not both). Figure shows the outputs that can be expected for all combinations of the two inputs. Typically, a dual red/green ED will be connected between the two output pins, and this is what is meant by the last column. You may connect separate EDs between each output and circuit common, but there is no advantage to this, as it requires an extra wire for remote indicators. (It is easier and cheaper to wire separate EDs back to back as shown in the Example Applications section.) One other feature of the internal logic is a lamp test that is performed at each power up - the EDs are each turned on for 0. seconds so that you can be sure that they are both working (red first, followed by green). The EM also has a special pushbutton circuit connected between pins and. When a low level input appears on pin, a 0. second pulse will be output on pin. This is typically used to drive a relay which interfaces with the garage door control circuit, but it can also be connected to logic of your choice. Only one pulse will be generated for each pushbutton press, no matter how long the button is held for. The input also provides a debouncing circuit so that a mechanical pushbutton can be used. That covers the basics of how the EM IC operates. The next section (Example Applications) shows a few examples of how it may be used Pin ClosedSw Pin OpenSw Pin RED Pin GED Dual (R/G) ED glows Green Red Green Alternates between red and green for 0 seconds, then shows red Figure. EM ED ogic of

Example Applications The following pages show a few circuits that may help you get started with the EM. They show everything from a minimal circuit to a typical full implementation that you may wish to try. We encourage experimentation, and hope that you enjoy doing so. The first circuit (Figure ) shows the absolute minimum required to use the EM IC. A single (normally closed) contact is connected between pin and circuit common, while a single green ED is connected between pins and. We do not use a current limiting resistor in series with the ED, as the EM has fairly high output resistance when operated with a V supply, and will limit the ED current. Two AA batteries in series provide the V source to operate the circuit. Normally, the door closed switch is closed when the door is, and opens when the door does (this could green V be a magnetic switch, or a mechanical contact). When the door opens then, the contact does too, and the pin input goes high. With the pin input low, the green ED will turn off (see Figure for the pin logic). If we had connected a dual red/green ED, the red ED would turn on when the door opens. Figure would likely work well if experimenting on the bench, but really requires more circuitry to make it more reliable for real world operation. Figure shows the recommended additions to make a more reliable circuit. Note that we have now shown a ground symbol to represent the circuit common (battery negative), just to simplify the schematic. This new circuit shows a capacitor across the IC supply terminals, to prevent noise generated internally by the EM from affecting the supply voltage, and thus the complete circuit. We ve also added a few resistors on both the input and the output sides of the IC, mostly to protect it from the effects of induced voltages and currents which can cause a phenomenon called latch-up in some CMOS circuits. If the door closed switch or the ED is more than a few feet away from the EM, these extra resistors should be added. Functionally, the circuit in Figure operates in exactly the same manner as the one in Figure. door closed Figure. Absolute Minimum EM Circuit +V V 0.µF +V green.kω.kω +V door closed Figure. A Better Minimal EM Circuit of

Example Applications (continued) Figure carries the circuit of Figure a little farther, creating an alarm type circuit. We have used a dual red/green ED this time, and also connected the green ED output to the pushbutton input. In this way, a momentary opening of the door switch will create a pushbutton input, when the green ED goes off. Once the green ED is off, it will remain that way, even if the door contact should close (as internally a pushbutton input always forces the green ED off, and the red ED on). Note that there will be a 0. second pulse at the Control output (pin ) when the door first opens - this might be used to trigger an audible alarm. This monitor circuit could be used for a door of any type, not just a garage door. Perhaps a shed, or a storage bin. A contact such as from a thermostat could also be connected to warn that a temperature has gone above or below a set limit. To reset this circuit requires turning the power off then on. The circuits so far have used a battery to supply power. The problem with this is that a pair of AA cells will only last a week or two in such an application. To avoid always having to monitor the monitor, it would be good to power the circuit from a different supply that is derived from the main AC service. Figure on the next page shows a circuit that assumes you are able to obtain V from a source (most likely an AC adapter). This allows generating a V supply for the EM while also providing a higher voltage that is suitable for driving a relay (from the Control output). Operation of the ED portion of Figure is very similar to the previous circuits, except that we have now added a switch to indicate that the door is fully open. The position sensing switches (possibly magnetic reeds) are connected to the.kω pullup resistors in order to provide a full logic swing input to the EM as they operate. The.KΩ series resistors provide some protection for the chip as the wires to the switches are likely to be lengthy, and susceptible to induced voltages and currents. After processing, the appropriate voltages appear at pins and, driving the EDs through the 0Ω current limiting resistors. Since the supply is now V, we have increased the ED resistors slightly in order to maintain roughly the same current. The control portion of the circuit may appear to be a little odd-looking at first. To understand its operation, note that one of the two driven EDs is always on, whether flashing or solid. Due to the connection of the two NPN transistors then, one of the NPNs is always biased on, keeping the PNP on, and pin of the EM at V. When the remote pushbutton is pressed, the ED circuit is shorted out, and neither NPN can conduct. The PNP thus shuts off, and pin of the IC drops to 0V, its active level. With the PB input active, a pulse is output at pin, causing the relay to pick up for 0. seconds. Although this circuit was designed to monitor doors, there are likely to be many other applications that it can be adapted to. Monitoring thermostats, or light levels, or water levels, for example. +V V 0.µF +V green.kω.kω red door closed Figure. A Remote Monitor with Memory of

Example Applications (continued) of