OCIS codes: ( ) Optical logic; ( ) lasers, injection-locked.

Similar documents
Short-pulse controlled optical switch using external cavity based single mode Fabry-Pérot laser diode

An approach for Realization of all optical NAND gate using Nonlinear Effect in SOA

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

All-optical logic gates using a semiconductor optical amplifier assisted by an optical filter

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration

A proposal for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picosecond pulse injection

All Optical Universal logic Gates Design and Simulation using SOA

Simulation of All-Optical XOR, AND, OR gate in Single Format by Using Semiconductor Optical Amplifiers

PHOTONICS microwave signals have been extensively

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser

Implementation of All-Optical Logic AND Gate using XGM based on Semiconductor Optical Amplifiers

Simultaneous Four-Wave Mixing and Cross-Gain Modulation for Implementing All Optical Full Adder without Assist Light

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

To generate a broadband light source by using mutually injection-locked Fabry-Perot laser diodes

All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

A broadband fiber ring laser technique with stable and tunable signal-frequency operation

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode

1.25 Gb/s Broadcast Signal Transmission in WDM-PON Based on Mutually Injected Fabry-Perot Laser Diodes

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

Experimental demonstration of both inverted and non-inverted wavelength conversion based on transient cross phase modulation of SOA

Spectrally Compact Optical Subcarrier Multiplexing with 42.6 Gbit/s AM-PSK Payload and 2.5Gbit/s NRZ Labels

KOUSIK MUKHERJEE Faculty, PG and UG Departments of Physics B. B. College, Asansol , West Bengal, India

THE USE OF SOA-BASED MACH-ZEHNDER INTERFEROMETER IN DESIGNING/IMPLEMENTING ALL OPTICAL INTEGRATED FULL ADDER-SUBTRACTOR AND DEMULTIPLEXER

All-optical AND gate with improved extinction ratio using signal induced nonlinearities in a bulk semiconductor optical amplifier

All-optical clock division at 40 GHz using a semiconductor amplifier. nonlinear interferometer

A HIGH SPEED WDM PON FOR DOWNSTREAM DPSK ASK SIGNALS AND UPSTREAM OOK SIGNAL WITH BROADCAST CAPABILTY

A NEW APPROACH TO DESIGN DIGITALLY TUNABLE OPTICAL FILTER SYSTEM FOR DWDM OPTICAL NETWORKS

High bit-rate combined FSK/IM modulated optical signal generation by using GCSR tunable laser sources

A WDM passive optical network enabling multicasting with color-free ONUs

Linear cavity erbium-doped fiber laser with over 100 nm tuning range

Performance Analysis of SOA-MZI based All-Optical AND & XOR Gate

22-Channel Capacity of 2.5Gbit/s DWDM-PON ONU Transmitter by Direct-Modularly Side-Mode Injection Locked FPLD

Colorless Amplified WDM-PON Employing Broadband Light Source Seeded Optical Sources and Channel-by-Channel Dispersion Compensators for >100 km Reach

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

DIRECT MODULATION WITH SIDE-MODE INJECTION IN OPTICAL CATV TRANSPORT SYSTEMS

Realization of all-optical NOR gate based on four wave mixing, non-linear effect in SOA

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

40Gb/s Optical Transmission System Testbed

SEMICONDUCTOR lasers and amplifiers are important

To investigate effects of extinction ratio on SOA based wavelength Converters for all Optical Networks

Utilizing Self-Seeding RSOA with Faraday Rotator Mirror for Colorless Access Network

Multi-format all-optical-3r-regeneration technology

1.25-Gb/s Millimeter-Wave Band Wired/Wireless Radio-over-Fiber System based on RSOA using an Injection-Locked FP-Laser

Packet clock recovery using a bismuth oxide fiber-based optical power limiter

The Theta Laser A Low Noise Chirped Pulse Laser. Dimitrios Mandridis

All-optical logic based on silicon micro-ring resonators

Performance Analysis of Chromatic Dispersion Compensation of a Chirped Fiber Grating on a Differential Phase-shift-keyed Transmission

Tunable single frequency fiber laser based on FP-LD injection locking

NEW APPROACH TO DESIGN DIGITALLY TUNABLE OPTICAL FILTER SYSTEM FOR WAVELENGTH SELEC- TIVE SWITCHING BASED OPTICAL NETWORKS

Study of All-Optical Wavelength Conversion and Regeneration Subsystems for use in Wavelength Division Multiplexing (WDM) Telecommunication Networks.

A NOVEL SCHEME FOR OPTICAL MILLIMETER WAVE GENERATION USING MZM

URL: < / >

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise

Performance of Optical Encoder and Optical Multiplexer Using Mach-Zehnder Switching

A New Logic Gate for High Speed Optical Signal Processing Using Mach- Zehnder Interferometer (MZI)

Channel wavelength selectable singleõdualwavelength erbium-doped fiber ring laser

Synchronization in Chaotic Vertical-Cavity Surface-Emitting Semiconductor Lasers

Photonic Generation of Millimeter-Wave Signals With Tunable Phase Shift

A tunable and switchable single-longitudinalmode dual-wavelength fiber laser with a simple linear cavity

Optical fiber-fault surveillance for passive optical networks in S-band operation window

Wavelength switching using multicavity semiconductor laser diodes

2-R REGENERATION EXPLOITING SELF-PHASE MODULATION IN A SEMICONDUCTOR OPTICAL AMPLIFIER

Optical neuron using polarisation switching in a 1550nm-VCSEL

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Novel cascaded injection-locked 1.55-µm VCSELs with 66 GHz modulation bandwidth

Progress In Electromagnetics Research Letters, Vol. 8, , 2009

Optical Fiber Technology

Wavelength Division Multiplexing Passive Optical Network (WDM-PON) technologies for future access networks

SOA-BASED NOISE SUPPRESSION IN SPECTRUM-SLICED PONs: IMPACT OF BIT-RATE AND SOA GAIN RECOVERY TIME

Simultaneous Wavelength Preserving and Wavelength Converting Regeneration of NRZ DPSK Signal Using FWM in SOA

Novel OBI noise reduction technique by using similar-obi estimation in optical multiple access uplink

The wavelength division multiplexing passive optical

Dispersion engineered As 2 S 3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals

1 Introduction. Research article

PERFORMANCE ANALYSIS OF WDM PONS BASED ON FP-LD USING RZ-OOK AND NRZ-OOK

All Optical Binary Divider

Optical millimeter wave generated by octupling the frequency of the local oscillator

All-Optical Signal Processing and Optical Regeneration

A continuously tunable and filterless optical millimeter-wave generation via frequency octupling

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links

SUPPLEMENTARY INFORMATION

Long-distance fiber grating sensor system using a fiber ring laser with EDWA and SOA

Teknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia

~r. PACKARD. The Use ofgain-switched Vertical Cavity Surface-Emitting Laser for Electro-Optic Sampling

Compact, flexible and versatile photonic differentiator using silicon Mach-Zehnder interferometers

Project: IEEE P Working Group for Wireless Personal Area Networks N

Mitigation of Mode Partition Noise in Quantum-dash Fabry-Perot Mode-locked Lasers using Manchester Encoding

DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M.

Three-level Code Division Multiplex for Local Area Networks

Bit error rate and cross talk performance in optical cross connect with wavelength converter

Differential measurement scheme for Brillouin Optical Correlation Domain Analysis

40 GHz Dual Mode-Locked Widely-Tunable Sampled-Grating DBR Laser

A bidirectional radio over fiber system with multiband-signal generation using one singledrive

Optical monitoring technique based on scanning the gain profiles of erbium-doped fiber amplifiers for WDM networks

Transcription:

Realization of all-optical multi-logic functions and a digital adder with input beam power management for multi-input injection locking in a single-mode Fabry-Pérot laser diode Bikash Nakarmi, * M. Rakib-Uddin, and Yong Hyub Won Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseon-dong), Yuseong-gu, Daejeon 35-71, Korea * bikash@kaist.ac.kr Abstract: We propose a novel idea for the suppression of the dominant mode of the single-mode Fabry-Pérot laser diode (SMFP-LD) to realize alloptical multi-logic functions and a digital adder. The basic principle of the proposed scheme is the power management of input beams to suppress the dominant mode of the SMFP-LD for multi-input injection locking. The proposed principle is explained and implemented to realize all-optical multi-logic functions and a digital adder at an input data rate of 1 Gbps. A clear eye opening with an extinction ratio of about 12 db and a risingfalling time of less than 4 ps are observed at the outputs. The bit error rate (BER) performance is measured for all logic gates and half adder operation. We found there is no BER floor up to BER of 1 12 and the maximum power penalty of about 1.2 db at a BER of 1 9. 211 Optical Society of America OCIS codes: (2.466) Optical logic; (14.352) lasers, injection-locked. References and links 1. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, Nonlinear optics for high-speed digital information processing, Science 286(5444), 1523 1528 (1999). 2. M. Saruwatari, All-optical signal processing for Terabit/second optical transmission, IEEE J. Sel. Top. Quantum Electron. 6(6), 1363 1374 (2). 3. K. E. Stubkjaer, Semiconductor optical amplifier-based all-optical gates for high-speed optical processing, IEEE J. Sel. Top. Quantum Electron. 6(6), 1428 1435 (2). 4. Y. Maeda, All-optical NAND logic device operating at 1.51-1.55 μm in Er-doped aluminosilicate glass, Electron. Lett. 35(7), 582 584 (1999). 5. S. Kumar, A. E. Willner, D. Gurkan, K. R. Parameswaran, and M. M. Fejer, All-optical half adder using an SOA and a PPLN waveguide for signal processing in optical networks, Opt. Express 14(22), 1255 126 (26). 6. S. G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Poti, Ultrafast integrable and reconfigurable XNOR, and, NOR, and NOT photonic logic gate, IEEE Photon. Technol. Lett. 18(8), 917 919 (26). 7. J. Y. Kim, J. Kang, T. Kim, and S. Han, All-Optical Multiple Logic Gates With XOR, NOR, OR, and NAND Functions Using Parallel SOA-MZI Structures: Theory and Experiment, J. Lightwave Technol. 24(9), 3392 3399 (26). 8. C. W. Son, S. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, S. H. Kim, and T.-H. Yoon, Realization of All-Optical XOR, NOR, and NAND gates in single format by using semiconductor optical amplifiers, Jpn. J. Appl. Phys. 46(1), 232 234 (27). 9. L. Y. Chan, K. K. Qureshi, P. K. A. Wai, B. Moses, L. F. K. Lui, H. Y. Tam, and M. S. Demokan, All-optical bit error monitoring system using cascaded inverted wavelength converter and optical NOR gate, IEEE Photon. Technol. Lett. 15(4), 593 595 (23). 1. M. R. Uddin, J. S. Cho and Y. H. Won, All-optical multicasting NOT and NOR logic gates using gain modulation in an FP-LD, IEICE Electron. Express 6(2), 14 11 (29). 11. M. R. Uddin, J. S. Lim, Y. D. Jeong, and Y. H. Won, All-optical Digital Logic Gates Using Single Mode Fabry- Pérot Laser Diode, IEEE Photon. Technol. Lett. 21(19), 1468 147 (29). 12. H. Yoo, Y. D. Jeong, Y. H. Won, M. Kang, and H. J. Lee, All-optical wavelength conversion using absorption modulation of an injection-locked Fabry-Pérot laser diode, IEEE Photon. Technol. Lett. 16(2), 536 538 (24). (C) 211 OSA 18 July 211 / Vol. 19, No. 15 / OPTICS EXPRESS 14121

13. L. Y. Chan, P. K. Wai, L. F. Lui, B. Moses, W. H. Chung, H. Y. Tam, and M. S. Demokan, Demonstration of an all-optical switch by use of a multiwavelength mutual injection-locked laser diode, Opt. Lett. 28(1), 837 839 (23). 14. J. S. Cho, N. L. Hoang, Y. D. Jeong, and Y. H. Won, Optical Bistability of an Injection-Locked Single-Mode Fabry-Pérot Laser Diode and Its Application to an Optical Flip-Flop, CLEO/PR27 Seoul, Korea, ThP 97(Aug), 26 31 (27). 15. Y. D. Jeong, Y. H. Won, S. O. Choi, and J. H. Yoon, Tunable single-mode Fabry-Perot laser diode using a built-in external cavity and its modulation characteristics, Opt. Lett. 31(17), 2586 2588 (26). 16. R. Lang, Injection locking properties of semiconductor laser, J. Lightwave Technol. QE-18, 976 983 (1982). 17. E. K. Lau, H. K. Sung, and M. C. Wu, Frequency response enhancement of optical injection-locked lasers, IEEE J. Quantum Electron. 44(1), 9 99 (28). 18. J. Horner and E. Patzak, Large signal analysis of all-optical wavelength conversion using two-mode injectionlocking in semiconductor lasers, IEEE J. Quantum Electron. 33(4), 596 68 (1997). 19. F. Ramos, E. Kehayas, J. M. Martinez, R. Clavero, J. Marti, L. Stampoulidis, D. Tsiokos, H. Avramopoulos, J. Zhang, P. V. Holm-Nielsen, N. Chi, P. Jeppesen, N. Yan, I. T. Monroy, A. M. J. Koonen, M. T. Hill, Y. Liu, H. J. S. Dorren, R. Van Caenegem, D. Colle, M. Pickavet, and B. Riposati, IST-LASAGNE: Towards all-optical label swapping employing optical logic gates and optical flip-flops, J. Lightwave Technol. 23(1), 2993 311 (25). 1. Introduction All-optical signal processing is one of the most promising solutions to meet the demands of future high-speed and large capacity optical communication networks [1,2]. All-optical logic gates are the basic functional blocks of all-optical signal processing such as encryption and data encoding, pattern matching, binary addition, counting, addressing, de-multiplexing, regeneration, switching, and other computing techniques [3]. One of the applications of the logic functions is to realize a combinational circuit such as a digital adder. A digital adder is a combinational circuit that generates the sum of two binary digits. Various schemes to realize optical logic gates and digital adders have been proposed and demonstrated using non-linear fiber such as an Er-doped optical amplifier [4] and periodical poled LiNbO 3 (PPLN) [5]. Also used have been semiconductor materials, such as a semiconductor optical amplifier (SOA) [6 8], and FP-LDs [9 11]. The Er-doped optical amplifier is operated at a low speed of 1 Gbps. PPLN-based gates are costly (they require several light sources). The most widely used and attractive SOA-based logic functions and SOA-based digital combinational circuits also require an interferrometric structure [3] that requires two or more devices with identical characteristics, accurate control, and stabilization. Using noninterferrometric SOA-based logic gates, two additional beams and other associated components are needed to obtain the logic functions. Logic gates and signal processing using multimode Fabry-Pérot laser diodes (MMFP-LDs) need an additional external probe beam and associated components, and are based on the power of a single injected beam to modulate the gain of the probe beam [9,1], [12,13]. Thus far, only NOR and NOT gates have been demonstrated using MMFP-LDs [9,1]. Absorption modulation is an optical signal processing technique using FP-LDs. During absorption modulation, a polarization-sensitive polarization beam splitter is necessary to separate the TE- and TM-polarized light, which is expensive [1]. Hence, signal processing using MMFP-LDs and absorption modulation scheme are expensive and complex. In this paper, a novel idea for suppressing the dominant mode of a single-mode Fabry- Pérot laser diode (SMFP-LD) based on the power management of the input beams for multiinput injection locking is proposed and experimentally demonstrated. We used SMFP-LDs for the proposed scheme. SMFP-LDs do not require any external probe beam and associated components because they operate in a self-locked dominant mode [11,14]. Additionally, our idea does not require an expensive polarization beam splitter, as is needed in absorption modulation using FP-LDs. Hence, the proposed idea has a simple configuration, resulting in a cost- and power-effective solution. With this principle, all-optical multi-logic functions (NAND, XNOR, AND, and XOR) with a digital adder (half adder) function are realized. The proposed scheme is verified with output waveforms, clear eye openings, low rising-falling times, and bit error rate (BER) performance at a data rate of 1 Gbps. (C) 211 OSA 18 July 211 / Vol. 19, No. 15 / OPTICS EXPRESS 14122

2. Principle of operation In the proposed scheme, we used SMFP-LDs, which were specially designed and developed in our laboratory [15]. The SMFP-LD used here has a dominant self-locked single longitudinal mode with a high side mode suppression ratio. The SMFP-LD is obtained by eliminating the inclinations of 6 to 8 of the coupling fiber present in conventional FP-LDs, thereby, forming an external cavity between the laser diode and the fiber. The SMFP-LD consists of a FP-LD chip with a multi-quantum well of 3 μm and an external cavity length of 4 mm. By varying the temperature, a mode-matching condition is achieved for both cavities. The refractive index of the active region changes with the change in the temperature. As a result, there is a change in the optical path length in the laser diode, providing the optimal mode-matching condition for single-mode oscillation. This single-mode oscillation can be tuned to another mode by varying the operating temperature, which gives the tunability of SMFP-LD. The self-locking mode of SMFP-LD is tunable over a wide range with a wavelength difference of about 1 nm. The SMFP-LD shows characteristics similar to those of MMFP-LDs including the mechanical stability, wavelength stability, and power stability of laser diode and also shows similar characteristics with the injection of external beams [15]. The only difference between SMFP-LDs and MMFP-LDs is that the former does not require an external probe beam for signal processing. The key principle of the proposed scheme is the suppression of the dominant mode of the SMFP-LD with proper power management of the input beams for multi-input injection locking as illustrated in Fig. 1. A basic block diagram of the proposed scheme with the optical logic functions and the digital adder (half adder) is shown in Fig. 1 (a). SMFP-LD1 has a dominant mode at λ 1, which is suppressed only when both inputs are in the logic high mode ( 1 ). This results in the logic NAND gate, which is attained by proper power management of the input beam power and the corresponding wavelength detuning. The SMFP-LD2 has a dominant mode at λ 2 which works on the supporting beam principle to suppress the dominant mode. It has multiple inputs (3 inputs), among which one is a major beam with the other two the supporting beams. It should be noted that the presence of supporting beams alone without the major beam cannot suppress the dominant mode of the SMFP-LD. One of the inputs for the SMFP-LD2 is the output from the SMFP-LD1, which acts as the major beam, and the other input is a combination of two input beams, A and B, which individually act as supporting beam. The dominant mode of SMFP-LD2 is suppressed when the major beam along with either of the input beams A and B is 1. For all other conditions, the combined power of the beams input to SMFP-LD2 is not sufficient to suppress the dominant mode of SMFP-LD2. This phenomenon is utilized to realize logic XNOR gate. SMFP-LD3 and SMFP-LD4 work on the basic principle of the injection locking of semiconductor lasers in which the power of a single input is enough to suppress the dominant mode of the SMFP-LDs [16], which are used to realize the logic NOT gate. We used a logic NOT gate at the output of NAND and a XNOR gate to obtain the logic AND and logic XOR gate, respectively. The output of the logic AND gate acts as a CARRY, and the output of the logic XOR gate acts as a SUM for the proposed digital half adder. Figure 1 (b)-(i), Fig. 1 (b)-(ii), and Fig. 1 (b)-(iii) show a spectrum schematic of the injection locking, multi-input injection locking and supporting beam principles, respectively, that suppress the dominant mode of SMFP-LDs. λ indicates the dominant mode of SMFP-LD, λ i1 and λ i2 indicate two input beams, λ m represents the major beam, and λ S1 and λ S2 represent the supporting beams. In Fig. 1(c), the power management of the beams for suppressing the dominant mode of the SMFP-LD is shown. P S is the power required to suppress the dominant mode with constant wavelength detuning (the wavelength difference between the corresponding mode and the injected beam) of the input beams. P S can be attained in different ways. Three methods to attain P S with constant wavelength detuning are illustrated in Fig. 1(c). Figure 1(c)-(i) shows the first method of attaining P S by injecting a beam with the equivalent power of P S. Figure 1(c)-(ii) shows the (C) 211 OSA 18 July 211 / Vol. 19, No. 15 / OPTICS EXPRESS 14123

second method with a combination of two inputs such that (P 1 + P 2 ) P S, but the individual power, P 1 and P 2 should be less than P S and greater than the supporting beams P S1 and P S2. Figure 1(c)-(iii) shows the third method with a combination of major beam (P m ) and any one of the supporting beams (P S1 or P S2 ) such that either (P m + P S1 ) P S or (P m + P S2 ) P S, but P S1 and P S2 should be less than P m and (P S1 + P S2 ) < P S. A B Coupler Half Adder (ii) Multi-input injection locking SMFP-LD1 (λ 1 ) NAND D C Coupler (iii) XNOR Suppression with supporting beam E SMFP-LD2 (λ 2 ) (i) Injection locking SMFP-LD4 G (λ 4 ) NOT (i) Injection locking SMFP-LD3 (λ 3 ) NOT F XOR AND SUM CARRY (a) λ λ λ i1 λ λs1 λs2 λ λ i1 λ λ i1 λ i2 λ λm λ S2 P S (i) (ii) (iii) P S P 2 P 1 (b) (P 1 +P 2 ) P S P m P S1 P S2 λ i1 λ i1 λ i2 λ S1 λ S2 (i) (ii) (iii) (c) λ m (P m +P S1 ) or (P m +P S2 ) Fig. 1. (a) Block diagram of all-optical multi-logic functions. (b) Schematic of the spectrum for (i) Injection locking (ii) Multi-input injection locking (iii) Supporting beam for suppressing the dominant mode (c) Power level management for the proposed scheme. Table 1. Truth table of the proposed logic gate and half adder. Input 1 (A) Input 2 (B) NAND O/P (C) AND O/P, CARRY (G) XNOR O/P (G) XOR O/P, SUM (G) 1 1 1 1 1 1 1 1 1 1 1 1 The required power, P S, can be varied according to the wavelength detuning of the injected beams to the FP-LD [14], as the locking strength is dependent on wavelength detuning. Lower detuning requires less injected power for injection locking and higher detuning needs more input power. The SMFP-LD has a free spectral range (FSR) of about 1.16 nm. This provides flexibility regarding the choice of wavelength detuning of about 1.16 (C) 211 OSA 18 July 211 / Vol. 19, No. 15 / OPTICS EXPRESS 14124

nm. As a result, a large range in the choice of the input beams wavelength and input beams power levels can be achieved. Table 1 shows a truth table of the proposed all-optical logic gates and half adder. A and B are the inputs of the logic functions; and C, G, E, and F are the outputs of the NAND, AND, XNOR, and XOR logic functions, respectively. The output of the AND logic function (G) works as a CARRY, and the output of XOR (F) works as a SUM for the proposed digital half adder. The and 1 symbols indicate the logic low and logic high, respectively. 3. Experimental setup and results Figure 2 illustrates the experimental setup for the proposed multi-logic functions and digital half adder. SMFP-LD1, SMFP-LD2, SMFP-LD3, and SMFP-LD4 are biased with a driving current of 12mA, 14mA, 12.6mA, and 1mA and are operated at a temperature of 2.1 C, 1.6 C, 22.9 C, and 14.9 C, respectively. Under these operating conditions, the SMFP-LDs are self-locked at λ 1 (1542.78nm), λ 2 (1541.6 nm), λ 3 (1536.92 nm), and λ 4 (1538.38 nm), respectively, for the logic gate operation. Input beams can be injection locked to any of the side modes of the SMFP-LD. The side modes of SMFP-LDs are observed in the range of 1535nm to 1555 nm. Hence the inputs beams can be injection locked to any of the modes within the range of 1535nm to 1555nm. In our experiment, two input beams (TL1 and TL2) are injected at wavelengths of 155.8 nm (λ i1 ) and 1553.1 nm (λ i2 ) with wavelength detuning values of.8 nm and.16 nm, respectively. The polarization controllers, PC1 and PC2, are used to minimize the loss in the polarization-dependent Mach-Zehnder modulator. The input light beams are modulated with 1 Gbps Non-return-to-Zero pseudorandom bit sequences of 2 31-1 that are generated from an Anritsu MP1763B pulse pattern generator. PC3, PC4, and PC5 are used to allow only TE polarized beams, as only the TE mode of the light source is used to injection-lock the FP-LDs. Band pass filters (BPFs) are used to filter the dominant wavelength of the corresponding SMFP-LDs. The power of each input beam for SMFP-LD1 is managed in such a way that the SMFP- LD1 works on the principle of multi-input injection locking. The dominant mode of SMFP- LD1 (λ 1 ) is sufficiently suppressed to be considered as logic only when both input beams (A and B) are logic high ( 1 ); otherwise, λ 1 will not be suppressed enough. This gives the NAND output. During our experiment, we found that the required minimum individual power for injection locking that did not suppress the dominant mode of the SMFP-LD is 12.15 dbm; the same state is maintained up to 7.61 dbm without a sufficient amount of suppression. Upon further increases in the power above 7.61 dbm, the dominant mode of the SMFP-LD starts to be suppressed. When the power of the beam reaches 5.81 dbm, the dominant mode of the SMFP-LD is suppressed at a suppression ratio of about 25 db. On the other hand, when the power of the beam is lower than 12.15 dbm, the gain obtained by the individual beam on the respective mode is not sufficient to be considered as a logic 1. We recorded a combined power of 4.56 dbm before optical circulator (OC1), which is sufficient to suppress the dominant mode of SMFP-LD1. The two inputs for SMFP-LD2 are from the output of SMFP-LD1 and the combination of the input beams (A and B) through a coupler (CO1) and PC5. The dominant mode of SMFP-LD2 (λ 2 ) will be suppressed only when the output from NAND (C, λ 1 ), the major beam, and either of the input beams are logic 1. The input beams serve as a supporting beam for the major beam to suppress λ 2. The power of the major beam after CO2 was recorded as 6.2 dbm. Hence, a combination of any of the input beams and the major beam is sufficient to suppress the dominant mode of SMFP-LD2 (λ 2 ). This gives the XNOR logic function. SMFP-LD3 and SMFP-LD4 work on the injection locking of FP-LD based on a single input. In our experiment, when the input beam attains a sufficient amount of power (greater than 5.81 dbm), the dominant mode of the SMFP-LD is suppressed enough to be considered as a logic. This function gives the logic NOT gate. We used the NOT function at the (C) 211 OSA 18 July 211 / Vol. 19, No. 15 / OPTICS EXPRESS 14125

PC5 outputs of the NAND and XNOR gate to obtain the logic AND and XOR gate, which are considered, respectively, as a CARRY and a SUM of the proposed digital half adder combinational block. PPG HALF ADDER TL_1 TL_2 PC1 PC2 Mod Mod PPG PC3 PC4 A CO1 B OC1 BPF NAND SMFP-LD1 D CO2 C SMFP-LD4 CO3 OC3 BPF AND G CARRY OC2 SMFP-LD2 XNOR E BPF OC4 BPF SMFP-LD3 XOR F SUM Fig. 2. Experimental set up for the multi-logic functions and digital half adder operation. TL: Tunable laser; PC: Polarization controller; PPG: Pulse pattern generator; Mod: Modulator; CO: Coupler; OC: Optical circulator; BPF: Band pass filter. To verify the power requirement for the suppression of the dominant mode of the SMFP- LD as a function of the wavelength detuning, we changed the wavelength detuning of the input beams from.8 nm and.16 nm to.12 and.2 nm, respectively. We found that the required minimum individual power for injection locking without suppressing the dominant mode of the SMFP-LD is increased from 12.15 dbm to 11.5 dbm. When the power is less than 11.5 dbm, we found that the gain obtained by the individual beams on the respective mode is not sufficient to be considered as logic 1. In addition, the same state is maintained up to 6.21 dbm without a sufficient amount of suppression. The dominant mode of the SMFP-LD started to be suppressed above 6.21 dbm. When the power of the beam reaches 4.92 dbm, the dominant mode of SMFP-LD is suppressed with a suppression ratio of about 25 db. It should be noted that the required power for the injection locking phenomenon of SMFP-LD with wavelength detuning of.12 and.2 nm is higher than that with wavelength detuning of.8 nm and.16 nm. This shows the amount of required power increases with an increase in wavelength detuning and the tradeoff between the wavelength and the power of the injected beams. (C) 211 OSA 18 July 211 / Vol. 19, No. 15 / OPTICS EXPRESS 14126

-1-3 E=1 1541.6 nm -1.11 dbm -1-3 -1-3 (a) -7 (e) B =1 C=1 C 1553.1 nm 1542.76 nm -1 E = -7.9dBm -11.56 dbm 21.59 db A -3 A B (c) F= 1 1536.92 nm -14.7 dbm E =, 1541.6 nm -42.58 dbm -3-1 -3 F= 19.7 db A=1 C 155.8 nm E=1 E -1 22.46-6.13dBm C =, A B db 2.19 db B = (b) (d) E=1 1541.6 nm -11.24 dbm -7 (f) Fig. 3. Optical power spectrum traces for all-optical NAND, XNOR and inverter function using SMFP-LDs, where A and B are inputs and C is the NAND output, E is the XNOR output and F is the inverter of input E. (a) {A: B: C: E } = { : : 1: 1 }, (b) {A: B: C: E } = { : 1: 1: }, (c) {A: B: C: E } = { 1: : 1: }, (d) {A: B: C: E } = { 1: 1: : 1}, (e) {E:F} = {: 1} and (f) {E:F} = {1: }. Figure 3 shows the verification of the proposed scheme in the spectrum domain taken at the output of SMFP-LD2 and SMFP-LD3 without BPFs. Figure 3(a) shows the spectrum diagram taken at point E after the circulator, OC2. In Fig. 3(a), the input beams are logic. Hence, the dominant mode of SMFP-LD1 (λ 1 ) is logic 1, and this power alone is not sufficient to suppress the dominant mode of SMFP-LD2 (λ 2 ). As a result, λ 2 is also logic 1. In Fig. 3(b) and Fig. 3(c), the dominant mode of SMFP-LD1 is logic 1 as λ 1 is set to be suppressed only when both the inputs are logic 1. In this case, the dominant mode of SMFP- LD2 is logic because the major beam (λ 1 ) and one of the input beams (either A or B) are logic 1. Figure 3(d) shows the spectrum diagram taken when both inputs are logic 1. In this case, λ 1 is logic and λ 2 is logic 1 (because the combined power of the two input beams is not sufficient to suppress (λ 2 )). Figure 3(e) and Fig. 3(f) show the NOT function, which gives the output for the XOR gate and acts as a SUM for the half adder scheme. Similarly, implementing the NOT function of the NAND gate using SMFP-LD4, we obtain the logic AND gate, which acts as a CARRY for the half adder scheme. The suppression ratio measured in the spectrum domain for the NAND, XNOR, and XOR gates are 2.19 db, 22.46 db, and 19.7 db, respectively. The little different in the suppression ratio for the different logic gates output is due to the different SMFP-LDs (SMFP-LD1, SMFP-LD2, and SMFP- LD3), and difference in the power of the input injected beams. This little difference in (C) 211 OSA 18 July 211 / Vol. 19, No. 15 / OPTICS EXPRESS 14127

Optical power (µw) Optical power (µw) Optical power (µw) Optical power (µw) suppression ratio does not have noticeable effect on the logic level and the output of the logic gates and half adder. 16 bit NRZ data 1 complete cycle A B C G E F (a) Waveforms at 5 ps/div (b) Eye diagram at 2 ps/div Fig. 4. Oscilloscope traces of (a) inputs (A and B) and outputs (C, G, E and F) waveform for all-optical logic gates (b) Corresponding eye diagrams. (a) NAND at 1 ps/div (b) AND at 1 ps/div (c) XNOR at 1 ps/div (d) XOR at 1 ps/div Fig. 5. Rising-falling edge of (a) the NAND gate (b) the AND gate (c) the XNOR gate and (d) the XOR gate. The oscilloscope traces of input beams (A and B), output of NAND (C), AND (G), XNOR (E), and XOR (F) are shown in Fig. 4(a) with their respective eye diagrams in Fig. 4(b). The input A is a 16-bit 1 Gbps NRZ pulse train with a bit pattern of 11111111, and input B is the delayed pattern of input A. The outputs are taken at the output of each SMFP- LD after their respective wavelength-selective BPF; thus, all other unwanted signal wavelengths are filtered out. Eye diagrams are measured with 1 Gbps PRBS 2 31-1 signals. We recorded the extinction ratio of individual instances of logic gate output as 12.6 db for NAND, 14.6 db for AND, 12.33 db for XNOR, and 11.6 db for XOR. The output from the logic XOR gives the SUM and the output from the logic AND gives the CARRY of the digital half adder combinational block. The waveforms and clear eye diagrams with a good extinction ratio prove the success of the proposed multi-logic functions and a digital half adder. Figure 5 shows the rising-falling edge of the demonstrated logic outputs. We measured the rising-falling time of 53 ps and 43.2 ps for NAND (Fig. 5(a)), 44.8 ps and 46 ps for AND (Fig. 5(b)), 29.6 ps and 32.3 ps for XNOR (Fig. 5(c)), and 3.8 ps and 36 ps for the XOR (Fig. 5(d)) logic gates. Figure 6 shows the BER measurements of proposed all-optical logic functions and half adder. No any noise floor is seen up to BER of 1 12 which shows good performance of the (C) 211 OSA 18 July 211 / Vol. 19, No. 15 / OPTICS EXPRESS 14128

demonstrated all-optical logic gates and half adder. We measured the maximum power penalty of 1.2 db for XNOR gate at the BER of 1 9. log (BER) -1-2 -3-4 -5-6 -7-8 -9-1 -11-12 4. Discussion and conclusion back to back AND XNOR XOR NAND 1.2 db -28-27 -26-25 -24-23 -22-21 received power (dbm) Fig. 6. BER measurements for proposed all-optical logic gates The key issue in the implementation of these logic functions and the digital adder is the proper power management of input beams to suppress the dominant mode of the SMFP-LDs. The required amount of power to suppress the dominant mode of the SMFP-LD for a multiinput injection is obtained with the proper management of the beams power at different stages. This power can be changed by adjusting the corresponding wavelength detuning, as the wavelength detuning and the amount of power required for suppression are proportional to each other. Based on these techniques, we set the SMFP-LD in such a way that the dominant mode is suppressed via the combination of input beams. In this paper, we demonstrated all-optical logic functions (NAND, AND, XNOR, and XOR) and a digital half adder. The digital half adder is obtained through the output of XOR (SUM) and AND (CARRY). The output waveforms, clear eye diagrams, low rising-falling time, and BER performance demonstrate the successful operation of the proposed scheme. This work is conducted at a data rate of 1 Gbps; however, the speed can be increased to higher data rates as the speed of the SMFP-LD depends on the relaxation oscillation of solitary lasers. The theoretical and experimental relaxation oscillation frequency of Fabry- Pérot laser has been reported as 1 GHz and 72 GHz, respectively in [17]. Further, the relaxation oscillation can be increased by engineering the cavity length, the injected power and the injected current as reported in [17,18]. As we use SMFP-LDs, the proposed scheme does not require the external probe beam required in other schemes, making this module simpler and more attractive. The combined input power of 5.81 dbm, which is sufficient for logic operation, and the driving current of about 15 ma both confirm that it is efficient in terms of power. This simple configuration, low power consumption, and the low-cost approach can be implemented in future all-optical communication and optical networks for computation, decision making, header matching, and label swapping [19]. The implementation of the proposed scheme on an optical network subsystem remains as future work, while the most challenging factor connected to commercialization is the fabrication, which we will consider in our future research. (C) 211 OSA 18 July 211 / Vol. 19, No. 15 / OPTICS EXPRESS 14129