Lesson 22A Alternating Current & Transformers

Similar documents
Generators and Alternating Current

Forces and Electrical Charges

Chapter 13. Electric Circuits

Syllabus OP49 Test electrical conduction in a variety of materials, and classify each material as a conductor or insulator

Chapter 24. Alternating Current Circuits

Figure 1. Why is iron a suitable material for the core of a transformer?

National Physics. Electricity and Energy Homework. Section 2 Electrical Power

Unit 6 ~ Learning Guide Name:

Intermediate Physics PHYS102

Look over Chapter 31 sections 1-4, 6, 8, 9, 10, 11 Examples 1-8. Look over Chapter 21 sections Examples PHYS 2212 PHYS 1112

Chapters 34: Ohm s Law

Section 4. Ohm s Law: Putting up a Resistance. What Do You See? What Do You Think? Investigate

Electricity. AQA Physics topic 2

12.2 ALTERNATING CURRENT 12.3 TRANSMISSION OF ELECTRICAL POWER HW/Study Packet

Producing Electric Current

Electric Circuits Review

8) Name three more types of circuits that we will not study in this class.

1 V = IR P = IV R eq. 1 R i. = R i. = R eq. V = Energy Q. I = Q t

Regents Physics Mr. Mellon Based on Chapter 22 and 23

Experiment 6. Electromagnetic Induction and transformers

Resistance and Ohm s Law

A.C. Circuits -- Conceptual Solutions

The topics in this unit are:

potential difference resistance current

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Electric Circuits)

4. The circuit in an appliance is 3A and the voltage difference is 120V. How much power is being supplied to the appliance?

GCSE Physics. The PiXL Club Ltd, Company number

charge time Electric Current and Circuits Current HEAT will flow if there is a difference in temperature

Chapter 2: Electricity

Final Reg Current and Circuits Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Power. Power is the rate of using energy in joules per second 1 joule per second Is 1 Watt

Radar. Radio. Electronics. Television. .104f 4E011 UNITED ELECTRONICS LABORATORIES LOUISVILLE

not to be republished NCERT ALTERNATING CURRENT Chapter Seven MCQ 1

Q1. (a) The drawing shows a small transformer used to recharge the battery in a 4.2 V mobile phone from a 230 V mains supply.

Wallace Hall Academy Physics Department. Electricity. Pupil Notes Name:

Science 9 Electricity Objectives Greene s Study Guide

Physics Jonathan Dowling. Lecture 35: MON 16 NOV Electrical Oscillations, LC Circuits, Alternating Current II

CHAPTER 13 REVIEW. Knowledge. Understanding

ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment)

Physics for Scientists & Engineers 2 2 = 1 LC. Review ( ) Review (2) Review (3) e! Rt. cos "t + # ( ) q = q max. Spring Semester 2005 Lecture 30 U E

CHAPTER 5 Test B Lsn 5-6 to 5-8 TEST REVIEW

Basic Electricity 30 Hour - Part 1 Student Workbook Issue: US140/30/2a-IQ-0402A. Written by: LJ Technical Dept

Alternating current. Interesting Fact: Current and voltage

Transformers. Question Paper. Save My Exams! The Home of Revision. Subject Physics (4403) Exam Board. Keeping Things Moving. Page 1.

CHAPTER 8: ELECTROMAGNETISM

An induced emf is the negative of a changing magnetic field. Similarly, a self-induced emf would be found by

Electromagnetism Unit- Current Sub-Unit

I p = V s = N s I s V p N p

8Transmission of power

Electromagnetic Oscillations and Currents. March 23, 2014 Chapter 30 1

Electrical Theory. Power Principles and Phase Angle. PJM State & Member Training Dept. PJM /22/2018

Electricity Practice Test 1

Duration of resource: 23 Minutes. Year of Production: Stock code: VEA12041

2 Which arrangement of identical resistors would draw the most current when connected to the same potential difference?

9.8 Making a Shaker (or Forever) Flashlight. Grade 9 Activity Plan

Chapter 21. Alternating Current Circuits and Electromagnetic Waves

Electric Circuits Notes 1 Circuits

Transformers. Question Paper. Save My Exams! The Home of Revision. Exam Board. Page 1. Score: /93. Percentage: /100

Chapter 33. Alternating Current Circuits

1. A battery of internal resistance 2 Ω is connected to an external resistance of 10 Ω. The current is 0.5 A. D. 24.

A piece of wire of resistance R is cut into five equal parts. These parts are then connected in

South Pasadena A.P. Physics Chapter Electric Current & DC Circuits Date / / Period Electricity Practice Test

Goals. Introduction. To understand the use of root mean square (rms) voltages and currents.

Team 2228 CougarTech 1. Training L1. Electric Circuits

Goals. Introduction. To understand the use of root mean square (rms) voltages and currents.

DATE: NAME: CLASS: Drawing Circuit Diagrams

(a) (i) Is the transformer in the diagram being used as a step-up transformer or as a step-down transformer? ) in the box next to your answer. ...

A 11/89. Instruction Manual and Experiment Guide for the PASCO scientific Model SF-8616 and 8617 COILS SET. Copyright November 1989 $15.

Copper and Electricity: Transformers and. the Grid. Transformers

Lecture 3.10 ELECTRICITY Alternating current Electrical safety

Chapter 12 Electric Circuits

Electric Current - 1 v Goodman & Zavorotniy

Electricity and Energy

Example 25 1: A total charge of 25 C passes through a wire every 5 seconds. What is the current in this wire?

ET1210: Module 5 Inductance and Resonance

A battery transforms chemical energy into electrical energy. Chemical reactions within the cell create a potential difference between the terminals

Module 1, Lesson 2 Introduction to electricity. Student. 45 minutes

Section A. Two resistors of 10 Ω and 15 Ω are connected in series to a battery of 6V. How can the values of current passing through them be compared?

37 Electromagnetic Induction. Magnetism can produce electric current, and electric current can produce magnetism.

Magnetism can produce electric current can. produce magnetism Electromagnetic Induction

Current Electricity. What is Current Electricity? Electrical Circuits Electrochemical Cells. Wet, Dry and Fuel Cells

Electrical Components and their Functions

Electric Circuits Vocabulary

Chapter 11. Alternating Current

General Physics (PHY 2140)

CHAPTER 5 CONCEPTS OF ALTERNATING CURRENT

AC Power Instructor Notes

Inductance in DC Circuits

P2 Quick Revision Questions. P2 for AQA GCSE examination 2018 onwards

End-of-Chapter Exercises

In this section you will learn about Ohm's Law as applied to a single resistor circuit. Phillips Textbook pp including some maths on notation.

Voltage, Current and Resistance

Lightbulbs and Dimmer Switches: DC Circuits

Trade of Electrician. Introduction to AC

AP Physics - Problem Drill 14: Electric Circuits

1. The coulomb is a unit of. A. charge B. voltage C. energy D. capacitance E. current. 2. The following is not true about voltage:

CBSE TEST PAPER-01 CLASS - X Science (Electricity and its Effects)

Exercise 9. Electromagnetism and Inductors EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Magnetism, magnets, and magnetic field

ALTERNATING CURRENT. Lesson-1. Alternating Current and Voltage

Basic Electrical Training

Transcription:

Physics 30 Lesson 22A Alternating Current & Transformers I Alternating Current Many electric circuits use electrochemical cells (batteries) which involve direct current (DC). In dc electric power, the electrons flow down the wire. Electrons are forced into one end of a wire, which causes an electron to pop out the other end. Although the individual electrons move relatively slowly down the wire, the overall effect of pushing one electron in and another electron emerging is almost instantaneous. An analogy would be a set of ball bearings in a tube: When a ball bearing is pushed into the tube, another one immediately pops out the other end. However, there are considerably more circuits that operate with alternating current (AC). For AC electricity, the electrons vibrate back and forth across one location. AC power is like a mechanical wave the energy passes through the medium via vibrations in the medium s particles. AC current is transmitted through the oscillations of the electrons in a conductor. As we saw in Lessons 21 and 22, AC current is produced by an AC generator. When we graph the output of the potential difference and the current, we get the following graphs: +V o V 0 t -V o +I o I 0 t In Canada, the voltage has a peak value of 170 volts and has a frequency of 60 Hz. Note that the average voltage and the average current in an ac circuit are both zero. This presents a problem. If the average voltage and current are both zero, how does ac electricity deliver energy to a light bulb? The answer to this question is found when we consider the power. - I o R.L. & A.K. 22B - 1 2/25/2014

Recall that P = I V. When we multiply the voltage and current together, we find that the power also changes with time. Note that the negative current multiplied by the negative potential difference results in a positive power value. P max P P ave 0 t While the minimum power is zero, the maximum or peak power for alternating current is P max I V o o When the power of an ac circuit is measured it is customary to use the average power which is one-half the peak power 1 P 2 I V ave o o By breaking up the 2 into 2 x 2, we can come up with a useful result. A slight rearrangement of the above equation gives I P 2 x V o o ave 2 An ac ammeter measures the effective current in an ac circuit. I Ieff o 0. 707 Io 2 An ac voltmeter measures the effective voltage in an ac circuit. V Veff o 0. 707 Vo 2 Note: Another name for effective voltage is root mean square voltage. V eff = V rms Another name for effective current is root mean square current. I eff = I rms Electric appliances are rated according to average power and effective voltage. Likewise, when we specify ac power we are talking about average power unless stated otherwise. R.L. & A.K. 22B - 2 2/25/2014

All of the power equations, as well as Ohm's Law, can be written conveniently in terms of effective or rms quantities: V Ieff eff R P Ieff Veff 2 P I eff R P V 2 eff R All of these equations are analogous to the equations used for DC circuits. Example 1 In Canada the maximum AC voltage in a regular home socket is typically 170 V. What is the corresponding effective voltage? V eff = 0.707 V max = 0.707 (170 V) = 120 V Example 2 If an ac ammeter indicates a current of 5.5 A, what is the maximum and minimum current? I max = I eff / 0.707 = 5.5 A / 0.707 = 7.8 A The minimum current is: I min = 0 II Transformers Joseph Henry, who missed his chance at glory in 1831, went on to become the leader in studying the transformer. In the transformer, the current is being turned off and on in the primary circuit. As a result of the growing and collapsing magnetic fields, current is being generated in the secondary circuit. Henry realized the current produced in the secondary coil was AC, as it switched direction depending on whether the magnetic field was growing or collapsing. R.L. & A.K. 22B - 3 2/25/2014

If we use DC current in the primary circuit, the switch must be opened and closed at a very rapid rate in order to generate a steady flow of current in the secondary circuit. It is more convenient and efficient to connect the primary coil to an AC circuit. As the current in the primary circuit changes direction it automatically induces a growing and collapsing magnetic field in the iron core, which automatically induces an AC current in the secondary coil. If the primary and secondary coils contain the same number of turns and assuming 100% efficiency (no power loss due to heat or sound), then the secondary coil will have the same voltage and current as the primary circuit. However, we use a transformer to change the voltage and current values on the primary side to a different voltage and current on the secondary side. The diagram below indicates a transformer in which the primary coil has 400 turns and is receiving a current of 4.0 A and a voltage of 120 V. The secondary coil has 800 turns. N p = 400 N s = 800 I p = 4.0 A I s =? V s =? V p = 120 V We can calculate the amount of current and voltage on the secondary side through a simple mathematical or ratio relationship. N p = V p = I s N s V s I p where N p number of turns in primary coil N s V p V s I p I s number of turns in secondary coil potential difference in primary coil potential difference in secondary coil current in primary coil current in secondary coil R.L. & A.K. 22B - 4 2/25/2014

In the transformer above: N p = V p N p = I s N s V s N s I p 400 = 120 V 400 = I s 800 V s 800 4.0 A V s = 240 V I s = 2.0 A If the voltage on the secondary side is greater than the voltage on the primary side, the transformer is called a step up transformer. If the voltage on the secondary side is less than the voltage on the primary side, the transformer is called a step down transformer. The turns ratio formula can be used to calculate values for circuits on either side of the transformer assuming that it is 100% efficient. Assume that the transformer is 100% efficient. Example 3 The primary coil of a transformer has 600 turns and the secondary coil has 1800 turns. If the primary circuit has a potential difference of 90 V, what is the potential difference in the secondary coil? N p N s = V p V s 600 = 90 V 1800 V s V s = 270 V A 100% efficient transformer will generate the same power on either side of the transformer. I s = V p I p V s V s I s = V p I p P s = P p power out = power in III AC Versus DC Power Transmission AC generators and DC generators are equally easy to design, build and operate, and they produce electricity with equal efficiency. Yet all of our large scale electrical systems are based on AC power generation. Why is this so? The reason lies in the fact that generating stations (hydro, coal, nuclear) are generally situated in out of the way places away from populated areas. When electrical energy is transmitted over long distances, energy lost as heat can become a costly problem. In 1882, two years after Thomas Edison filed his patent for an improved light bulb, his company, the Edison Electric Light Company, began installing lighting systems in the United States. Edison s preference for using DC generators to produce electrical energy created a dilemma. Transmitting a given amount of power at a safe, low voltage requires a large current, which heats transmission lines (P = I 2 R) and loses much of its energy as heat. R.L. & A.K. 22B - 5 2/25/2014

Transmitting power with a low, efficient current required a high, unsafe voltage. Further, it is relatively difficult to step up DC power. The dilemma was solved using AC circuitry and transformers. At the site of power generation, a transformer steps up the voltage and lowers the current. Power is transmitted over long distances with relatively low losses. Near the point of use, another transformer steps down the voltage to a safe level. The first AC system was demonstrated in Paris in 1883, with experimental systems demonstrated in London and Italy. American engineer George Westinghouse bought the patent rights to the latter. While the Edison company enjoyed a near monopoly in the lighting business, the Westinghouse Electric Company in Pittsburgh installed its first electrical system using AC to provide power for incandescent lighting in Buffalo. Edison was alarmed by this new company, which claimed to produce and transmit electricity much more cheaply than his. He was determined to get rid of the competition. Edison joined forces with Harold P. Brown, designer of the electric chair, to demonstrate that AC power was unsafe. In July of 1888, Brown gave a lecture/demonstration in New York. After outlining his opposition to AC, Brown sent 1000 V of DC current from an Edison generator into a dog, causing it considerable distress but not killing it. Many of the audience left in disgust before Brown fired 880 V of AC into the dog, killing it. The plan to associate AC power with gruesome death was not successful. The AC versus DC debate continued until 1891, when a high voltage AC line carrying sizable quantities of electricity from Frankfurt to Lauffen, Germany, a distance of 176 km. Tests indicated transmission efficiency was 77%. This tipped the balance in favor of AC, which was subsequently used in the construction of the Niagara Power Plant in 1893 by Westinghouse Electric. The first transmission of electrical energy to Buffalo, New York, took place in 1896 spawning a number of new industries. However, Edison s company did not suffer long as his company went on to become General Electric. In the diagram above, at the generating station, electrical energy is passed through a step up transformer so that it can be transported over great distances through high voltage transmission lines. At a sub-station within a population center, the energy is passed through a step down transformer and transported over short distances down back alleys and underground to factories or homes. Every so often in the grid, the voltage is stepped down again to values that can be used in households. R.L. & A.K. 22B - 6 2/25/2014

IV Practice Problems 1. A 500 W electric appliance is connected to an AC generator producing 120 V. A. What is the current flowing through the appliance? (4.17 A) B. What is the maximum current flowing through the appliance? (5.89 A) C. What is the minimum current flowing through the appliance? (0) 2. Calculate the resistance and the peak current in a 1000 W hair dryer connected to a 120 V line. What happens if it is connected to a 240 V line? (A clothes dryer usually runs off of the 240 V line in a home.) (14.4, 11.8 A, power becomes 4000 W) 3. An ac generator producing an effective voltage of 20 V is placed in parallel with 6.0 and a 3.0 resistors. a) What is the average power dissipated in the 6.0 resistor? (66.7 W) b) What is the peak power dissipated in the circuit? (400 W) 4. What is the turns ratio in the transformer that steps voltage from a wall socket to the 15000 V required to accelerate electrons in the picture tube of a TV set? (1 to 125) R.L. & A.K. 22B - 7 2/25/2014

5. A step down transformer inside a stereo receiver has 330 turns in the primary coil and 25 turns in the secondary coil. The plug connects the primary coil to a 120 V wall socket which draws a current of 0.83 A when the receiver is on. Find a) the voltage across the secondary coil. (9.09 V) b) the current across the secondary coil. (11 A) c) the power consumed by the receiver circuits. (100 W) 6. Power Losses in Transmission Calculate the percentage of power lost as heat in a transmission line if 10 kw of electricity is transmitted along a cable with a total resistance of 1.0 at an electric potential of 200 V. (Power loss is found using P loss = I 2 R) Find current: Calculate power loss: Calculate % loss: Calculate the percentage of power lost as heat in a transmission line if 10 kw of electricity is transmitted along a cable with a total resistance of 1.0 at an electric potential of 2000 V. Find current: Calculate power loss: Calculate % loss: What must we do to transmit electricity more efficiently? R.L. & A.K. 22B - 8 2/25/2014

Lesson 22B Hand-in Assignment Part A Alternating power questions 1. Calculate the peak current in a 3.2 k resistor connected to a 240 V ac source. (0.11 A) 2. An ac voltage, whose peak value is 180 V, is across a 220 resistor. What is the value of the rms and peak current in the resistor? (0.578 A, 0.818 A)) 3. What is the resistance of a 60 W, 120 V light bulb when it is turned on? (240 ) 4. The peak value of an alternating current passing through a 1.0 kw device is 3.0 A. What is the effective voltage across it? (4.7 x 10 2 V) 5. What is the maximum instantaneous value of the power dissipated in a 100 W light bulb? (200 W) 6. A 15 heater coil is connected to a 240 V AC line. What is the average power used? What are the maximum and minimum values of the instantaneous power? (3.8 kw, 7.7 kw, 0) 7. In the wire connecting an electric clock to a wall socket (60 Hz), how many times a day does the current reverse direction? (5.184 x 10 6 times) 8. An ac voltage with a peak value of 65 V is applied across a 25 resistor. What is the rms (effective) current in the resistor? (1.8 A) 9. A blow drier and a vacuum cleaner each operate with an ac voltage of 120 V. The current rating of the blow drier is 11 A, while that of the vacuum cleaner is 4.0 A. Determine the power consumed by (a) the blow drier and (b) the vacuum cleaner. (c) Determine the ratio of the energy used by the blow drier in 15 minutes to the energy used by the vacuum cleaner in ½ hour. (1.3 kw, 0.48 kw, 1.4:1) 10. Circuit breakers are re-settable automatic switches that protect against a dangerously large total current. The switch works by opening the circuit to stop the current flow if it reaches a specified level of current. A 1650 W toaster, a 1090 W iron, and a 1250 W microwave oven are turned on in a kitchen. All three appliances are connected through a 20 A circuit breaker found at the 120 VAC power source. a) Find the equivalent resistance of the three devices. (How will they be hooked up, in parallel or in series?) (3.61 ) b) Determine the total current delivered by the source and determine whether the breaker will open or remain closed. (33.3 A) R.L. & A.K. 22B - 9 2/25/2014

Part B Transformer Problems 11. The batteries in a portable CD player are recharged by a unit that plugs into a wall socket. Inside the unit is a step-down transformer with a turns ratio of 13:1. The wall socket provides 120 V. What voltage does the secondary coil of the transformer provide? (9.23 V) 12. In some parts of the country, insect zappers with their blue lights are a familiar sight in a summer evening. These devices use a high voltage to electrocute insects. One such device has a voltage of 4150 V which is obtained from a standard 120 V outlet through a transformer. If the primary coil has 17 turns, how many turns are in the secondary coil? (588 turns) 13. Electric doorbells found in many homes require 10.0 V to operate. To obtain this voltage from a standard 120 V outlet, a transformer is used. Is a step up or step down transformer required, and what is the turns ratio? (12:1) 14. A step down transformer (turns ration 8:1) is used with an electric train to reduce the voltage from the wall socket to a value needed to operate the train. When the train is running, the current in the secondary coil is 3.4 A. What is the current in the primary coil? (0.43 A) 15. The input to the primary coil of a transformer is 120 V, while the current in the secondary coil is 0.10 A. When 60.0 W of power is being delivered to the circuit attached to the secondary coil, what is the voltage across the secondary coil? Is the transformer a step up or step down unit, and what is its turns ratio? (6.0 x 10 2 V, 1:5) 16. The secondary coil of a transformer provides the voltage that operates an electrostatic air filter. The turns ratio of the transformer is 1:43. The primary coil is plugged into a standard 120 V outlet. The current in the secondary coil is 1.5 ma. Find the power consumed by the air filter. (7.7 W) 17. A generating station is producing 1.2 MW of power that is to be sent to a small town located 7.0 km away. Each of the two wires that comprise the transmission line has a resistance per unit length of 0.050 /km. (a) Find the power lost in heating the wires if the power is transmitted at 1200 V. (b) If a 1:100 step up transformer is used to raise the voltage before the power is transmitted, how much power is now lost in heating the wires? (0.70 MW, 70 W) 18. State 3 reasons why AC is used for large-scale distribution of electrical power instead of DC. 19. Draw a sketch of a transformer and label the three main components. State the function of each component and show which laws of electromagnetic induction govern its operation. R.L. & A.K. 22B - 10 2/25/2014